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Abstract

Offshore wind power is a renewable energy of growing relevance in current

electric energy systems, presenting favorable wind conditions in comparison

with the sites on land. However, the higher energy yield has to compensate

the increment in installation and maintenance costs, thus the importance

of optimizing resources. One relevant aspect to increase profitability is the

wind farm layout. The aim of this paper is to propose a new method to

maximize the expected power production of offshore wind farms by setting

the appropriate layout, i.e. minimizing the wake effects. The method uses

a sequential procedure for global optimization consisting of two steps: i) an

heuristic method to set an initial random layout configuration, and ii) the

use of nonlinear mathematical programming techniques for local optimiza-

tion, which use the random layout as an initial solution. The method takes

full advantage of the most up-to-date mathematical programming techniques

while performing a global optimization approach, which can be easily par-

allelized. The performance of the proposed procedure is tested using the

German offshore wind farm Alpha Ventus, located in the North Sea, yielding

an increment of expected annual power production of 3.52% with respect to

the actual configuration. According to current electricity prices in Germany,
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this constitutes an expected profit increment of almost 1Me per year.
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1. Introduction

Wind energy is one of the most profitable renewable energy sources, con-

stituting a proven technology to meet current and future electricity demands.

Most of the operating wind farm turbines are on land, however an important

part of the future expansion of wind energy, mainly in Europe, is expected

to come from offshore sites.

Offshore wind conditions are favorable with respect to sites on land, pre-

senting stronger and steadier wind speeds. However, the advantages with

respect to the potential wind resource contrast with the increments of instal-

lation and maintenance costs, which must be somehow compensated. This

reason has motivated scientist and engineers to focus on optimizing offshore

wind farm project designs, focusing on different aspects such as location [1],

installation, layout [2, 3, 4, 5], availability, operation and maintenance [6, 7],

etc. Note that although all these aspects are relevant, in this study we focus

only on the layout optimization.

Once the wind off-shore resource is probabilistically characterized at a

particular location, it is possible to strategically position the turbines in

order to minimize expected wake effect losses, thus maximizing the expected

efficient energy production. This problem is referred to as optimizing the

layout of a wind farm. Note that when the wind goes though any turbine, a
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wake effect is induced downstream decreasing wind speed and increasing wind

turbulence. This produces a reduction of energy production in all turbine

located within the area of influence of the wake.

Different studies on layout optimization have been proposed in the liter-

ature. The first work that addresses this problem is [2], which use genetic

algorithms to determine the positions of wind turbines that provide the maxi-

mum energy extraction with the minimum installation costs. A decade later,

[3] propose the use of an heuristic methodology based on Greedy in order

to maximize profits rather than the energy produced in the wind farm. [8]

formulates the generalized vertex parking problem (GVP) and obtain the

maximum energy production subject to several constraints. However, the

author does not clearly state which wake model is used for the study. [9]

proposes a multi-objective optimization problem using genetic algorithms,

maximizing the energy production and minimizing the failure of the limi-

tations. [5] develops within the auspicious of the Offshore Wind Farm Op-

timization (OWFLO) project, a more comprehensive study combining an

energy production model (taking into account wake effects, electrical losses

and turbine availability) with offshore wind farm component cost models.

This project aims to pinpoint the major economic hurdles present for off-

shore wind farm developers by creating an analysis tool that unifies offshore

turbine micrositing criteria with efficient optimization algorithms. Finally,

[10] proposes the Unrestricted Wind Farm Layout Optimization (UWFLO)

methodology, that addresses critical aspects of optimal wind farm planning.

It simultaneously determines the optimum farm layout and the appropriate

selection of turbines (in terms of their rotor diameters) that maximizes the
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net power generation.

To our knowledge, all optimization algorithms proposed for layout op-

timization are based on heuristic procedures, specially Genetic Algorithms

[11]. [12] presents an evolutive algorithm to optimize the wind farm layout

onshore. The algorithm’s optimization process is based on a global wind

farm cost model using the initial investment and the present value of the

yearly net cash flow during the entire wind-farm life span. [13] proposes a

novel evolutionary algorithm for optimal positioning of wind turbines in wind

farms. For this case, a realistic model for the wind farm is considered, which

includes orography, shape of the wind farm, simulation of the wind speed and

direction, and costs of installation, connection and road construction among

wind turbines. [14] introduces an ant colony algorithm for maximizing the

expected energy output.

The main idea of these methods is to generate, evaluate, and select possi-

ble solutions based on different principles, depending on the type of method,

until the algorithm is unable to find a better solution. Basically, these meth-

ods focus on finding an acceptable solution in an attempt to capture the

global optimum. However, they use simplifying assumptions and do not en-

sure neither local nor the global optimum, which means that most of the

times the solutions obtained do not even hold the Karush-Kuhn-Tucker op-

timality conditions (see [15, 16]). In particular, and regarding the layout

optimization problem, existing approaches discretize the possible locations

of turbines over a predefined grid which limits the feasible region of possible

locations considerably.

The selection of heuristic instead of mathematical programming tech-
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niques for layout optimization has been based on two main assumptions:

1. The computational time of gradient-based mathematical programming

methods is prohibitive to solve these kinds of problems.

2. The optimal location problem is non-convex, and gradient-based meth-

ods provide local solutions. Thus, depending on the initial solution

used to start running these algorithms, the global optimum may be

skipped.

The aim of this paper is to drop these assumptions by presenting a com-

bined method, heuristic versus gradient-based, to obtain the best offshore

wind farm layout over a pre-specified area. The proposed procedure takes

full advantage of the state-of-the-art nonlinear programming solvers. Since

the global optimum must lie in a convex subregion, which may be identified

by the mathematical programming solvers, we look for the global optimum by

restarting heuristically the initial solution used to run gradient-based solvers.

The proposed methodology has the following advantages:

1. Current state-of-the-art nonlinear mathematical programming solvers

are more reliable, numerically robust, and computationally efficient.

2. Nonlinear mathematical programming solvers allow including alterna-

tive constraints easily, or objective functions, which do not alter the

flow of the methodology.

3. The heuristic method used to generate initial solutions is capable of

searching convex subregions. This allows tackling non-convexities.

4. It is easy to include parallelization features in order to increase com-

putational efficiency and reduce computational costs.
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5. The final solution holds the Karush-Kuhn-Tucker optimality condi-

tions.

6. It does not require reducing the feasible solution region by gridding the

possible location area.

The rest of the paper is structured as follows. Section 2 justifies the wake

model selection. Section 3 and Section 4 present the layout optimization

methodology formulating the mathematical statement of the problem and

the solution algorithm. In Section 5, the proposed method is applied using

the German offshore wind farm, Alpha Ventus, and finally, in Section 6 some

relevant conclusions are duly drawn.

2. Wake models

A wake is the downstream region of disturbed flow, usually turbulent,

caused by a body moving through a fluid. In the case of wind turbines, the

wind forces the blades to rotate, thus generating the mechanical energy which

is subsequently converted to electricity. This energy extraction decreases the

wind speed and increases turbulence at the rear of the turbine, which reduces

the energy production at downwind turbines.

Several studies which carry out extensive comparisons between different

wake models (see [17, 18, 19, 20]) allow concluding that there is a high

uncertainty in all models performance. However, [17], based on the findings

from his work, recommends the N.O. Jensen model be used for the energy

predictions in offshore wind farms, as it offers the best balance between

positive and negative prediction errors. This is the model selected for this

study.
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For a location i, located on the downstream wake induced by turbine j,

and at a distance dij projected on the wind direction between turbine j and

the point of study i, the wake velocity deficit Dvij
is given by the following

expression:

Dvij
= 1 −

vi

vj

=
(1 +

√

1 − Ctj )
(

1 +
k·dij

R

)2 , (1)

where vi is the velocity at location i within the wake, vj the wind speed

reaching turbine j, Ctj is the thrust coefficient associated with velocity vj, k

is the decay factor, and R is the rotor radius.

The decay factor k describes how the wake breaks down by specifying the

growth of the wake width per meter traveled downstream. The determination

of k is sensitive to factors including ambient turbulence, turbine induced

turbulence and atmospheric stability. In a simplified manner, the calculation

is performed through the following equation:

k =
A

ln
(

z
z0

) =
1

2 ln
(

h
z0

) , (2)

where z is the height of the turbine, A a constant approximately equal to

0.5, and z0 is the surface roughness. Parameter z0 is crucial in the decay

coefficient. There are numerous recommendations [17, 21, 22] for its selection.

Typical values for different kinds of terrains are given [21].

This model was first described by [23] and further developed by [24]. It

is used in several commercial softwares, such as, WAsP [21], Garrad Hassan

WindFarmer [25], and WindPRO [19].
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3. Layout problem definition

This study aims to determine the optimal layout of the wind turbines

inside an offshore wind farm in order to reduce the wake effects as much

as possible. Since we propose to face this problem using mathematical pro-

gramming techniques, we start by defining the four basic elements required

to state any optimization problem [26, 27]: i) data, ii) problem variables, iii)

constraints, and iv) the objective function.

Once the main elements of the problem are described, we explain in detail

the combined heuristic versus mathematical programming strategy used to

solve it.

3.1. Data

The data constitutes the information which is known and required to set

and appropriately calculate the objective function and constraints. For this

particular case, it can be classified in the following sets:

Wind data. This set includes all wind-related parameters associated with

the location:

1. Wind data at 10 meters height in the study area (v10), including both

wind speed and directional information. This data is critical to cor-

rectly predict on the energy production and evaluate wake losses. It

can be based on i) instrumental measurements in the field, which usu-

ally provide accurate information although of short length, ii) reanal-

ysis data, which constitutes an alternative to providing long records

[28], or iii) a combination of both, i.e. reanalysis data calibrated using

instrumental information from satellite or from the field [1].
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2. Coefficient of roughness length or surface roughness (z0), which is re-

quired to evaluate the wind speed at different heights.

Turbine data. This set includes all parameters related to the specific tur-

bine:

1. Hub height (z). This information allows us to calculate the required

wind speed at the height using an appropriate wind profile.

2. Rotor diameter or radius (D, R). The energy produced by the turbine

is dependent on this value, and also affects the form of the wake.

3. Thrust coefficient (Ct). This information is turbine specific, and is

usually given as a curve, which depends on the wind speed at the hub

v.

4. Power curve (Pw). This curve defines the energy produced by the tur-

bine as a function of the the wind speed at the hub v. It includes

information on the control mechanisms.

Wake effect data. This set includes all parameters required by the wake

effect model not previously mentioned:

1. The decay factor k.

2. The minimum distance where the wake model is considered to work

appropriately (dmin).

3. Number of sectors ns considered for the energy production calculations.

Wind farm data. This set includes all parameters associated with the wind

data:

1. Area where turbines can be located.

2. Number of turbines (NT ) to be allocated within the wind farm area.
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3.2. Problem variables

The variables constitute the decisions to be made, which for this partic-

ular case are the exact location coordinates of each turbine (xi, yi); ∀i =

1, . . . , NT . These variables are integrated into the variable decision vector

x ∈ ℜNt×2 as follows:

x =

















x1 y1

x2 y2

...
...

xNT
yNT

















. (3)

Note that besides wake effects, the appropriate layout of any wind farm

is influenced by additional factors, such as, water depth (foundation costs).

Water depth could be included into the decision variable vector as an ad-

ditional coordinate (zi; ∀i = 1, . . . , NT ). Its consideration would require to

define the bathymetry over the wind farm area as data. Nevertheless, this is

out of the scope of the paper, and constitutes a subject for further research

3.3. Constraints

The set of constraints determine which decisions are admissible, i.e. define

the feasible region of the problem variables. In this paper we have considered

two types of constraints:

Minimum distance. The wake model selected ([23]) is known to provide

appropriate results for distances higher than four rotor diameters, and for

safety reasons, the minimum distance between turbines within the wind farm

is limited to four rotor diameters (dmin = 4D). This restriction can be
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mathematically expressed as follows:

(xi − xj)
2 + (yi − yj)

2

(4D)2
≥ 1; ∀i = 1, . . . , (NT − 1); ∀j > i. (4)

Note that the manner in which constraint (4) is defined facilitates gradient-

based methods to converge because of an adequate scaling, i.e. the variable

units do not affect the solution.

Wind farm area limits. Turbines must be allocated to a predefined area

given as data. The optimization process must ensure that turbines are within

the required area. In this paper, we define this limiting area using 4 nodes

(quadrilateral). Given these four coordinates (xL
i , yL

i ); i = 1, 2, 3, 4 as data,

the constraint that ensures turbines remain inside this quadrilateral region

is as follows:
∣

∣

∣

∣

∣

∣

∣

∣

∣

xi yi 1

xL
j yL

j 1

xL
k yL

k 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ 0;































∀i; j = 1; k = 2

∀i; j = 2; k = 3

∀i; j = 3; k = 4

∀i; j = 4; k = 1.

(5)

Constraint (5) requires that the area of the four triangles formed by each

node-turbine with each pair of consecutive boundary nodes (measured in

counterclockwise direction) is always greater than zero.

It was mentioned before that besides wake effects, the appropriate layout

of any wind farm is influenced by additional factors. Some of these additional

aspects are visual impact, environmental factors, tourism and legal approval,

among many others. We assume that the selection of the location limiting

area takes into account all these factors.
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Note that both restrictions (4) and (5) are non-linear and linear inequality

constraints, respectively.

3.4. Objective function: Annual Energy Production (AEP)

Finally, a function that allows us to characterize how good or bad any

decision is, must be defined. For this particular case, we have decided to use

the expected Annual Energy Production (AEP), which takes into consider-

ation the wake effects and allows quantifying the benefits in terms of profit

from the location strategy.

The wake effect depends on wind speed magnitudes and directions. For

this reason the calculation of the expected AEP requires the definition of the

wind speed probability density function conditional on the direction. Assum-

ing that the conditional distribution is Weibull, which is widely accepted for

wind data, the probability density function is defined as follows:

fV |θ(v) =
δ(θ)

λ(θ)

(

v

λ(θ)

)δ(θ)−1

e−( v
λ(θ))

δ(θ)

, (6)

where v represents the wind speed at the hub height, δ and λ are the shape

and scale parameters of the Weibull distribution, respectively, and θ is the

wind direction.

The parameters of the distribution (6) need to be estimated from real

data, which in our case consist of hourly time series of wind speeds and

directions. To facilitate calculations and speed up the objective function

evaluation for a given layout configuration, we divide the possible directions

into a number of sectors ns. Data from each sector is fitted to a Weibull

distribution. The selection of the number of sectors is very important. A
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small number is favorable for the Weibull fitting because it increases the

length of data records within sectors, but the errors from the wake effect

increase because the mean direction is used as the representative for each

sector. On the other hand, increasing the number of sectors decreases the

quality fit, however it also decreases the wake effect errors. Numerical tests

performed with different number of sectors [29] allows us to conclude that the

selection of 12 sectors of 30◦ width provides the best compromise in terms of

i) Weibull fitting quality, ii) wake effect errors, and iii) computational time,

bounding the errors with respect to the expected AEP below 0.5%. This

result is in accordance with conclusions given in [17]. It is important to

highlight that increasing the number of sectors, for example, using 360, does

not necessarily decrease the error with respect the 12 sectors selection, due

to the the fact that Weibull fitting is usually worse for small sectors, and

besides, computational times increase considerably. For instance, for the

Alpha Ventus case with 12 turbines and a regular grid (defined in section 5),

the computational time to evaluate the AEP considering the wake effect

changes from about ≈ 4 seconds for 12 sectors to ≈ 57 seconds for 360

sectors, whereas the errors change from 0.49% to 0.79%. Note that errors

have been obtained using, as reference value, the energy calculations for

20 × 365.25 × 24 = 175320 hourly records of wind velocity and direction.

Although the selection of 12 sectors may be an adequate value for practical

problems, it is highly recommended to make a previous analysis of the number

of sectors required to counter-balance errors and computational performance.

For that reason ns is considered a parameter to be defined by the user.

Once the number of sectors ns is defined, the expected Annual Energy
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Production (AEP) is calculated as follows:

AEP = 8760

ns
∑

s=1

ρs

NT
∑

i=1

[

∫ vco

vci

fV |θs
(v)Pw(vi) dv

]

, (7)

where 8760 is the mean number of hours per year, ρs is the probability of

the wind to be within sector s, vci
and vco

are, respectively, the cut-in and

cut-out velocities defined in the turbine power curve, and Pw(vi) is the power

produced by turbine i for its corresponding wind speed. Note that vi comes

from the perturbed wind speed v at the hub height decreased by the wake

effect. These effects depend on the wind direction and the positioning of each

turbine compared to the others. The objective function calculation is based

on the sum of the energy yield by each turbine for each sector, as shown in

equation (7).

The calculation of the expected AEP according to (7) is a key step for the

correct performance of the proposed optimization method. To facilitate the

understanding of the process the most relevant steps within the algorithm

are described below for a given directional sector s:

Wind farm reorientation and renumbering. This step consists of a

base change to rotate the cartesian axis by an angle θ measured from the

north to the average direction of the study. The rotation can be expressed

mathematically as:

x
′ =









cos θs − sin θs

sin θs cos θs



x
T





T

. (8)

Once the new coordinates are calculated, it is very simple to renumber
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turbines ranked according to their vertical coordinate y′ in descending order

(see Figure 1).

Figure 1: Renumbering of the turbines after the base change.

Note that this step allows us to rapidly select the possible turbine set Ωi

affecting each turbine i due to wake effect, that is, those with cardinality

lower than i, i.e. Ωi = {1, 2, . . . , i − 1}.

Velocity evaluation due to the wake effect. For each turbine, the true

velocity at the rotor, which may decrease due to the wake effect, is calculated.

Given a specific unperturbed velocity v and turbine i, this process entails the

following steps which must be repeated with all turbines belonging to set Ωi:

• Step 1: Cross sectional area intersection. Before evaluating the

wind speed deficit, one must calculate the area of the wake produced by

15



turbine j that intersects with the rotor swept area of the downstream

turbine i, i.e. Aij . This is a geometric problem in which there are four

possible cases as shown in Figure 2.

Figure 2: Different possibilities for cross sectional intersection area problem.

• Step 2: Deficit velocity evaluation. Once the intersection area

Aij is available, the deficit of wind velocity due to the wake effect is

calculated according to [21] as follows:

Dvij
=

(1 +
√

1 − Ctj )
(

1 +
k·dij

R

)2 ·
Aij

Ai

, (9)

where Ai is the rotor area, and the thrust coefficient Ctj is calculated

using the curve for the velocity at turbine j, which was previously

obtained. Thus the importance in calculating the velocities from up-

stream to downstream. Note that (9) is a slight modification of expres-

sion (1) that takes into account the extent to which the turbine i is
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affected by the wake of the turbine j.

At this step of the process, we have calculated all deficits Dvij
; ∀i ∈ Ωi

affecting turbine i velocity. [24] proposed an energy balance to calculate

the cumulative deficit produced by several turbine wakes, so that the

total speed deficit for turbine i is computed as follows:

(Dvi
)2 =

∑

∀j∈Ωi

(Dvij
)2. (10)

According to (1), the unperturbed wind speed at the hub height v due

to the wind farm wake effect for turbine i turns into:

vi = v(1 − Dvi
). (11)

Power output evaluation. The power produced by turbine i is obtained

from the given power curve as a function of the calculated wind speed vi.

Note that the previous steps were explained only for a given i) directional

sector, ii) turbine i, and iii) unperturbed velocity v. However, this process

is embedded in an integral over the range of possible wind speeds, which is

numerically evaluated using the trapezoidal quadrature formula. Numerical

tests performed using different quadrature (Simpson) methods and size steps

show that the trapezoidal rule using a step size ∆v = 0.1 m/s provides the

best counter-balance between small errors (below 0.01%) and computational

efficiency (see [29]).

From a mathematical point of view, it would be very easy to include

additional factors on the objective function to account for the water depth
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(foundation costs) or electrical connection to the grid (cable costs). However,

this is out of the scope of the paper.

4. Layout optimization

Once the four elements of the optimization problem are defined. The

mathematical programming definition is stated as follows:

Maximize

x

AEP, (12)

given by (7) and subject to constraints (4) and (5).

According to the type of objective function and constraints, this problem

is a nonlinear mathematical programming problem with linear and non-linear

inequality constraints. It can be efficiently solved using any of the available

solvers for nonlinear programming subject to constraints, for instance, solver

MINOS [30] or CONOPT [31] under GAMS [32], the Trust Region Reflec-

tive Algorithm under Matlab [33, 34], also capable of dealing with nonlin-

ear equality constraints and upper and lower bounds through the function

fmincon, or interior-point barrier and active set techniques implemented on

function ktrlink [35], where each algorithm addresses the full range of non-

linear optimization problems, and each is constructed for maximal large-scale

efficiency.

Numerical tests performed using functions fmincon and ktrlink show

that these algorithms are capable of finding solutions holding the KKT opti-

mality conditions in a reasonable computational time. However, the problem

is that they are suited for finding local minima, and depending on the initial
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layout configuration used to run the algorithms, different local minima could

be found. To overcome this difficulty, we propose a combined method based

on two basic steps:

Heuristic initial solution: In an attempt to identify all possible convex

subregions, an initial stochastic solution x
s holding constraints (4) and

(5) is generated.

Local minima search: Run any mathematical programming technique us-

ing the sample solution x
s as a starting value.

Repeating this process allows us to explore all possible local solutions.

Although a finite number of iterations does not guarantee that the global

optimum is achieved, the probability of succeeding increases with the number

of times the proposed sequential procedure is performed. The main idea is

to make as many repetitions as possible depending on different factors, such

as the time available to carry out the analysis, computational resources,

number of turbines. Nevertheless, we will always obtain a good solution, and

several rules of thumb may be used to decide reasonable stopping criteria.

For example, we could stop the process if we do not improve the best solution

obtained so far during a pre-specified number of iterations.

Note that the structure of the problem would allow us to parallelize the

process easily, each core may repeat this heuristic-local search process inde-

pendently. The only requirement is to share the best solution found between

cores.
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4.1. Heuristic initial solution

The first step of the proposed procedure consists of the simulation of

an initial solution, which is used as starting point to run gradient-based

algorithms. The aim of this stage is to cover all possible local solutions

and facilitate gradient-based algorithm performances. For these reasons, the

heuristic generation must fulfill the following conditions:

1. Condition 1: The initial solution must cover all possibilities, thus the

initial location must be random, being able to locate turbines anywhere

within the wind farm area.

2. Condition 2: The initial solution must hold the non-linear inequality

constraints (4) and linear inequality constraints (5). Note that using

initial solutions within the feasibility region speeds up computational

performance. However, this step is not customary, as we shall explain

later, because mathematical programming techniques include methods

to move to the feasible region.

3. Condition 3: If there were no constraints on the wind farm location

area, the best known solution to avoid wake effects to locate turbines

as far away from each other as possible. Thus, we try to cover all study

area as much as possible.

In order to fulfill these requirements, we use a two step procedure. The

method aims to maximize the use of the area assigned by random spread of

the turbines, taking into account constraints (4) and (5):

Uniformly random simulation Simulate NT uniformly distributed ran-

dom numbers ξi ∼ U(−1, 1) and ηi ∼ U(−1, 1); ∀i = 1, . . . , NT .
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Note that the probability of locating the coordinate (ξi, ηi) in any point

within the rectangle is the same.

Rectangle transformation Transform those points from the regular rect-

angle into the wind farm area defined by points (xL
i , yL

i ); i = 1, 2, 3, 4

as follows:

xs
i,0 =

4
∑

l=1

Nl(ξi, ηi)x
L
l ; ∀i = 1, . . . , NT

ys
i,0 =

4
∑

l=1

Nl(ξi, ηi)x
L
l ; ∀i = 1, . . . , NT ,

(13)

where functions Nl; ∀l = 1, 2, 3, 4 are equal to:

N1(ξ, η) =
1

4
(1 − ξ)(1 − η) (14)

N2(ξ, η) =
1

4
(1 + ξ)(1 − η) (15)

N3(ξ, η) =
1

4
(1 + ξ)(1 + η) (16)

N4(ξ, η) =
1

4
(1 − ξ)(1 + η). (17)

Turbine widespread In order to fully exploit the wind farm area, we try

to spread turbines out all over the limiting area. Thus, we perform a

triangulation [36] using the simulated points (xs
i,0, y

s
i,0); ∀i = 1, . . . , NT ,

and then maximize the sum of triangle areas solving the following op-

timization problem:

maximize

(xs
i , y

s
i ); ∀i = 1, . . . , NT

∑

∀t

At (18)
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subject to (4), (5) and

At > 0 ; ∀t, (19)

using as starting variables (xs
i,0, y

s
i,0); ∀i = 1, . . . , NT . At is the area of

triangle t, which can be calculated using the determinant formula:

At =
1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

xt1 yt1 1

xt2 yt2 1

xt3 yt3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

; ∀t. (20)

Constraint (19) avoids triangle overlapping and edge crossing when

they are distorted by moving their vertices. The optimal solution

(xs
i , y

s
i ); ∀i = 1, . . . , NT of this problem hold constraints (4) and (5),

and is known in advance, since the maximum sum of areas must be

equal to the wind farm limiting area, as shown in Figure 3. This prob-

lem is a nonlinear mathematical programming problem easily solvable

using any of the previously mentioned algorithms.

The initial solution x
s = (xs

i , y
s
i ); ∀i = 1, . . . , NT holds the three re-

quired conditions and is used as the starting point to run the gradient-based

algorithm.

Note that even though the use of this method may seems like killing ants

with a sledgehammer, it has the following advantages:

1. Constraints (19) increase computational performance, since the feasi-

ble region is reduced. Once the optimal solution is obtained, we could

change turbine positions within the same locations and the AEP re-

mains the same. Besides, these constrains are also used within the
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Figure 3: Initial and final location used as starting point, including the selected triangu-
lation.

AEP optimization procedure.

2. Regarding computational performance, the executing time to solve this

problem is negligible in comparison with the AEP optimization proce-

dure.

Nevertheless, alternative methods holding conditions 1 and 3 could be

used instead, such as: i) locating four turbines in the corners, ii) randomly

positioning of the rest of turbines within the wind farm area, and iii) using

this configuration as starting point for the nonlinear optimization procedure.

Condition 3 would hold at the final optimum after running the optimization

routine. In fact, different procedures for selecting the initial location of tur-

bines could be used instead provided that i) it distributes turbines all over

the area and ii) allows obtaining different local solutions during the execution

of the method.
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4.2. Local minima search

Once the initial solution from the heuristic procedure is obtained, the

nonlinear mathematical programming algorithm is executed.

Note that from a practical point of view, and according to results obtained

from numerical tests using different algorithms, we decided to slightly change

the local maxima search strategy. Thus, we use function ktrlink within

Matlab, repeating the combined process a fixed number of times M . Once

the best solution from the M iterations is achieved, this is the candidate

to be the global solution. Then we run solver fmincon to slightly improve

results.

Figure 4: Graphical interpretation of the combined heuristic-gradient base layout opti-
mization strategy.

The reason for this selection is graphically explained in Figure 4. We

initially use function ktrlink because it obtains a local maximum faster

than fmincon. However, once the “global” optimal x
∗
0 is achieved, function
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fmincon slightly improves the objective function providing the final “global

” optimal solution x
∗. Figure 4 shows i) the starting points used to look for

convex subregions, ii) the local maxima and iii) the global maximum.

Note that although there is no guarantee that x
∗ is the true global solu-

tion, the chances of finding it increase as M increases. However, this method-

ology, unlike others, guarantees the optimality conditions of the solution.

Furthermore, this gradient-based process could be used to refine solutions

obtained from other heuristic methods.

5. Case study: Alpha Ventus

To show the functioning and the potential of the proposed methodology,

we select as a case study the Alpha Ventus wind farm. It was the first

offshore wind farm to be constructed in open sea conditions (North Sea), 60

kilometres away from the coast, in the midst of extreme winds, weather and

tides.

Technically, Alpha Ventus [37] is equipped with the most advanced tech-

nologies, specifically designed for offshore wind farms. The wind turbines

are placed in a grid-like formation with gaps of approximately 800 meters

between each turbine, in a rectangle with a total surface area of four square

kilometres. The wind farm has two types of turbines: the Multibrid M5000

and the REpower 5M, two of the largest models in the world.

For this application, it is assumed that the wind farm has 12 identical

turbines, NREL 5 MW type [38]. The hub height and rotor diameter are

z = 90 and D = 126 meters, respectively. Power curve (v, Pw) is illustrated

in Figure 5 (a). It is a sigmoid function including three different regions: i)
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v < vci
= 3 m/s, ii) vci

≤ v < vr = 11.3 m/s and vr ≤ v < vco
= 25 m/s. The

thrust curve (v, Ct) is shown in Figure 5 (b). Both curves must be provided

by the manufacturer.

Figure 5: Characteristic curves of 5MW NREL Turbine: a) Power output, and b) Trust
coefficient.

Wind data at 10 meters height in the study area is obtained from the

SeaWind database [28], which constitutes an hourly wind reanalysis over a 15

km spatial resolution grid for the entire 1989-2009 period, covering the South

Atlantic European region and the Mediterranean basin. The logarithmic

wind speed profile is chosen to achieve the wind speed at the hub height

z = 90 meters. The equation of the profile is as follows:

v = v10

(

ln(Z/z0)

ln(Z10/z0)

)

(21)

where z0 is the coefficient of roughness length, which has a value for offshore

26



zones of 0.0002 meters; v and v10 are the wind speeds at 90 and 10 meters;

Z and Z10 are the heights at 90 and 10 meters, respectively. Figure 6 shows

the wind rose in the study area.

Figure 6: Wind rose for the Alpha Ventus location.

According to the available data, the expected annual AEP considering

no wake effect and total availability is equal to 306.9 GWh using 12 sectors,

and 308.98 GWh considering the hourly wind speed and direction set during

20 years. Using (7) and considering the wake effect, we obtain the results

provided in Table 1 for the actual layout of Alpha Ventus. Results are given

by sectors, the percentage of losses due to wake effects for each sector varies

from ≈ 0% up to ≈ 1.5%. The total expected annual AEP is equal to

293.274 GWh, which represents a 4.44% reduction due to wake losses. If we

consider the expected annual AEP using the complete data set, the expected

annual AEP is equal to 291.364 GWh, which represents a 5.7% reduction due

to wake losses. The error of the AEP using 12 sectors is 0.65%. Note that

those sectors whose percentage of losses in Table 1 is zero, we expect them
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to have low values but not null. This result is due to the approximation of

the AEP. However, as we shall see, this fact does not invalid results.

Table 1: Annual expected AEP considering wake effects and the actual Alpha Ventus
layout.

Original layout
AEP Wake

Nsector (GWh annual) (%)
1 31.429 0.092
2 41.497 1.507
3 46.618 0
4 37.856 0
5 27.424 1.229
6 19.713 0.072
7 10.347 0.047
8 8.471 0.494
9 15.038 0
10 21.703 0
11 16.631 0.931
12 16.545 0.068

Total 293.274 4.440

The proposed methodology is applied to obtain the optimal layout for the

12 turbines on Alpha Ventus. Results are given in Table 2, where we present

productions associated with: i) the initial random configuration obtained

using the heuristic procedure x
s, and ii) the pseudo-global optimum (x∗)

obtained throughout the gradient base strategy, using x
s as a starting point.

According to these results, the following observations are pertinent:

1. The optimal expected annual AEP is equal to 304.809 GWh, reducing

the wake effect from 4.44% for the actual layout, to 0.682% at the

pseudo-global optimum.

2. If the complete data record is used to calculate the AEP, the optimal

expected annual AEP is equal to 302.230 GWh, reducing the wake ef-

fect from 5.70% for the actual layout, to 2.18% at the pseudo-global
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optimum. This means that the bias is consistent and the method re-

duces wake effects for both approaches: i) with 12 sectors and ii) using

the 20 years data record.

3. The maximum loss due to wake effect is reduced from 1.507% for sector

2 and the actual layout, to 0.194% for sector 6 at the pseudo-global

optimum.

4. The initial solution x
s which allows achieving the pseudo-global opti-

mum, does not necessarily constitute a good solution per se. Note that

losses due to wake effect for this initial solution are 6.012%, higher than

those for the actual configuration.

5. The optimization strategy tends to decrease wake effects for those sec-

tor with higher expected AEP. Note that for sectors 3 and 4, the corre-

sponding wake effects are null, and for sector 2, they are close to zero.

We remind readers that these results are approximations.

6. The optimization procedure provides an improvement of expected AEP

of 3.758% with respect to the actual configuration and using 12 sectors,

and 3.52% if we consider the whole data record.

Figure 7 depicts the evolution of wakes for a specific sector (3, 75◦NE)

and wind speed (15 m/s), i.e. the most likely sector. Note that with the

initial simulation, turbines 4, 5, 9, 11 and 12 are under wake effect, however,

with the optimal layout, the original flow speed reaches all turbines. Figure 8

shows analogous results to those of Figure 7 in sector 2 (45◦NE), for original

and optimal layouts. Note the considerable differences between the actual

configuration and the optimal.

In economic terms, and assuming a production cost of 0.064 e/KWh
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Table 2: Annual expected AEP considering wake effects using the optimization framework
proposed in this paper.

Initial Simulation (xs) Optimal layout (x∗)
AEP0 Wake AEPopt Wake

Nsector (GWh annual) (%) (GWh annual) (%)
1 29.682 0.662 31.148 0.184
2 44.522 0.522 46.035 0.029
3 43.366 1.059 46.618 0
4 36.054 0.587 37.856 0
5 29.496 0.554 31.196 0
6 18.641 0.421 19.337 0.194
7 9.534 0.312 10.161 0.107
8 9.447 0.176 9.958 0.010
9 13.519 0.495 15.038 0
10 20.434 0.414 21.703 0
11 18.159 0.433 19.488 0
12 15.595 0.377 16.269 0.158

Total 288.448 6.012 304.809 0.682

(a) (b)

Figure 7: Evolution of the wakes for a 15 m/s wind in sector 3 (75◦NE): a) Initial simu-
lation, and b) Optimal layout.

(regardless of the initial investment costs) and a selling price of 0.15 e/KWh,

the profit increment due to the reallocation of turbines according to the

locations obtained from the proposed procedure, is equal to 0.9921Me per
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(a) (b)

Figure 8: Evolution of the wakes for a 15 m/s wind in sector 2 (45◦NE): a) Original layout,
and b) Optimal layout.

year using 12 sectors, and 0.9422Me per year if we consider the whole data

record. Both amounts justify the effort performing the layout optimization

of any off-shore wind farm.

Finally, and in order to study the sensitivity of the proposed procedure to

wind directional data characterization, we have performed new calculations

rotating the original wind rose shown in Figure 6 with different angles. Re-

sults in Table 3 demonstrate that the optimal layout always provides better

performance with respect to the actual configuration based on a regular grid.

This result is not surprising since the method tries to accommodate the tur-

bines so that there are no wake conflicts for each directional sector. Since it

is impossible to avoid wake effects all over the 360◦, the method gives prior-

ity to those sectors with higher AEPs, but somehow improves performance

throughout the circumference.
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Table 3: Sensitivity Analysis with respect to wind directional information for Alpha Ventus
case study.

Original layout Optimal layout
AEP Wake AEP Wake

Rose (GWh annual) (%) (GWh annual) (%)
Rot.0 293.274 4.440 304.809 0.682

Rot. 90 293.017 4.524 304.119 0.906
Rot. 180 293.274 4.440 304.769 0.695
Rot. 270 293.017 4.524 304.216 0.875
Random 143.03 6.589 148.96 2.717

5.1. Efficiency of a Wind Farm: Installed capacity per km2

So far, the number of turbines to be allocated has been considered as

data. However, this could be an additional variable to be optimized. To

study how the optimal efficiency within a given area changes with respect

to the number of installed turbines, i.e. installed capacity, we have repeated

the optimization process using a different number of turbines. Note that the

wind farm Alpha Ventus has an actual installed capacity of 15.625 MW/km2.

The efficiency achieved with the optimized layout is 99.25% versus 95.51%

obtained with the grid layout.

Figure 9 shows the efficiencies achieved for different numbers of turbines

in the two stages of the optimization methodology. It also shows the effi-

ciency achieved with the typical grid layout. Note that if the installed power

capacity per km2 increases, the efficiency is reduced; in other words, the wake

effects become more important. In addition, we can also observe that the

higher the installed power capacity, the lower the magnitude of improvement

we obtain from the optimization algorithm proposed in this paper. This ef-

fect is due to the wind farm saturation, which reduces the number of possible

turbine locations across the area. Note that with 23 turbines the problem is
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Figure 9: Efficiency vs. installed power capacity per km2.

unfeasible due to the fact that there are no layouts which satisfy the problem

constraints (Minimum distances).

Another important reason is that in the N.O. Jensen wake model, the

total velocity deficits inside the wind farm quickly reach an equilibrium level

(see [24]) and therefore as the wind farm increases, the layout of the inside

turbines start losing importance, as the wake effects inside the wind farm

become more homogeneous.

5.2. Saturation area

To analyze the saturation effect, Figure 10 illustrates the saturation of

the wind farm. This figure shows box-plots related to: i) the root mean

square distances between the turbine locations, with values converging to a
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constant around 1400 m, and ii) expected annual energy production (AEP),

in which the maximum value is 518 GWh for 22 turbines. These box-plots

have been generated running 100 cases for each installed capacity (number

of turbines).
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Figure 10: Combined box-plots: AEP and root mean square distances.

The evaluation of the root mean square of distances allows us to study

the difference between the optimal layouts, proving that the more saturated

the area, the solutions are more similar to each other, resembling the grid

layout. According to Figure 10, it is clear that for the study area with 19

or 20 turbines, the adjustment of AEP data ceases to be linear, i.e. the

efficiency decreases. If an economic study is carried out, this number of

turbines would correspond to the value where the assigned area reaches its

maximum profitability, because losses induced by wake effect do not com-
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pensate the installation of more turbines. The graph is computed for up to

22 turbines, because there are no possible layouts with 23 turbines satisfying

the minimum distance between turbines required.

5.3. Computational time

Finally, the performance of the algorithm under different situations is

analyzed by comparing the estimated complexity of the algorithm with the

experimental computational running times 1.

In Figure 11 the experimental times obtained during the different test

cases are plotted (50 test cases for each installed capacity).

4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

120

Number of turbines

T
im

e
(h
)

Figure 11: Running time for 50 cases as a function of the number of turbines.

It is important to note that experimental time values were not measured

under the exact same conditions. Therefore, Figure 11 should be used solely

1Computer characteristic: Intel Core i5-2400 3.10GHz, 3.24GB RAM running under
Windows XP Professional
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as a reference to know the approximate running time for the simulation with

N turbines.

6. Conclusions

This paper proposes a new method to maximize the expected power pro-

duction of offshore wind farms by setting the appropriate layout, i.e. min-

imizing the wake effects, and indirectly, reducing the fatigue effects on the

turbines, which on turn reduce its service life.

The method uses a sequential procedure for global optimization consisting

of two steps: an heuristic method to set an initial random layout configu-

ration, and the use of nonlinear mathematical programming techniques for

local optimization, which use the random layout as an initial solution.

The performance of the proposed procedure is tested using the German

offshore wind farm Alpha Ventus, yielding an increment of the expected

annual power production of 3.758% compared to the actual configuration.

A comparison between the installed capacity per km2 and the efficiency of

the wind farm is also carried out to determine the efficiency of the algorithm

when the size of the wind farm is increased. It is found that when the wind

farm has many turbines and the turbines have little freedom to move within

the wind farm area, the effectiveness of the algorithm is reduced and the

output layout gives similar results as that of any grid-like layout. On the

other hand, for smaller wind farms the improvement in energy production is

remarkable and the effectiveness of the program is proven.

The proposed methodology has many advantages: the nonlinear mathe-

matical programming solvers are numerically robust and computationally ef-
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ficient; they can include alternative constraints or objective functions without

altering the flow of the methodology; the heuristic method used to generate

initial solutions is capable of searching convex subregions; it is easy to include

parallelization features; the final solution holds the Karush-Kuhn-Tucker op-

timality conditions; and the methodology does not requiere reducing the

feasible solutions region by gridding the possible location area.

There is still much work to be done in the field of wind farm optimiza-

tion. These include wake modeling to properly predict the wind decay (and

therefore the power losses). Other physical aspects such as foundations or

cabling, human aspects as visual effects and area restrictions, and mathemat-

ical topics regarding the optimization approaches must also still be reviewed

in detail.
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