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Abstract

Wind power - a renewable energy source increasingly attractive from an economic view-

point - constitutes an electricity production alternative of growing relevance in current

electric energy systems. However, wind power is an intermittent source that cannot be

dispatched at the will of the producer. Modeling wind power production requires char-

acterizing wind speed at the sites where the wind farms are located. The wind speed at a

particular location can be described through a stochastic process that is spatially correlated

with the stochastic processes describing wind speeds at other locations. This paper pro-

vides a methodology to characterize the stochastic processes pertaining to wind speed at

different geographical locations via scenarios. Each one of these scenarios embodies time

dependencies and is spatially dependent of the scenarios describing other wind stochastic

processes. The scenarios generated by the proposed methodology are intended to be used

within stochastic programming decision models to make informed decisions pertaining to
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wind power production. The methodology proposed is accurate in reproducing wind speed

historical series as well as computationally efficient. A comprehensive case study is used

to illustrate the capabilities of the proposed methodology. Appropriate conclusions are

finally drawn.

Key words: Wind speed correlation, scenario generation, stochastic programming,

stochastic processes, time series.

1. Introduction

1.1. Motivation

Wind power constitutes an electricity production alternative of growing relevance in

current electric energy systems across the world. Moreover, wind power is a renewable

source that is increasingly attractive from an economic viewpoint. However, wind power

is an intermittent source that cannot be dispatched at the will of the wind producer. Its

production is conditioned to the availability of an appropriate level of wind.

The integration of wind energy resources into power system networks is currently pos-

ing unique challenges for system operators and planners, which should take preventive and

corrective actions (e.g., scheduling and deploying additional reserves) in order to maintain

system security and reliability, potentially threatened by the unpredictable and variable

nature of these resources [1, 2, 3, 4, 5, 6]. Likewise, wind producers should gather as

much accurate information as possible on the wind speed characteristics at their wind

farms to make informed decisions concerning electricity trading and risk management

[7, 8, 9, 10, 11].

The wind speed at a particular location can be described through a stochastic process

that is spatially correlated with the stochastic processes describing wind speeds at other

locations. An appropriate description of these stochastic processes requires recognizing
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the time dependent nature of each of these processes as well as the spatial correlation

among them.

Note that characterizing the stochastic process describing wind speed at a particular

location is a problem of a different nature that predicting wind speed for that particular

site. Prediction entails forecasting the most likely wind speed time series for a particular

future horizon, e.g., wind speed values for the 24 hours of the next day; while describing

the involved stochastic process entails producing a set of possible wind speed time series

with their associated probabilities, e.g., 1000 series of 24 wind speed values describing

plausible wind speed outcomes for next day and their associated probabilities.

1.2. Procedure

This paper provides a methodology to characterize the stochastic processes pertaining

to wind speed at different geographical locations. Each wind stochastic process is char-

acterized by a set of scenarios. Each one of these scenarios embodies time dependencies

and is spatially dependent of the scenarios describing other wind stochastic processes ge-

ographically close.

The uncertainty characterization achieved through this methodology is such that the

generated scenario sets corresponding to different geographical locations retain the main

statistical properties of the wind speed stochastic processes involved, namely:

1. The marginal distribution associated with the stochastic process corresponding to

the wind speed at each geographical location considered.

2. The temporal correlations characterizing the stochastic process corresponding to the

wind speed at each geographical location.

3. The predominant spatial correlations among the stochastic processes representing

wind speed at the different considered locations.
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The proposed methodology involves two procedures, namely, model characterization

and scenario generation. Schematically, the model characterization involves the steps be-

low:

1. Fitting of a known distribution function (e.g., a Weibull) to the available data (col-

lapsed in time) of each wind site. This step allows retaining the characteristics of

the marginal distribution that distinguishes each wind site.

2. Using the marginal distribution function obtained in 1 above, transform the time

series of historical values of each site into a normalized Gaussian time series. This

step allows using consistently time series models.

3. Fitting of a time series model (e.g., an ARMA process) to the transformed historical

values obtained in 2 above. The obtained model allows taking into account temporal

correlations while generating wind speed scenarios for a wind site.

4. Estimation of a stationary variance-covariance matrix describing spatial correlations

among the considered wind speed sites. While producing scenarios, this matrix

allows enforcing spatial correlations.

The procedure to generate one plausible wind speed scenario per wind site involves

the steps below:

5. Generate a time series of white noise values of appropriate length for each wind site.

6. Using the variance-covariance matrix describing spatial correlations among sites

(obtained in 4), transform the set of white noise series (one per wind site) to make

these series spatially correlated.

7. Use the time series model of each wind site (obtained in 3) and the corresponding

cross-correlated white noise series (obtained in 6) to generate a normalized wind

speed series for each wind site.
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8. Use the inverse of the transform performed in step 2 above for each wind site to

un-transform the corresponding normalized wind speed series (obtained in 7), thus

producing a plausible wind speed series for each site.

The above procedure (5 to 8) is repeated as many times as the number of required

scenarios.

The scenarios generated by the proposed methodology are intended to be used within

stochastic programming decision models to make informed decisions pertaining to wind

power production. The methodology proposed is accurate in reproducing wind speed his-

torical series as well as computationally efficient.

The validation of the proposed model is carefully carried out by comparing the statisti-

cal properties of (a) historical data and (b) scenarios generated by the proposed algorithm.

Most relevant statistical properties of both historical data and synthetic scenarios are equal

within a reasonable numerical threshold.

1.3. Literature review

Procedures for scenario generation are required to model the stochastic processes in-

volved in decision-making based on stochastic programming [12]. A number of works

addressing the problem of how to build appropriate scenario sets can be found in the tech-

nical literature [13, 14, 15, 16, 17]. In the context of electricity markets, several methods

have been suggested to generate scenarios modeling the uncertainty of spot prices, reserve

prices, and demand [18, 19, 20, 15]. However, there is a lack of scenario generation proce-

dures capable of recognizing and managing the intricacies of wind stochastic processes, a

lack that the proposed methodology is intended to fill. Specifically, the referred intricacies

have to do with the non-normality of the associated marginal distribution and the likely

spatial correlations existing among different wind sites.
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Even though correlation at multiple wind power sites has a significant impact on the

reliability of power systems, it has not yet received sufficient attention. In this respect, ref-

erences [21] and [22] analyze the autocorrelation function of wind speeds at several sites

and conclude that the autocorrelogram tends to zero as the time lag increases. Karaki et al.

[23] present a general probabilistic model of a two-site wind-energy conversion system,

which assumes that wind speeds at the two sites are not independent and convolutions

can not be directly applied. The work developed in [24] constitutes a methodology for

capacity adequacy evaluation of power systems including wind energy based on a Monte

Carlo simulation approach of the hourly wind speeds. For this purpose, an autoregressive

moving average time-series model is used. Wangdee and Billinton [25] present a genera-

tion adequacy assessment including wind energy at multiple locations and show that the

degree of wind speed correlation between two wind farms has a considerable impact on

the resulting reliability indices. In this case, an autoregressive moving average time series

model is also used to simulate hourly wind speeds. Miranda and Dunn [26] introduce a

spatially correlated wind speed model using a multivariate time-series approach, which

models the correlation between various sites in the UK. Reference [27] proposes a model

for power system reliability assessment that preserves some of the statistical characteristics

of the wind speed distributions at two different locations, namely, their means and standard

deviations, and allows simulating a given contemporaneous wind speed cross-correlation

between these locations through a time-shifting technique. The optimal shifting time at

the two sites is determined using a linear interpolation algorithm.

Note that the method proposed in this paper has the following advantages with respect

to the existing ones:

1. It reproduces the autocorrelation function of each considered wind site as in [21, 22].

2. It is an approximate multivariate time-series approach which allows decoupling the
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model into different univariate site components, whose parameters can be estimated

separately, thus avoiding the complexity of multivariate parameter estimation meth-

ods.

3. It replicates the main cross-correlations coefficients characterizing wind speeds at

different sites, and not just the contemporaneous one as in [27].

4. It preserves the statistical properties of wind speeds, not only in terms of mean and

standard deviation as in [27], but the complete marginal distribution.

1.4. Contributions

The contributions of this paper are fourfold:

1. A precise statistical characterization of the stochastic processes describing wind

speed at several geographical locations, considering both temporal and spatial cor-

relations.

2. The development of a procedure to generate scenarios of wind speed values at a par-

ticular geographical site and spanning a pre-specified time horizon. These scenarios

reproduce both the time dependency that characterizes wind speed time values and

the marginal distribution that characterizes any wind site if time is collapsed.

3. The extension of the above procedure to generate wind speed scenarios that in addi-

tion of embodying the attributes in 2, incorporates the spatial dependencies among

different wind sites.

4. Reporting the analysis and discussion of the results obtained from of a comprehen-

sive case study involving five spatially dependent wind locations.

1.5. Paper organization

The rest of this paper is organized as follows. In Section 2, the statistical concepts,

tools and hypotheses on which the suggested methodology is based are stated. In Sec-
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tion 3, a detailed description of the algorithm to produce a plausible scenario set for mul-

tiple wind sites is provided. Section 4 includes numerical and graphical results testing

the proposed technique through a comprehensive analysis comprising five different wind

locations. Finally, in Section 5, some relevant conclusions are duly drawn.

2. Theoretical foundation

The wind speed at a given site A, Y A, can be studied as a time series, and then, mathe-

matically modeled as a stochastic process. In the technical literature, a stochastic process

is commonly defined as a collection of dependent random variables Y A = {yA
t , t ∈ T }. That

is, for each t in the index set T , yA
t is a random variable. We often interpret t as time and

call yA
t the state of the process at time t. In the case we are dealing with, yA

t is a random

variable describing the wind speed at location A at time t.

The probabilistic structure of a stochastic process is determined by identifying the joint

distribution of its random variables {yA
t }. Roughly speaking, this distribution explains both

the probabilistic behavior of each random variable yA
t on its own (marginal distributions),

and the interrelations existing among all of them (statistical dependencies).

In practice, the determination of the joint distribution is usually a complex and cum-

bersome endeavor. However, this estimation becomes much easier under the following

two assumptions:

1. The joint distribution is a multivariate Gaussian distribution, and therefore, is deter-

mined by just specifying the mean vector and the variance-covariance matrix of the

random variables constituting the stochastic process.

2. The stochastic process under analysis is stationary, which means that neither the

mean vector nor the variance-covariance matrix depend on time t.
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Note that the two assumptions above imply that the marginal distributions of the ran-

dom variables involved are all identical univariate Gaussian distributions. Being so and

for simplicity, hereafter we will just refer to the marginal distribution associated with the

considered stochastic process.

With reference to assumption 1, the non-diagonal elements of a variance-covariance

matrix are generally referred to as autocovariances. Through a simple standardization

process consisting in just dividing the autocovariances by the corresponding product of

standard deviations, the autocorrelations are obtained. These are also known as temporal

correlations and quantify the statistical interdependencies among the random variables.

The time series theory based on autoregressive moving average (ARMA) models relies

on these two premises. An ARMA(p, q) process Y A is mathematically expressed as

yA
t =

p∑

j=1

φ jyA
t− j + εA

t −
q∑

j=1

θ jε
A
t− j (1)

with p autoregressive parameters φ1, φ2, . . ., φp, and q moving average parameters θ1, θ2,

. . ., θq. The term εA
t in equation (1) stands for an uncorrelated normal stochastic process

with mean zero and variance σ2
εA , and is also uncorrelated with yA

t−1, y
A
t−2, . . . , y

A
t−p. Stochas-

tic process εA
t is also referred to as white noise, innovation term, or error term.

Time series analysis based on ARMA models provides a comprehensive mathematical

framework to represent an important group of stationary processes that result from im-

posing a linear dependence among the process variables and a series of white noises. In

particular, the autoregressive part of the ARMA(p, q) model in (1), AR(p)=yA
t −

∑p
j=1 φ jyA

t− j,

establishes that the present realization yA
t of the stochastic process Y A directly depends on

its last p realizations. It can be proved that the inclusion of the moving-average component,

MA(q)= εA
t −

∑q
j=1 θ jε

A
t− j, in combination with the autoregressive one, allows obtaining

simple and compact ARMA(p, q) models, i.e., with p and q sufficiently small [28].

Observe in (1) that yA
t boils down to a linear combination of white noises, and as such,
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the marginal distribution associated with the stochastic process Y A is necessarily normal,

which is in accordance with the first assumption above.

When it comes to analyze wind speed processes, there are no reasons in advance to

question the validity of the stationarity assumption, as the natural phenomena able to mod-

ify the wind characteristics at a given site change in general very slowly, exhibiting a large

time constant. Only the existence of seasonal winds could wreck the stationarity, but in

this case, seasonal ARMA models can be used to easily overcome this difficulty. Further-

more, the proposed methodology is intended to simulate short-time wind speed sequences,

and consequently, the stationarity assumption is a reasonable premise.

On the contrary, the normality assumption does not hold in general. It is widely ac-

cepted that the marginal distribution characterizing the speed of local winds can be suitably

approximated by a Weibull distribution. The technical literature is rich in references on

this [29, 30, 31, 32, 33], including relevant works dealing with the problem of how to

estimate the parameters of the Weibull distribution that best describes a given wind speed

frequency distribution [34, 35, 36, 37]. In [38], Weibull distributions for different wind

sites all over the world are provided.

In order to preserve the original marginal distribution associated with the wind speed

stochastic process Y A while making use of the modeling capability of the ARMA models,

a new stochastic process, Z A, with a standard normal marginal distribution is defined

through the following transformation:

Z A = Φ−1
[
FYA(Y A)

]
, (2)

where FYA is the cumulative distribution function (CDF) of the marginal distribution as-

sociated with the original stochastic process Y A and Φ(·) is the cumulative distribution

function of the standard normal random variable.

Transformation (2) comes from [39] and is graphically illustrated in Fig. 1, where the
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bold path in direction d (direct) represents the referred transformation. This transformation

allows us to preserve the marginal distribution and the covariance structure of the random

variables making up the stochastic process Y A by assuming a multivariate Gaussian joint

distribution of the transformed stochastic process Z A.

Figure 1: Graphic interpretation of the normal transformation expressed in equation (2).

Thus, the ARMA model (1) is adjusted to the transformed stochastic process Z A. From

the fitted model, a transformed set of scenarios ΩZA is first generated, and then untrans-

formed in order to produce a set of scenarios, ΩYA , characterizing the original wind speed

stochastic process, Y A. The inverse transformation can be written as

Y A = F−1
YA

[
Φ(Z A)

]
, (3)

and is graphically represented by the bold path in direction i (inverse) of Fig. 1.

The aim of the methodology introduced in this paper is to obtain a set of scenarios that

allows us to properly characterize the uncertainty associated with multiple wind sites. This

requires to account for both the marginal properties of each location and their interdepen-

dencies. In this respect, if an additional wind speed stochastic process at a different site

B, YB, comes into consideration, the time series analysis to be carried out becomes mul-
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tivariate, and consequently, significantly thornier. In particular, if we define the following

groups of vectors

yt− j =


yA

t− j

yB
t− j

 , zt− j =


zA

t− j

zB
t− j

 , j = 1, 2, . . . , p; (4)

εt− j =


εA

t− j

εB
t− j

 , j = 1, 2, . . . , q; (5)

scalars φ j and θ j in (1) turn into matrices, φ j and θ j, respectively, in the following multi-

variate ARMA model:

zt =

p∑

j=1

φ j zt− j + εt −
q∑

j=1

θ jεt− j, (6)

where the noise term εt has a zero mean vector and satisfies:

E[εtε
T
t ] =


σ2
εA 0

0 σ2
εB

 , (7)

and E[εtε
T
t− j

] = 0 for j , 0. E[·] is the expectation operator and superscript T de-

notes the transpose of a matrix. In addition, it is assumed that εt is uncorrelated with

zt−1, zt−2, . . . , zt−p, and that εt is normally distributed.

The use of the full multivariate ARMA model described above often leads to complex

parameter estimation. Thus, a model simplification is suggested in this paper.

This simplification is based on assuming that φ j and θ j are diagonal matrices. Then,

model (6) can be decoupled into the univariate ARMA models

zA
t =

pA∑

j=1

φA
j zA

t− j + εA
t −

qA∑

j=1

θA
j ε

A
t− j

zB
t =

pB∑

j=1

φB
j zB

t− j + εB
t −

qB∑

j=1

θB
j ε

B
t− j . (8)
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Note the consequences of this assumption as the above model decoupling into uni-

variate models allows us to avoid estimating model parameters jointly, and well-known

and computationally efficient univariate modeling procedures can be employed instead.

Likewise, note that one does not have to consider the same univariate ARMA(p, q) model

for each site. Thus, the model components at each site are simply univariate ARMA(p, q)

models where εA and εB are not autocorrelated (or temporarily correlated), i.e., E[εA
t ε

A
t− j] =

0 and E[εB
t ε

B
t− j] = 0,∀ j , 0; but, as a result of the assumption above, they may be indeed

cross-correlated (or spatially correlated), i.e., E[εA
t ε

B
t− j] , 0 and/or E[εB

t ε
A
t− j] , 0 for some

j.

Therefore, if the scenario generation process is designed in such a way that the cross-

correlations between the error terms, εA and εB, are reproduced, then the resulting wind

speed scenario set will retain the spatial correlations between the original wind speed time

series, Y A and YB.

Mathematically, the cross-correlations between εA and εB can be described by means

of a variance-covariance matrix G. This matrix is symmetric by definition, and therefore,

can be always diagonalized. In other words, an orthogonal transformation can be used to

model the ε’s as

ε =


εA

εB

 = Bξ = B


ξA

ξB

 , (9)

in which B is the orthogonal matrix of the transformation, and ξ is normal and satisfies that

E[ξξT ] = I, being I the identity matrix. That is, ξ is temporarily and spatially uncorrelated.

This way, white noises (independent standard normal errors) can be generated, and

then, cross-correlated according to the variance-covariance matrix G by using the orthog-

onal transformation as expressed in (9).

In most engineering applications, matrix G, besides being symmetric, is also posi-

tive definite, and as such, can be decomposed through the computationally advantageous
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Cholesky decomposition, which avoids the calculation of eigenvalues and eigenvectors.

The Cholesky decomposition can be stated as

G = LLT , (10)

where L is an inferior triangular matrix that turns out to be the orthogonal matrix required

for transformation (9), i.e., B = L, as shown below.

The variance-covariance matrix G can be computed as

G = cov(ε, εT ) = cov(Bξ, ξT BT ) = B cov(ξ, ξT )BT

= B E[ξξT ]BT = BIBT = BBT , (11)

where cov(·, ·) stands for the covariance operator.

By using the Cholesky decomposition (10), equation (11) yields:

G = LLT = BBT ⇒ (
B−1L

)(
LT (BT )−1) = I ⇒ B = L. (12)

The simulation of the cross-correlated error ε becomes more costly as the number of

significative cross-correlation coefficients increases. In this sense, the proposed methodol-

ogy is efficacious provided that the statistical dependencies among errors can be explained

by a finite set of cross-correlation coefficients, and its efficaciousness is dependent on the

cardinality of this set.

In summary, the purpose of this theoretical development is the design of a procedure

able to provide scenario sets that reproduce:

1. The marginal distribution associated with each stochastic process through the nor-

mal transformation (2).

2. The autocorrelations characterizing the dynamic behavior of each stochastic process

over the time (temporal correlations) by employing univariate ARMA models.

3. The cross-correlations determining the interrelations among the stochastic processes

(spatial correlations) by means of the orthogonal transformation (9).
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3. Algorithm

In this section, the procedure to generate a plausible scenario set for multiple wind

sites is described step by step. The algorithm is also illustrated through the flow chart

depicted in Fig. 2.

Step 1. For each wind site, estimate the parameters of the probability distribution that best

fits its wind speed frequency distribution. This is done using the available historical data.

Step 2. For each wind site, apply transformation (2) to the historical wind speed series,

where the marginal cumulative distribution function F(·) to be used is the one estimated

in Step 1 above. This way, a transformed series is obtained for each wind site with an

associated standard normal marginal distribution.

Step 3. For each wind site, adjust an univariate ARMA model to the corresponding trans-

formed series (obtained in Step 2 above). The fitting process to be performed in this step

is well known (see, e.g., [28]) and yields uncorrelated normal residuals (historical errors).

Step 4. Although the historical error series obtained in the preceding step are not autocor-

related, they should be cross-correlated if the wind sites under analysis are indeed inter-

related. In this step, the cross-correlations are computed and, consequently, the variance-

covariance matrix G is built. Considering for the sake of simplicity just two wind sites, A

and B, the structure of matrix G is as follows:

εA εB

G =


G11 G12

G21 G22


εA

εB

(13)

where G11 = σ2
εA IK+NT , G22 = σ2

εB IK+NT , and
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G12 = GT
21 = σεAσεB

0
K

0

k

k

0

K

0

.

ρk is the positive lag-k cross-correlation coefficient, K is the maximum lag (positive or

negative) with a significant cross-correlation coefficient and NT is the number of time

periods to cover in the decision-making process.

The size of matrix G is (K + NT ) × NS , where NS is the number of wind speed series

(wind sites) under consideration. If K � K + NT , then it is computationally advantageous

to treat G as a sparse matrix.

Step 5. Apply Cholesky decomposition to G (i.e., compute L such that G = LLT) so as to

obtain the matrix B of the orthogonal transformation (9).

Step 6. Simulate NT × NS independent standard normal errors, ξ.

Step 7. Cross-correlate the NT × NS standard normal errors generated in the previous step

by using the orthogonal transformation (9). Specifically, for two wind sites A and B, this
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cross-correlation process is performed as:


ε̂A
n−K+1
...

ε̂A
n

εA
n+1
...

εA
n+NT

ε̂B
n−K+1
...

ε̂B
n

εB
n+1
...

εB
n+NT



= L



εA
n−K+1
...

εA
n

ξA
n+1
...

ξA
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εB
n−K+1
...

εB
n

ξB
n+1
...

ξB
n+NT



(14)

where n is the sample size of the available historical data set, εA
n−K+1, . . ., εA

n , εB
n−K+1, . . .,

εB
n are the last K error terms of the historical series, ε̂A

n−K+1, . . ., ε̂A
n , ε̂B

n−K+1, . . ., ε̂B
n are their

corresponding transformed values, and ξA
n+1, . . ., ξA

n+NT
, ξB

n+1, . . ., ξB
n+NT

are the NT × NS

(NS = 2) independent standard normal errors simulated in Step 6 above.

Finally, the error series εA
n+1, . . ., εA

n+NT
and εB

n+1, . . ., εB
n+NT

are those to be introduced in

the ARMA models fitted in Step 3.

Step 8. For each wind site, use the corresponding NT cross-correlated normal errors to

simulate NT wind speed transformed values by means of the corresponding univariate

ARMA model fitted in Step 3.

Step 9. At this point in the algorithm, NS autocorrelated and cross-correlated series have

been simulated covering NT time periods and following a normal standard marginal distri-

bution.

17



In this step, the inverse transformation (3) is applied to theses series in order to enforce

the actual marginal distributions that have been estimated in Step 1.

Step 10. Repeat Steps 6-9 until the desired number (NW) of wind speed scenarios is ob-

tained.

4. Results and discussion

In this section, the proposed methodology for wind scenario generation is tested on

four different case studies. Specifically, these case studies are aimed to validate the pro-

posed scenario generation methodology by comparing the statistical properties of histori-

cal wind speed series with the scenarios generated by the designed algorithm.

4.1. Site description

The following case studies are based on the wind data collected at five sites in Mas-

sachusetts, USA. All the historical wind speed series employed are publicly available in

[40]. The data sets comprise ten-minute averaged speed measurements that have been ag-

gregated into hourly time intervals. An approximate geographical distribution of the sites

as well as the distances among them are shown in Fig. 3.

Next, a brief description of each wind site is provided:

Site A: The wind monitoring station is located at Bishop and Clerks, on the top of a light-

house placed within the three-mile state limit of Massachusetts’s waters, at 41 34’

27.6” North and 70 14’ 59.5” West. The anemometry is mounted at a height of 15

m relative to the mean low water level.

Site B: The measurement station is located at the town Water Treatment Plant in Fal-

mouth. The location of the tower base is at 41 36’ 21.6” North, 70 37’ 15.60” West.

The wind monitoring equipment includes anemometers at three different heights on
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the tower: 10 m, 30 m and 39 m. Redundant anemometers exist at 30 m and 39 m.

The wind data series used in this paper from this site corresponds to a height of 39

m.

Site C: The site is located at a parking lot very near the beach on Ocean View Drive in

Wellfleet. The location of the tower base is at 41 56’ 2.4” North, 69 58’ 48” West.

Wind monitoring equipment comprises anemometers situated at three heights on the

tower: 50 m, 38 m, and 20 m. Redundant anemometers are positioned at 50 m and

38 m. The wind speed series considered here is the one obtained at a height of 38

m.

Site D: The monitoring station is located at the WBZ radio tower, near the salt marsh on

the west coast of the Hull isthmus, on the southern portion of the Boston Harbor. The

site coordinates are 42 16’ 44.11” North by 70 52’ 34.39” West, and the anemometer

from which the wind data employed comes from is placed at a height of 61 m.

Site E: The monitoring station is located at the Yankee Network Tower on Mount Asneb-

umskit, southeast of the town of Paxton. Site coordinates are 42 18’ 11.6” North, 71

53’ 50.9” West. The wind data series collected from this site corresponds to a height

of 78 m.

In each case study, the proposed methodology is used to simulate time series reproducing

the main marginal and joint statistical properties of two wind sites from among those

described above.

4.2. Case study 1

In this first case study, the proposed technique is applied to model wind speeds at sites

A and B. The wind data considered for this analysis were collected between June 1 and
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December 30, 2004. This case study also serves us to illustrate the algorithm described in

Section 3 step by step.

Step 1. First, an appropriate probability distribution is adjusted to the wind speed fre-

quency distribution built for each site from the available historical data. A Weibull distri-

bution is selected for the fitting process. As an example, Fig. 4 plots both the wind speed

frequency distribution of site A and the corresponding probability density function (pdf)

of the fitted Weibull. The adjustments are carried out by using the distribution fitting tool

provided in the statistics toolbox of Matlab 7.0.

Step 2. Next, the marginal transformation (2) is used in order to normalize the wind speed

historical data. Fig. 5 is the normality plot of the transformed data corresponding to site A.

Needless to say, the normal transformation is not perfect because neither is the Weibull fit.

However, considering the purpose of this paper, it constitutes an accurate approximation.

Step 3. The next step of the algorithm consists in eliminating the temporal correlations

from the historical data series. To this end, we appeal to the assumption that each normal-

ized wind speed series can be statistically treated as a stationary stochastic process with a

multivariate Gaussian joint distribution. This way, univariate ARMA(p, q) models can be

used to explain the dynamic behavior exhibited by the historical wind speed series. The

corresponding fitting process is well-known (see, e.g., [28]), and consequently, is not dis-

cussed here. Nonetheless, the type of ARMA model fitted for each wind site is provided

in Table 1. As indicated in Section 2, ARMA models boil down to a linear dependence

among the process variables and a sequence of white noises. The validation of the assump-

tion above then involves the inspection and characterization of residuals derived from the

fitting process. Since the ARMA fits summarized in Table 1 yield temporarily uncorre-

lated normal residuals with zero mean and constant variance, i.e., white noises, such fits

can be deemed as consistent [28], and therefore, the previous assumption holds.
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Table 1: Stochastic processes for wind sites

Site Time series model

A ARMA(1, 2)

B ARMA(1, 2)

C ARMA(1, 3)

D ARMA(1, 2)

E ARMA(2, 2)

Steps 4 and 5. The residual errors derived from the univariate time series analysis should

not be autocorrelated, but they are cross-correlated if there exists an spatial correlation

between wind sites A and B. In Fig. 6, the cross-correlogram of the residuals is depicted.

It can be observed that the most significant correlation coefficients form a group around

the lag zero, with the lag-0 correlation coefficient being precisely the largest one. This

correlation coefficient is usually referred to as contemporaneous correlation. The triangu-

lar structure characterizing the cross-correlogram plotted in Fig. 6 is typical of stochastic

processes with a common, but delayed, physical cause. The triangle base length gives an

idea of the delay magnitude. The narrower and the more pointed this triangle is the more

contemporaneous the stochastic processes are. In this case, the triangle-shaped cross-

correlogram is justified by the proximity of sites A and B (around 31 km apart). Due to

their closeness, it is no wonder that winds at both sites are highly related.

From this point, the algorithm focuses on simulating errors that reproduce the cross-

correlogram of Fig. 6. Nevertheless, not all the cross-correlation coefficients should be
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reproduced, but just those considered significant enough from a statistical point of view.

The significance of a given cross-correlation coefficient is appraised by means of a p-

value testing the hypothesis of no correlation. This p-value is the probability of obtaining

a correlation as large as the observed one by random chance, when the true correlation is

zero. In Fig. 7(a), only those coefficients with a p-value smaller than a significance level

α = 0.05 are represented. The variance-covariance matrix G is built (Step 4) from the

cross-correlations coefficients of Fig. 7(a) as explained in Section 3, Step 4. In pursuit of

computational efficiency, the Cholesky decomposition is then applied to matrix G (Step 5)

in order to obtain the matrix B of the orthogonal transformation (9).

Steps 6 and 7. The simulation process starts from generating 2 × NT independent stan-

dard normal errors (Step 6), which are subsequently cross-correlated (Step 7) according

to matrix G through the orthogonal transformation (9). For comparative purposes, the

cross-correlogram of the simulated errors for NT = 50 000 is depicted in Fig. 7(b). The

time span to cover has been selected sufficiently long in order to properly observe and

assess the stationary properties of the simulated processes. Note the remarkable fidelity

of the reproduction, which highlights the effectiveness of the suggested cross-correlation

procedure.

Step 8. Once the cross-correlated errors have been generated, they are introduced into the

previously fitted ARMA models in order to obtain the simulated series of normalized wind

speeds for sites A and B.

Step 9. Finally, by applying the inverse transformation (3), the simulated wind speed series

preserving the main marginal and joint statistical properties of winds at both sites are built.

In Fig. 8, the cross-correlogram of the simulated wind speed series is compared with

that obtained from the historical data. The 95% confidence limits are also shown. The
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lower and upper confidence bounds of the population lag-k cross-correlation coefficient,

rlo
k and rup

k , respectively, are computed by applying the Fisher Transformation [41] to the

sample cross-correlation coefficient ρk, that is:

rlo
k = tanh

1
2

log
(
1 + ρk

1 − ρk

)
+

erfinv (β − 1)
√

2√
n − k − 3

 (15)

rup
k = tanh

1
2

log
(
1 + ρk

1 − ρk

)
− erfinv (β − 1)

√
2√

n − k − 3

 (16)

where erfinv(·) is the value of the inverse error function, n is the sample size of the available

historical data set, and β is the confidence level (equal to 0.05 in this case). Caution should

be exercised with respect to these confidence limits as they are accurate for a multivariate

normal distribution, which is not the case here. Consequently, these limits are approximate

and used in this paper just for comparative purposes. Nevertheless, extensive numerical

simulations show that the confidence bands obtained in the original space as indicated

(with random variables following Weibull distributions) are very similar to those resulting

in the transformed space (with normally distributed variates).

Note that the proposed scenario generation methodology succeeds in capturing the

shape of the sample cross-correlogram with a remarkable degree of precision, albeit some

cross-correlation coefficients fall out of the confidence limits. This is mostly due to the

irremediable inaccuracies associated with the fitting processes (both ARMA and Weibull

fits) and with the cross-correlogram reproduction task. It is also important to underline

the significant spatial correlation existing between wind speeds at sites A and B, with a

contemporaneous correlation coefficient equal to 0.8643, which, as pointed out above, is

due to the geographical proximity of both sites.

This strong correlation can be graphically observed in Fig. 9(a), where a 48-h sample

from the historical time series is depicted. Fig. 9(b) illustrates a 48-h extract from the
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simulated wind speed series. By simple inspection, one can intuitively realize that the

simulation retains the major cross-correlation properties.

Finally, in order to illustrate the ability of the proposed methodology to preserve the

marginal properties of the wind stochastic processes, Fig. 10 shows, for wind site A, a

comparison between the empirical cdf of the simulated series and the cdf of the Weibull

distribution estimated from the historical data. Their similarity is clear from this figure. So

as to complement this graphical contrast by giving simulation error values, Table 2 offers a

numerical comparison between the 5, 25, 50, 75, and 95% percentiles computed from both

the simulated and the historical wind series. The last row of this table provides the error

of the simulation relative to the sample percentile. Note that this error keeps reasonably

low.

Table 2: Percentile comparison. Wind site A

Percentile

5 25 50 75 95

Sample 1.85 3.62 5.11 6.69 9.04

Simulated 1.91 3.68 5.06 6.61 9.09

Error (%) 3.31 1.63 0.85 1.22 0.56

4.3. Case studies 2, 3 and 4

In this subsection, the results obtained for case studies 2, 3 and 4 are presented, dis-

cussed and compared. These case studies are described below:

Case study 2 tackles the modeling of wind speeds at sites A and C (see Fig. 3). The
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historical data used for this purpose are comprised between June 1 and December

31, 2007.

Case study 3 analyzes wind speeds at sites A and D (see Fig. 3). The data set employed in

this analysis includes wind speed measurements from June 1 to December 31, 2007.

Case study 4 focuses on modeling wind speeds at sites A and E (see Fig. 3). The wind

data series used in this study were collected in the time span between June 1 and

December 31, 2004.

In Fig. 11, the cross-correlograms of both the residuals derived from the ARMA fits

and the errors simulated by the proposed methodology are plotted for the three case stud-

ies. Only those correlation coefficients with a p-value smaller than a significance level

α = 0.05 are depicted. The rest of them are considered to be nil. In view of these cross-

correlograms, the following observations are in order:

1. In terms of spatial correlation, case studies 1 and 2 are very similar. They are both

characterized by cross-correlograms with a well-defined triangular shape in which

the contemporaneous correlation coefficient stands out among the rest. This simi-

larity is mainly due to the fact that distances A-B (31.05 km) and A-C (45.80 km)

are of the same order of magnitude. However, the contemporaneous correlation be-

tween wind sites A and B is a slightly greater than that between sites A and C. In

this sense, note that A is closer to B than to C.

2. As the distance between wind sites increases, the triangular structure characterizing

the cross-correlograms flattens. In fact, the cross-correlogram of sites A and E is

not a triangle, rather it can be described as a rectangle made up of a finite number of

correlation coefficients with none particularly standing out from the others.

3. The suggested technique succeeds in reproducing by simulation the sample cross-

correlograms. Moreover, in light of the results obtained from these case studies, its
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accuracy (in absolute terms) is observed to be independent of the distance between

wind sites.

Fig. 12 is analogous to Fig. 11, but considering a significance level α equal to 0.2.

Consequently, a greater number of correlation coefficients are taken into account in the

analysis. It should be noted that this increase in the significance level introduces important

modifications into the cross-correlogram of wind sites A and E, to which a notable number

of correlations coefficients, previously disregarded, are now added. Furthermore, these

new correlations are not as negligible as they are in the other case studies if compared with

the rest of coefficients composing such cross-correlogram.

In Fig. 13, the cross-correlograms of the sample and simulated wind speed series are

compared for each case study. The 95% confidence limits obtained from the historical

series are also drawn. The difference between the graphics labelled as “α = 0.05” and

those tagged as “α = 0.2”, stems from the significance level imposed on the residual

cross-correlations coefficients to be reproduced in the simulation process. Note that the

consideration of a higher significance level, or equivalently, a greater number of residual

cross-correlations coefficients, does not have a significant effect on the simulated cross-

correlograms in case studies 2 and 3 (A-C and A-D), but just slight improvements are

observed, especially for high lags. The reason for this is that the residual cross-correlation

coefficients making up the characteristic triangular structure referred to above explain al-

most completely the spatial interrelations between the wind sites defining these two case

studies. In contrast, the impact of the considered significance level on the simulated cross-

correlogram of case study 3 (A-E) is much more remarkable. In this respect, it should be

noted that, for α = 0.05, the simulated cross-correlogram is far from falling within the

95% confidence limits, as opposed to what happens if α = 0.2. In this case, the residual

cross correlations that are disregarded if the significance level is reduced from 0.2 to 0.05
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are important in relative terms, that is, in comparison with the magnitude of the rest of

coefficients.

Concerning computational issues, all the simulations have been carried out using Mat-

lab 7.0 on an Intel Core Duo, 1.83 GHz and 1 GB of RAM. CPU time required to generate

1000 wind speed scenarios covering 1 day (24 hourly periods) is around 3 minutes for all

the considered case studies and their variants (α = 0.05 or α = 0.2). If the number of

hourly periods is increased up to 2200 (i.e., wind speed scenarios spanning three months

approximately), the CPU time keeps below 7 minutes in all cases.

In short, the results presented in these four case studies allow us to conclude that the

proposed wind scenario generation procedure performs satisfactorily in:

1. Reproducing the marginal distribution of the stochastic process modeling wind speed

at each site (Fig. 10 and Table 2).

2. Capturing the dynamic relationships in time series data by means of the appropriate

fit of ARMA models (Table 1).

3. Preserving the main cross-correlations among the stochastic processes representing

wind speed at different locations (Figs. 7–9, 11–13).

5. Conclusions

This paper proposes a procedure to produce a set of plausible scenarios characterizing

the uncertainty associated with wind speed at different geographic sites. This character-

ization constitutes an essential part within the decision-making processes faced by both

power system operators and producers with a generation portfolio including wind plants

at several locations.

The uncertainty characterization achieved through this methodology is such that the

generated scenario sets retain the main statistical properties of the wind speed stochastic
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processes involved, namely:

1. The marginal distribution associated with each wind speed stochastic process.

2. The autocorrelations characterizing each wind speed stochastic process as a time

series (temporal correlations).

3. The predominant cross-correlations among the wind speed stochastic processes (spa-

tial correlations).

Comprehensive simulations carried out for different case studies show the effectiveness

of the proposed methodology in generating statistically consistent wind scenario sets to be

used within a stochastic programming framework.

Scenarios generated by the proposed technique are most useful for both operations and

planning studies involving wind power plants. Operations applications include offering al-

gorithms for wind producers, market-clearing procedures for market operators in systems

with a high penetration of wind power, etc.; planning applications include siting and tim-

ing of wind facilities, transmission expansion in systems with a high penetration of wind

power, etc. The limitations of the technique proposed are mostly related to the size of the

problems for which scenarios are generated, because the number of considered scenarios

should not lead to problem intractability.
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Figure 2: Flow diagram of the algorithm.
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Figure 3: Schematic geographical distribution of wind sites and distances among them.
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Figure 4: Wind speed frequency distribution for site A and the pdf of the Weibull fit.
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Figure 5: Normality plot of the transformed data for site A.
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Figure 6: Cross-correlogram of the residuals obtained after the ARMA fit.
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(a) Sample
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(b) Simulated

Figure 7: Cross-correlograms of errors with a significance level α= 0.05.
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Figure 8: Comparison between sample and simulated cross-correlograms.
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Figure 9: A 48-h extract from the historical and simulated wind speed series at sites A and B.
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Figure 10: Comparison between fitted and simulated cumulative probability functions. Wind site A.
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(a) Sample
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(b) Simulated
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(c) Sample
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(d) Simulated
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(e) Sample
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(f) Simulated

Figure 11: Cross-correlograms of errors with α = 0.05
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(a) Sample

−20 −10 0 10 20
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Lag (hours)

C
or

re
la

tio
n 

co
ef

fic
ie

nt

(b) Simulated

Sites A and D

−20 −10 0 10 20
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Lag (hours)

C
or

re
la

tio
n 

co
ef

fic
ie

nt

(c) Sample

−20 −10 0 10 20
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Lag (hours)

C
or

re
la

tio
n 

co
ef

fic
ie

nt

(d) Simulated
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(e) Sample
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(f) Simulated

Figure 12: Cross-correlograms of errors with α = 0.2.
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(a) α = 0.05
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(b) α = 0.2
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(c) α = 0.05
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(d) α = 0.2
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(e) α = 0.05
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(f) α = 0.2

Figure 13: Comparison between sample and simulated cross-correlograms.
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