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A fully nonlinear Boussinessq-type model with several free coefficients is considered as a departure point.
The model is monolayer and low order so as to simplify numerical solvability. The coefficients of the model
are here considered functions of the local water depth. In doing so, we allow to improve the dispersive and
shoaling properties for narrow banded wave trains in very deep waters. In particular, for monochromatic
waves the dispersion and shoaling errors are bounded by ~2.8% up to kh = 100, being k the wave number
and h the water depth. The proposed model is fully nonlinear in weakly dispersive conditions, so that
nonlinear wave decomposition in shallower waters is well reproduced. The model equations are numerically
solved using a fourth order scheme and tested against analytical solutions and experimental data.
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1. Introduction

In deep waters water wave propagation does not depend on water
depth. For instance, the wave celerity c for a wave with period T is
c = gT/2π, with g the gravity acceleration. Because each wave period,
T, travels with a different velocity, deep waters are called dispersive.
Furthermore, in deep waters the wave amplitude, a, is usually much
smaller than the water depth h and, as a consequence, the model
equations are linear (Airy theory).

As the water waves propagate to the coast, the water depth h
decreases and the wave propagation becomes influenced by it. Also,
nonlinear effects become important. In shallow waters, where the
wave propagation is dominated by the water depth, the wave celerity
is given by c≈

ffiffiffiffiffiffi
gh

p
, which is independent of the wave period (i.e., non

dispersive). An important physical property of shallow waters is that
the horizontal velocity profile is nearly uniform in the vertical.
Nonlinear Shallow Waters Equations (NSWEs), which are vertically
integrated, exploit this property and are valid for non dispersive
conditions and for arbitrary amplitudes of the wave.

It is accepted that shallow water conditions correspond to kh ≲ 0.3,
with k = 2π/λ the wave number and λ the wave length, while kh ≳ 3
corresponds to deepwaters (Dean and Dalrymple, 1984). In intermedi-
ate waters (namely 0.3 ≲ kh ≲ 3) nonlinearity and dispersion coexist
and neither Airy theory nor NSWE can represent the physics. To over-
come this problem, two main pertubation approaches are found
(Dingemans, 1997). On the one hand, Stokes theory departs from the
rights reserved.
fully dispersive linear Airy theory to incorporate weakly nonlinear ef-
fects. On the other, Boussinesq-Type Equations (BTEs) depart from
NSWEs and include weakly dispersive effects. This work is focused on
BTEs.

Being a0, h0 and k0 characteristic values for wave amplitude, water
depth and wave number respectively, the dimensionless parameters

�≡ a0
h0

; and μ ≡ k0h0; ð1Þ

represent nonlinear and dispersive effects respectively. The NSWEs can
represent fully nonlinear waves for the nondispersive case. The original
BTEs by Peregrine (1967) included all the nonlinear non dispersive
terms (NSWEs) plus the weakly nonlinear and weakly dispersive

termsOð�1μ2Þ, but disregarded the highly nonlinear andweakly disper-
sive terms O(�2μ2�3μ2). The inclusion of the highly nonlinear and weak-

ly dispersive terms Oð�2μ2
; �

3μ2Þ was done, e.g., by Green and Naghdi
(1976) and Wei et al. (1995).

The equations by Peregrine (1967) were derived for the depth
averaged horizontal velocity, u, and give good linear dispersive perfor-
mance, i.e., errors below 1% relative to Airy's celerity, up to kh ≲ 1.1.
To improve the range of applicability, several approaches are found in
the literature. Two of them are higher order and multilayer models:
higher order models include terms O μ4

� �
or higher (Gobbi et al.,

2000), while the multilayer models split the flow into several layers,
applying low order models into each one (Lynett and Liu, 2004).
These two kinds of models increase the numerical complexity because
they include fifth order derivatives or more unknowns.

Based on the method of Agnon et al. (1999), Madsen et al. (2002)
developed a fully nonlinear model, which is accurate in very deep
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water (kh ≲ 40 for the linear case). Their model requiresmore differen-
tial equations to be solved, compared to other higher ordermodels such
as that by Gobbi et al. (2000), and the highest order of derivatives in the
model is also fifth. Madsen et al. (2003) presented a simplified version
of their original model, where the highest order of derivatives is
reduced to three. The range of application is also reduced to kh ≲ 10.

Using a low order monolayer model, Nwogu (1993) improved the
linear dispersive performance up to kh ≲ 3.3 by using the horizontal
velocity uα at z = zα instead of the depth averaged velocity proposed
by Peregrine (1967). In fact, the above mentioned models by Wei
et al. (1995) and Lynett and Liu (2004), amongst other, follow this
idea to improve the linear dispersion performance.

Following the track of low order monolayer BTEs, Madsen and
Schaffer (1998) modified the model equations by Wei et al. (1995) by
introducing new terms which included free coefficients. While the
equations remain exact up to O μ2

� �
, similar to those by Wei et al.

(1995), for the proposed coefficients they obtained errors in linear
dispersion below 1% for kh ≲ 6.2.

Although the improvements in linear dispersion, i.e., in the repre-
sentation of the wave celerity, provided by Nwogu (1993) or Madsen
and Schaffer (1998) are substantial, it is not generally sowith the linear
shoaling, i.e., with the representation of the wave amplitude: the linear
shoaling by the equations by Nwogu (1993) and Madsen and Schaffer
(1998) is fair (1% error in wave amplitude) only up to kh ≈ 0.78 and
kh ≈ 0.82 respectively, and at kh = 2 the errors are already above
7.4% in both cases.

Departing from Madsen and Schaffer's equations and using an
optimization approach, Galan et al. (2012) reduced the errors to
0.3% both in linear dispersion and shoaling up to kh ≈ 5. Further,
Galan et al. (2012) equations also include new terms O �1μ4

� �
to im-

prove the weakly nonlinear and highly dispersive properties.
Other approaches have considered the improvement of linear prop-

erties to arbitrary depths which are to mention. Beji and Nadaoka
(1999) followed a different approach also for narrow banded wave
trains, whereas (Karambas and Memos, 2009) reached fully dispersion
(i.e., for arbitrary depths and arbitrary ranges of frequencies). In both
cases, however, the models do not allow fully nonlinearities in weakly
dispersive conditions.

Most of the above works consider that the free coefficients intro-
duced are constant. In the present work we consider that these coeffi-
cients are functions of the water depth. In this way we will be able to
improve the model properties up to deeper waters. As a counterpart,
wewill require that thewave train travelling to the coast is, in deepwa-
ters, narrow banded in frequencies. Narrow banded wave trains are as-
sociated to long fetchs (swells), and hence its usefulness. Further, in
weakly dispersive conditions the equations will remain fully nonlinear.

This work can be considered as an extension of that by Lee et al.
(2003) for the propagation of monochromatic waves in deep waters.
The work by Lee et al. departed fromWei et al. (1995) equations, hav-
ing only one free parameter and only monochromatic waves could be
represented (strictly speaking, only linear dispersion could be well
represented). Because we have more free parameters available, we
will be able to propagate waves within a range of frequencies.
Table 1
Constant coefficients for (Wei et al., 1995), (Madsen and Schaffer, 1998) and (Galan
et al., 2012), denoted respectively as W95, M98 and G12.

W95 M98 G12

α −0.53096 −0.54122 −0.54217
δ – −0.03917 −0.02409
γ – −0.01052 −0.00492
δh – −0.14453 −0.15530
γh – −0.02153 −0.07897
δ� – – −0.36052
γ� – – −0.13169
2. Governing equations

The fully nonlinear BTEs by Galan et al. (2012), hereafter G12, are

X−X� þ∇· d1αh
2∇X þ d2αh

3∇Y
h i

þ∇· c1αh
2− η

2

� �
η∇X þ c2αh

2− η2

6

 !
η∇Y

" #

þ δ−δhð Þ∇· h2∇ X−X�ð Þ
h i

þ δh∇2 h2 X−X�ð Þ
h i

þδ�∇⋅ hη∇ X−X�ð Þ½ � ¼ 0;

ð2aÞ
and

Z−Z� þ c1αh∇∇· hZð Þ þ c2αh
2∇∇·Z−∇ η∇· hZð Þ þ η2

2
∇·Z

" #

þ∇ c1αh−ηð Þu·∇X þ c2αh
2− η2

2

 !
u·∇Y þ X þ ηYð Þ2

2

" #

þ γ−γhð Þh2∇∇· Z−Z�ð Þ þ γhh∇∇· h Z−Z�ð Þð Þ
−γ�∇ η∇· h Z−Z�ð Þð Þ½ � ¼ 0;

ð2bÞ

with η the free surface elevation, u the horizontal velocity evaluated
at z = za = αh, Y ≡ ∇ · u and

X ≡∇· huð Þ; Z ≡ ut ; ð3aÞ

X� ≡−ηt−∇· ηuð Þ; Z� ≡−1
2
∇ u·uð Þ−g∇η; ð3bÞ

with g is the gravity acceleration. In Eqs. (2)

c1α ≡α; c2α ≡ α2

2
; d1α ≡α þ 1

2
; d2α ≡ α2

2
−1

6
; ð4Þ

where α is a free coefficient, as well as δ, γ, δh, γh, δh and γ�. Table 1
shows the values by Galan et al. (2012), hereafter “G12”, and also
the ones required to recover the equations by Madsen and Schaffer
(1998) and Wei et al. (1995).

Eq. (2) is obtained using an asymptotic expansion in kh and are

exact up toO khð Þ2
� �

. No limitations are imposed on the nonlinearity,

so that they can represent fully nonlinear waves up to order

O khð Þ2
� �

. For kh → 0 they become independent of the coefficients

and tend to the exact shallow water equations. The weighting coeffi-
cients influence the behavior of the equations only in deeper waters.
Being more specific, the linear dispersion is influenced only by α, δ
and γ, coefficients δh and γh only influence the linear shoaling and
the coefficients δ� and γ� affect only the nonlinear performance. All
seven coefficients have been chosen so as to improve the linear and
weakly nonlinear performance in deeper waters.

As shown by G12 for constant coefficients, the linear dispersion
relationship embedded in the above Eqs. (2) is

cbte2

gh
¼

� �
ω2

gk2bteh
¼ 1− dα þ γ þ δð Þ kbtehð Þ2 þ dα þ δð Þγ kbtehð Þ4

1− cα þ γ þ δð Þ kbtehð Þ2 þ cα þ γð Þδ kbtehð Þ4 ; ð5Þ

where cbte wave celetiry corresponding to these BTEs, kbte the corre-
sponding wave number, ω the wave angular frequency, cα ≡ cα,1 +
cα,2 = α2/2 + α and dα ≡ dα,1 + dα,2. The exact Airy dispersion
expression is

cAiry2

gh
¼

( )
ω2

gk2Airyh
¼ tanh kAiryh

� �
kAiryh

: ð6Þ

For given values of gravity acceleration g, water depth h, wave
angular frequency ω and the three coefficients α, δ and γ, the values
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Fig. 1. Errors εc and εs for G12 (full lines), M98 (dashed) and W95 (dash-dotted).
Shoaling errors, εs, are denoted with symbols.
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of kbte and kAiry obtained from the Eqs. (5) and (6) are different in
general, thus giving an error in the wave celerity (linear dispersion).
Fig. 1 shows the error in linear dispersion, defined as

εc ≡
cbte
cAiry

−1 ¼ kAiry
kbte

−1
	 


; ð7Þ

as a function of the dimensionless group κ ≡ ω2h/g. This group, κ, can be
used as a k-independent alternative to ξ ≡ kh to evaluate whether deep
or shallow waters hold (Nwogu, 1993). It has the advantage of not in-
troducing k, which is different depending on whether Eqs. (5) or (6)
are used. For Airy theory κ = ξtanhξ, and therefore, κ ≈ ξ for ξ ≳ 3.

Fig. 1 also includes the error in the representation of wave ampli-
tude assuming mild slope conditions. This error is defined as (Chen
and Liu, 1995)

εs ≡ exp ∫h

0

αη;Airy−αη;bte

h�
dh�

	 

−1; ð8Þ

where αη,Airy(κ* ≡ ω2h*/g) and αη,bte(κ*,α,δ,γ,δh,γh) are the shoaling
gradients for Airy's and above BTEs (Galan et al., 2012; Madsen and
Sorensen, 1992). The error above defined is the relative error in the
wave amplitude for a linear propagation over mild slopes from κ to
the shore, and it has been shown to be the proper error to be used
(Chen and Liu, 1995; Galan et al., 2012; Lee et al., 2003).

From Fig. 1, the coefficients proposed by Galan et al. provide a
better performance compared to the other sets both in linear dispersion
(εc) and, specially, in linear shoaling (εs). The G12 coefficients in Table 1
were found so as to improve the performance for any κ up to κmax = 5
obtaining |εc,εs| b 0.3%, and the corresponding sets for wider ranges
(i.e., up to deeper waters) such as κmax = 10 or κmax = 20 were
also provided.

The above results have been here slightly improved, as shown in
Table 2 for different values of κmax. In a problem where, e.g., the max-
imum values of κ are expected to be above 10 and below 20, the
coefficients for κmax = 20 should be used: in that case, the errors in
wave celerity and shoaling will be below 3.72%.
Table 2
Constant coefficients and errors for different κmax.

κmax = 5 κmax = 10 κmax = 20 κmax = 40 κmax = 60

α −0.55247 −0.59411 −0.59412 −0.58723 −0.57057
δ −0.01597 −0.05730 −0.03277 −0.02044 −0.02249
γ −0.00014 −0.03277 −0.00407 −0.00176 −0.00181
δh −0.09701 −0.09615 0.03143 −0.01593 0.02425
γh −0.05526 0.01070 0.00201 0.00054 0.00073
εc = εs 0.170% 1.60% 3.72% 7.46% 16.8%
From Table 2, the wider the range (i.e., the deeper waters we con-
sider), the higher the error. This is a natural consequence of the
perturbative nature of the BTEs. By construction, using constant coef-
ficients in the BTEs, from Eq. (5) one gets c∝

ffiffiffiffiffiffi
gh

p
as kh increases

(deep waters), so that one could never obtain the desired result
c = g/ω provided by the Airy theory in deep waters. To circumvent
this problem, we will consider here that the coefficients are functions
of h.

3. Coefficients functions of water depth h

Here we will consider that the coefficients are functions of the
water depth h. Thinking in a dimensional way, the coefficients α, δ,
γ, δh and γh will be functions of gravity g, local water depth h and
the limits of the angular frequencies in deep waters, ωmin and ωmax.
Applying dimensional analysis, e.g., for α, we get

α ¼ f g;h;ωmin;ωmaxð Þ ¼ f κ max≡
ω2

maxh
g

;ϱ ≡ ωmin

ωmax

 !
;

where f stands for “function of”.
In the analytical approach in Section 4 the ωmin and ωmax are

replaced by a single frequency ω0, and therefore

α ¼ f g;h;ω0ð Þ ¼ f κ0 ≡
ω2

0h
g

 !
:

Here, for the sake of clarity we will work in dimensional form.
However, the results for the coefficients and errors, which are all of
them dimensionless, will be presented as functions of the above
groups κj and ϱ.

Because the coefficients are functions of the water depth, the analy-
sis of the properties of the equations is slightly richer than in the case of
constant coefficients. Now, for instance, the one dimensional linearized
equations over mild slopes, which are the ones used to analyze the lin-
ear dispersion and shoaling properties (Dingemans, 1997), read

∂η
∂t þ h

∂uα

∂x þ h l1
∂3η
∂t∂x2

þ l2h
∂3uα

∂x3

 !" #

þdh
dx

uα þ h s1
∂2η
∂t∂xþ s2h

∂2uα

∂x2

 !" #
þ α þ 1ð Þ ∂α∂x h3 ∂2uα

∂x2
¼ 0;

ð9aÞ

and

∂uα

∂t þ g
∂η
∂x þ h2 gl3

∂3η
∂x3

þ l4
∂3uα

∂t∂x2

" #
þ h

∂h
∂x gs3

∂2η
∂x2

þ s4
∂2uα

∂t∂x

" #
¼ 0; ð9bÞ

where lj and sj are functions of α, δ, γ, δh and γh. In Eq. (9a), the term

α þ 1ð Þ ∂α
∂x h3

∂2uα

∂x2
¼ ∂h

∂x α þ 1ð Þ βαh
2 ∂2uα

∂x2
; βα≡h

∂α
∂h ;

is new and would cancel if α was constant. This term has the
same structure than that corresponding to s2 in Eq. (9a), is order
O ∂h=∂xð Þ and affects only the shoaling. The analysis of the linear disper-
sion and shoaling can be done following the usual procedures, and it is
avoided here for clarity in the presentation. From this analysis one gets
that the linear dispersion is not affected by the derivatives of the coeffi-
cients, so that Eq. (5) remains valid. Further, the shoaling analysis, and
in particular the shoaling gradient αη,bte, is affected by βα, βδ and βγ,
where βα is defined as

βa ≡ h
∂a
∂h :
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4. An analytical approach

Consider first the deep-water propagation of monochromatic
waves with an angular frequency ω = ω0. In deep waters nonlinear
effects are negligible and, hence, monochromatic waves remain
monochromatic. In fact, the main feature to be captured by any
model equations are wave celerity and amplitude.

Eq. (5), which, as mentioned, remains valid for variable coeffi-
cients, and Eq. (6) can be understood as kbte = fbte(α, δ, γ, g, h, ω)
and kAiry = fAiry(g,h,ω). Therefore, imposing the linear dispersion to
be exact, i.e., cbte = cAiry, which is equivalent to impose kbte = kAiry,
gives the condition

f c≡f gf bte α; δ;γ; g; h;ω ¼ ω0ð Þ−f Airy g;h;ω ¼ ω0ð Þ ¼ 0: ð10Þ

For arbitrary values of g, h andω0, the above condition can be satisfied
in an infinite number of ways sincewe have three free coefficients. How-
ever, considering, e.g., δ = γ = 0 we can obtain α (or cα) biunivocally.
Recalling that dα = cα + 1/3, we get

cα ¼ k0h− k0hð Þ 3
=3− tanh k0hð Þ

k0hð Þ 2 k0h− tanh k0hð Þð Þ ; ð11Þ

where k0h is obtained from κ0 ≡ ω0
2h/g since κ0 = k0htanh (k0h) . From

cα we recover α as α ¼ −1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2cα

p
.

4.1. Linear dispersion in deep waters

The above condition (11) was already obtained by (Lee et al.,
2003) departing from BTEs with only one free parameter (α, since
δ = γ = 0 are not present in their approach). Taking advantage
of the fact that we have three free coefficients for linear dispersion
(α, δ and γ) we will now improve the dispersion performance in
a neighbourhood of ω = ω0. Instead of imposing fc = 0, in order
to improve the performance around ω0 (and to increase the
number of equations up to the number of unknowns, three) we
consider here

f c ω ¼ ω0ð Þ ¼ df c
dω

ω ¼ ω0ð Þ ¼ d2f c
dω2 ω ¼ ω0ð Þ ¼ 0: ð12Þ

In this way we get a system of three equations for our three un-
knowns cα (i.e., α), δ and γ. The analytical solutions of the above equa-
tions are shown in Appendix A. In fact, there are four different sets of
solutions. The first solution, denoted “+&+” in the appendix, has
values similar to those in Table 1 for M98 and G12. The other three
solutions have shown to present numerical stability problems and
are disregarded. In any case, the functions α, δ and γ turn out to be
functions of the dimensionless group κ0 ≡ ω0

2h/g: this fact has been
anticipated through dimensional analysis.

The consequences of imposing the conditions in (Eq. 12) are illus-
trated in Fig. 2 for ω0 = 1 s−1 and considering four different water
depths h—the values of α, δ and γ are different at each water depth
h since α, δ, γ changes–. The error εc always cancels at ω = ω0 and,
since the first and second derivatives are null, the error is kept
small aroundω0. In fact, for h = 250 m, 500 m and 1000 m the errors
behave similarly and are below 1% for 0.83 s−1 \ ω \ 1.20 s−1. For
h = 50 m, i.e., in shallower waters, the error behaves, naturally, bet-
ter: in this case the error is below 1% for 0 \ ω \ 1.32 s−1. The solu-
tion “+&+” in Appendix A is considered to build Fig. 2.

For a given ω0, Fig. 3 shows the range frequencies ω that can be
propagated with some given errors (5%, 1% and 0.1%) as a function
of h using variable coefficients α, δ and γ obtained above. The results
are presented showing the ranges ω/ω0 as a function of κ0 ≡ ω0

2h/g.
We recognize the convenient fact that the curves tend to be horizontal
as h → ∞, so that the same range of frequencies can be propagated up to
arbitrary deep waters. From Fig. 3, using the coefficients as functions of
κ0, shown in Appendix A, one can propagate in arbitrary deep waters
waves the range 0.71ω0 \ ω \ 1.39ω0 with error εc b 5%, the range
0.83ω0 \ ω \ 120ω0 with εc b 1% (as already stated), and the range
0.92ω0 \ ω \ 1.09κ0 with εc b 0.1%.

For a given range of frequencies [ωmin, ωmax] and a given maxi-
mum depth h, the value of ω0 that minimizes the error in the range,
which is not necessarily the mean value (ωmin + ωmax)/2, can be
found. As already mentioned, in shallow waters, as it corresponds to
BTEs, all frequencies are well represented. This fact is clear from
Fig. 3: the range ω/ω0 increases as κ0 → 0. For instance, for κ0 = 3
the errors are below only 0.1% for any ω ≲ 1.27ω0, what is to say for
any κ = ω2h/g ≲ 1.272ω02h/g = 1.61κ0 ≈ 4.83.

4.2. Linear shoaling in deep waters

For a given frequency ω0, above we have found the values of α, δ
and γ, functions of h, so as to improve the linear dispersion perfor-
mance aroundω0. In fact, it has been seen that α, δ and γ are functions
of κ0 = ω0

2h/g.
A similar reasoning is followed to obtain the coefficients δh and γh

in Appendix B. Now the focus is on shoaling error εs as defined in ex-
pression (8). Recall that, because we are considering variable coeffi-
cients, the shoaling gradient αη,bte depends on α, δ, γ, δh and γh but
also on βα, βδ and βγ, which are known from the solution of α, δ



Table 3
Errors.

ϱ = 0.8 ϱ = 0.9 ϱ = 1.0

κmax,max = 20 3.67% 2.67% 0.98%
κmax,max = 40 6.60% 4.51% 0.98%
κmax,max = 60 11.2% 6.60% 2.46%
κmax,max = 80 12.1% 6.91% 2.86%
κmax,max = 100 12.4% 6.91% 2.86%
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and γ obtained from the linear dispersion analysis. As shown in
Appendix B, there are four sets of solutions for δh and γh correspond-
ing to the different sets obtained for α, δ and γ above. The solution of
δh and γh corresponding to “+&+”, the only one we are interested in,
presents an infinite discontinuity at κ0 ≈ 4.2 (Fig. B.13) and, there-
fore, this approach must be abandoned.

5. A global minimization approach

The analytical approach above has shown to yield useful results in
determining α, δ and γ as functions of κ0 ≡ ω0

2h/g to improve the
linear dispersion performance for frequencies around ω0. However,
it gives undesirable results for δh and γh as functions of ω0

2h/g when
trying to improve the linear shoaling performance. Therefore, the
above approach is of use if the only property to be well represented
was wave celerity.

A different approach aimed to improve both linear dispersion and
shoaling is proposed here. We consider water waves which in deep
waters have frequencies within the rangeω ∈ [ωmin,ωmax] propagating
from a water depth hmax to the shore. We will find α, δ, γ, δh and γh at n
values of h from hmin to hmax, given by

hj≡hmin þ j−1ð ÞΔh; j ¼ 1;…;n;

with

Δh≡hmax−hmin

n−1
;

where the values of hmin and n are discussed later. From the above
definitions h1 = hmin and hn = hmax. For h \ h1 the coefficients will
be constant and equal to those at h1 while for any h ∈ [hj,hj + 1] with
j b n − 1,we consider linear interpolations of the values at hj and hj + 1.

For given values of hmin, hmax, ωmin, ωmax and Δh we will get the
values of the five coefficients at each hj so as to minimize the error

ε≡maxωmin\ω\ωmax
0\h\hmax

εcj j; εsj jf g;

where h can take any value from 0 to hmax.
We note that, while εc is “local”—i.e., it depends only on the coef-

ficients at the water depth were the error is evaluated—, the error εs
depends on all five coefficients evaluated at any depth below the
local water depth. For this reason, the minimization of the five coeffi-
cients at all hj must be performed at once.

Given hmax and ωmax, the maximum value of κ is κmax,max = ωmax
2 ×

hmax/g. Although any possibility could be chosen, for illustrative pur-
poses we consider κmax,max{20,40,60,80,100}. Besides, we consider hmin

so that the minimum value of κ at this depth, which is ωmin
2 hmin/g,

equals 4. In this way we ensure that the coefficients are constant up
to, at least, κ = 4.

Finally, Δh = (hmax − hmin)/(n − 1) were n is chosen so that

κmax;max−4
n−1

¼ 4; i:e:; n ¼ κmax;max

4
:

According to the dimensional analysis, for a given κmax,max, now
the coefficients will be functions of

κmax; j≡
ω2

maxhj
g

; and ϱ≡ ωmin

ωmax;

and the error ε will be a function of κmax,max and ϱ
The results are shown in Table 3. We note that the minimization

problem is complex (5n unknowns and a non convex objective func-
tion ε) and the results could probably be further improved. The table
presents the errors ε = f{κmax,max,ϱ}: the values of the coefficients α,
δ, γ, δh and γh, functions of {κmax,max,κmax,j,ϱ} can be found at https://
dl.dropbox.com/u/11753471/web/p110315.zip.

The general expectable trends in Table 3 are the same observed in
Fig. 3. First, the error diminishes as the ϱ decreases, i.e., as the frequency
range is diminished. Second, the error increases with κmax,max, but it
seems to tend to a finite error as κmax,max grows.

For each case in Table 3, the coefficients δ� and γ�, constant, have
been established following the same procedure as that presented in
(Galan et al., 2012). The results are presented in the above link.

6. Numerical scheme and results

The numerical scheme considered to solve the model equations is
the one presented by (Galan et al., 2012). This scheme uses a fourth
order accuracy finite differences discretization in space and a fourth
order Runge–Kutta explicit scheme in time.

In this Section, three numerical examples are shown in order to
demonstrate the capabilities of the proposed equations. The first
case is the propagation of a bichromatic linear wave train over a sub-
merged shoal in deep waters, the second is the simulation of one the
experiments of the Dingemans bar and the third one considers one of
the experiments by Trulsen et al. (2012) for irregular and nonlinear
wave propagation.

6.1. Case 1: linear propagation over sloping bathymetry

A first example is meant to illustrate the linear performance of
the equations with variable coefficients in deep waters. We consider
the propagation of a wave train composed by the sum of two mono-
chromatic waves with amplitudes a1 = a2 = 0.1 m and periods
T1 = 6.0 s and T2 = 6.5 s.

The bathymetry is a shoal given by

h mð Þ ¼ hmax− hmax−hminð Þ exp − x−xc
800

� �2	 

;

with hmax = 300 m and hmin = 150 m respectively the maximum and
minimumdepths (see Fig. 5, bottompanel). The top of the bump is locat-
ed at x = xc = 4750 m and the maximum slope, at x ¼ xc � 800=

ffiffiffi
2

p
, is

∂ h/∂ x ≈ 0.098. In this caseωmin = 2π/T2 = 0.967s−1 andωmax = 2π/
T1 = 1.047s−1 and, hence

κmax;max ¼ ω2
maxhmax

g
≈33:54;ϱ ¼ ωmin

ωmax
≈0:923;

and we consider the coefficients corresponding to κmax,max = 40 and
ϱ = 0.9, with errors bounded by 4.51%. The coefficients are provided at
10 different values of κmax,j = ωmax

2 hj/g equally spaced from κmax,1 =
4.94 to κmax,10 = κmax,max = 40. In Table 4 some of them are presented
as a function of hj.

Linear interpolation gives the values of the coefficients at any of
the grid points, x, imposing as well constant values corresponding
to those at h1 in points where h \ h1. This is shown graphically in
Fig. 4, where a constant initial length can be localized below
κmax = 4.94 for all the free coefficients.

https://dl.dropbox.com/u/11753471/web/p110315.zip
https://dl.dropbox.com/u/11753471/web/p110315.zip


Table 4
Coefficient sets to be used depending on the maximum expected δh.

κmax,j hj (m) α δ γ …

4.94 44.18 −0.580282 −0.019680 −0.000789 …

8.83 79.03 −0.579805 −0.020601 −0.001293 …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
36.10 322.98 −0.578831 −0.020237 −0.001801 …

40.00 357.83 −0.577795 −0.020225 −0.001703 …

Table 5
Coefficient sets to be used depending on the maximum expected κ.

Wave component j = 1 j = 2

a (m) 0.1 0.1
T (s) 6.0 6.5

At h = 300 m
κ 33.54 28.57
λAiry(m) 56.21 65.97
λbte(m) 55.42 65.65
εc –1.40% −0.47%

At h = 150 m
κ 16.77 14.29
λAiry(m) 56.21 65.97
λbte(m) 58.36 65.31
εc 3.82% 1.00%
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Table 5 summarizes the errors made in linear dispersion for the
two considered frequencies at two discrete points: the first point at
the beginning of the domain where the depth is maximum and the
second point on the top of the bump. As shown, maximum error is
3.82% (\4.51%).

Fig. 5 shows the propagation of the two different frequencies
throughout the domain obtained by the numerical model together
with the analytical envelope for the amplitude obtained by using
the linear theory (which gives nearly constant wave amplitude). For
the numerical scheme we considered a mesh size of 1 m and a time
step of 0.25 s, satisfying the CFL condition presented in the work by
Galan et al. (2012). The numerically propagated amplitude has a max-
imum error of 0.9% for the wave with T = 6.0 s and 4.31% for the one
with T = 6.5 s (nearly unappreciable in the figure).

Fig. 6 shows the time history for free surface elevation at two dif-
ferent locations (#A, with x = 2500 m, and #B, with x = xc =
4750 m), one at the maximum depth and another one at the top of
the shoal, compared with the analytical solution (in phase at #A).
The results for linear dispersion (i.e., wave celerity) compare well
and are consistent with the expected results.

6.2. Case 2: non linear propagation over a bar

A second example is meant to show how the model equations can
handle with the nonlinear behavior of the wave as they reach shallow
waters from deepwaters. For this purpose we consider the propagation
of a monochromatic wave with period T = 2.857 s over a constant
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Fig. 4. Linear coefficients for test case 1, corresponding to κmax
slope (≈20/300) from a maximum depth of 20 m (i.e., κ ≈ 9.9) to
0.86 m (κ ≈ 0.42). At the end of the slopewe introduce the bathymetry
by Dingemans (1997) in order to compare the experimental results
with those measured in laboratory at different control gages. The ba-
thymetry is shown in Fig. 8 (top panel), while Dingemans bathymetry
is shown as a zoom.

The wave amplitude generated in the experiment of Dingemans
(case A) is η0 = 0.02 m over the depth of 0.86 m, so that, to propa-
gate from deep water with an adequate amplitude, and based on
the linear theory (a2cg = constant, being a the wave amplitude and
cg the group celerity), we introduce an amplitude η0 = 0.0205 m in
the generation deep zone.

For this test we have ωmin = ωmax = 2π/T = 2.2 s−1 and, as
anticipated

κ max;max ¼ ω2
maxhmax

g
≈9:86;

so that we will consider the coefficients corresponding to κmax,max = 20
and ϱ = 1.0 (monochromatic). Using this set of coefficients the linear
dispersion and shoaling errors are below 0.98%, as shown in Table 3.
200 250 300 350
h

j

,max = 40 and ϱ = 0.9 (here expressed as functions of hj).
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The values for linear coefficients are shown in Fig. 7 while nonlinear
coefficients are δ� = −0.276780 and γ� = 0.135060.

Fig. 8 shows the time history comparison between numerical
results and experimental data at 8 different gages (from #1 to #8).
Section #1 has been used as control section, allowing to synchronize
model and experimental time. As shown, the comparison between
numerical and experimental results is good for all considered
section.
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Fig. 6. Time history for free surface elevation at two different locations. Numerical results (l
analytical solution is displayed with stars.
6.3. Case 3: non linear irregular waves propagation

Finally, we present a numerical simulation one of the test presented
by Trulsen et al. (2012). The laboratory experiments consist on the
propagation of irregular waves travelling from a water depth hmax =
0.60 m to hmin = 0.30 m through a 6 m long ramp (1:20).We consider
the “case 1” in the original paper, the most demanding attending
to their dispersive conditions. The significant wave height is around
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ine) obtained with linear coefficients corresponding to κmax,max = 40 and ϱ = 0.9. The
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0.06 m at h = hmax, so that nonlinear effects are significant as thewater
depth decreases.

For the case under consideration, the Fig. 9 shows the wave ampli-
tudes corresponding to the angular frequencies composing the incident
signal at hmax = 0.6 m. We discretized the continuous signal with 240
frequencies. From the figure ωmin/ωmax ≈ 0.1 ≪ 0.8 and, therefore,
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Fig. 8. Dingemans' experiments (case A). Numerical results (lines) and
the experiments are beyond the scope of the analysis for variable coef-
ficients. The closest set of coefficients would be those for ϱ = 0.8 and
κmax,max = 20.

Fig. 10 shows the errors at h = 06 m in linear dispersion and shoaling
using constant coefficients (those for h \ h1) corresponding to ϱ = 0.8
and κmax,max = 20, which are α = −0.590334, δ = −0.032415, δh =
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0.031415,γ = −0.004324 andγh = 0.001212. As depicted in thefigure,
the errors are ≲4% for the whole range of frequencies. Obviously,
the results are better at h = 0.3 m (not shown in the figure).
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Fig. 11. Normalized wave density spectrum at the 8 different gages. Full line represent dat
model propagating the incident spectrum.
Fig. 11 shows the comparison of the spectra at the different gages
(experimental and computed). The numerical results show fair agree-
ment with the experimental data. Besides the above mentioned
errors around 4%, it is to mention that in this experiment strong non-
linearities and strong dispersive conditions coincide. This is beyond
the scope of low order Boussinesq-type equations, which can handle
strong nonlinearities in weakly dispersive conditions. Also, according
to Tucker and Pitt (2001), a statistical instability exists due to wave
density spectrum estimation from a finite record (wave density spec-
trum has been estimated by scanning), so the estimated spectrum
could show differences when compared with the real one.
7. Concluding remarks

The possibility of using variable coefficients (functions of the water
depth) in enhanced Boussinesq-type equations has been presented.
An analytical approach is disregarded since it has shown to give
infinite-type discontinuities in the solutions. Alternatively, the coeffi-
cients are numerically found so as to optimize the linear performance
in terms of dispersion and shoaling over mild slopes. The results are
presented in dimensionless general form.

The performance of the model is determined by the ratio between
the minimum to maximum deep water wave angular frequencies,
ϱ ≡ ωmin/ωmax, and a kh-type number, κmax,max. The results are partic-
ularly interesting for narrow banded swells approaching to the coast.
For these conditions, the wave can be propagated with small errors in
linear dispersion and shoaling up to very deep waters. The theoretical
results are supported by numerical simulations compared to analyti-
cal and experimental results.
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Appendix A. Dispersion: coefficients α, δ and γ

For given g, h and ω0, the solution of Eqs. (12) is

δ ¼ ϱ1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϱ2
1−4ϱ2

q	 

=2; ðA:1aÞ

γ ¼ ϱ1 þ 1=3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϱ2
1 þ 1=9þ 2ϱ1=3−4ϱ3

q	 

=2; ðA:1bÞ

and cα = ϱ1 − γ − δ so that, since cα ≡ α2/2 + α, we can recover
the coefficient α as α ¼ −1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2cα
p

. Above

ϱ1 ¼ n1

3ξ20d
; ϱ2 ¼ n2

3ξ40d
; ϱ3 ¼ n3

3ξ50d
; ðA:2Þ

with ξ0 verifying ξ0tanhξ0 = {≡ω0
2h/g} and

n1≡6 2s20ξ
2
0 þ 5

n o
t20 þ 2s20ξ

4
0 þ −12s20 þ 1

� �
ξ20−6 7s20 þ 3

� �n o
ξ0t0þ

þ −s20ξ
2
0 þ 6 2s40 þ 3s20

� �n o
ξ20;

n1≡3 2s20ξ
2
0 þ 15

n o
t20 þ 2s20ξ

4
0−3 2s20 þ 1

� �
ξ20−9 3s20 þ 7

� �n o
ξ0t0þ

þ 3s20ξ
2
0 þ 3 2s40 þ 5s20 þ 8

� �n o
ξ20;

n3≡24t30 þ 2s20ξ
4
0 þ 6s20−1

� �
ξ20−27

n o
ξ0t

2
0þ

þ −7s20ξ
4
0 þ 9 −3s20 þ 1

� �n o
ξ0t0 þ 2s40ξ

2
0 þ 3 2s40 þ 5s40

� �n o
ξ30;

d≡ 2s20ξ
2
0 þ 3

n o
t20− 2s20ξ

2
0 þ 5s20 þ 1

� �n o
ξ0t0 þ 2s40 þ s20

n o
ξ20;

with s0 ≡ sechξ0 and t0 ≡ tanhξ0.
The coefficients α, δ and γ are, thus, functions of κ0 ≡ ω0

2h/g. As
κ0 → 0, κ0 → and ϱ1 → −4/9, ϱ2 → 1/63 and ϱ3 → 1/945, so that we
recover the Padé [4/4] approximation (Gobbi et al., 2000; Madsen and
Schaffer, 1998). In Eqs. (A.1), there are four possible combinations
depending on the signs, equivalent to the four possible solutions
discussed by Madsen and Schaffer (1998).
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Fig. A.12. Coefficients α (full line), δ (dashed line), γ (dash-dotted line), which are function
“+&−” results from considering “+” in Eq. (A.1a) and “−” in Eq. (A.1b).
Fig. 12 shows the three functions α, δ and γ in all four cases. The
coefficients are so that βα ≡ h∂α/∂h = κ0∂α/∂κ, βδ and βγ are small.
For “+&+” the values are similar to the values by M98 and G12 in
Table 1. However, all four solutions give the same results in terms
of linear dispersion.

Appendix B. Shoaling: coefficients δh and γh

For given ω and h, the error in shoaling is (Chen and Liu, 1995)

εs ¼ exp ∫h

0

αη;Airy−αη;bte

h�
dh�

	 

−1;

where here αη,Airy = αη,Airy(ω2h*/g) and

αη;bte ¼ αη;bte ω2h�=g;α; δ;γ; δh;γh;βα ;βδ;βγ

� �
;

are the shoaling gradients corresponding to Airy and BTEs. In the
shoaling gradient αη,bte, the α, δ and γ and their corresponding β's
are known from Appendix A.

Since we now have two (not three) free coefficients, δh and γh, we
impose the two conditions, equivalent to the conditions (Eq. (12)) in
the linear dispersion analysis,

εs ¼ ω ¼ ω0ð Þ ¼ ∂ε
∂ω ω ¼ ω0ð Þ ¼ 0;

at any h to obtain δh and γh as a function of h for the ω0 used in the
dispersion analysis. Defining fs ≡ αη,Airy − αη,bte, the above is equiva-
lent to impose, at any h,

∫h

0

f s
h�

dh� ¼ ∫h

0

∂f s=∂ω
h�

dh� ¼ 0; ðB:1Þ

always evaluated at ω = ω0.
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s of κ0 ≡ ω0
2h/g, depending on the signs considered in Eq. (A.1). For instance, the case
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Fig. B.13. Coefficients δh (full line) and γh (dashed line), functions of κ0 ≡ ω0
2h/g, depending on the signs considered in Eqs. (A.1) to obtain α, δ and γ.
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Given ω0, consider that we know the values of δh and γh to satisfy
the conditions (Eq. (B.1)) up to some given depth h − Δh (with Δh
infinitesimal). Taking into account that Eq. (B.1) already holds at
h − Δh, imposing it at h is simply

f s h;ω ¼ ω0ð Þ ¼ ∂f s
∂ω h;ω ¼ ω0ð Þ ¼ 0: ðB:2Þ

The above nonlinear system has been solved using Newton's meth-
od to obtain δh and γh at any h and for a givenω0. Again, the resulting δh
and γh are functions of κ0 ≡ ω0

2h/g. Depending on the solution consid-
ered for α, δ and γ (Fig. A.12), Fig. B.13 shows the resulting δh and γh.

From Fig. B.13, the solutions “+&+” and “−&−” violate the condi-
tion of slow variations. In fact, they have discontinuities to the infinity.
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