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Abstract

This paper proposes a probabilistic power flow model that takes into

account spatially correlated power sources and loads. It is particularly

appropriate to assess the impact of intermittent generators, such as

wind power ones, on a power network. The proposed model is solved

using an extended point estimate method that accounts for dependen-

cies among the input random variables, i.e., loads and power sources.

The proposed probabilistic power flow model is illustrated through a

24-bus case study. Finally, conclusions are duly drawn.
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1 Introduction

1.1 Motivation and problem description

The probabilistic power flow (PPF) is an efficacious tool to assess the per-

formance of a power network over most of its working conditions, [1, 2].

Using appropriate descriptions of the input random variables, i.e., active

and reactive power demand distribution functions at load buses and, active

and reactive power generation distribution functions at generation buses, it is

possible to characterize the distribution functions of output random variables

such as voltage magnitudes, line flows, etc. The PPF is a relevant planning

tool as it allows assessing network functioning over a variety of working con-

ditions in a computationally efficient manner. It is widely used for network

planning studies.

Demands and generation sources are considered generally independent

from a statistical viewpoint, which results in simple algorithms to solve the

PPF. However, demands at different locations throughout a power network

are statistically dependent and non-dispatchable sources are dependent too.

Renewable sources, which are essentially intermittent and random, are

increasingly relevant in the operation of current electric energy systems, [3,4].

Moreover, these sources are spatially correlated within a given geographical

area in a very significant manner, as they are influenced often by the same

physical phenomena, e.g., wind levels, [5].

Thus, there is a clear need to enhance current PPF solution algorithms to
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include an appropriate treatment of the dependencies of the input variables.

This need motivates the work reported in this paper.

1.2 Procedure

We focus on two types of dependent input variables for the PPF. On the one

hand, loads, whose correlations are explicitly considered in the methodology

proposed. On the other hand, wind power sources, whose spatial correla-

tions are also explicitly taken into account. For the sake of simplicity, other

intermittent sources, such as PV plants, are not explicitly considered. Simi-

larly, the availability of conventional production units, such as thermal power

plants, is neither modeled. However, note that the uncertainty models per-

taining to these sources can be easily incorporated into the methodology

proposed in this paper.

We propose a solution technique for the PPF based on an extended point-

estimate method. The traditional point-estimate method is extended to

consider dependencies among the input random variables. Dependencies

are taken into account using suitable linear transformations. Particularly,

an orthogonal transformation, which is computationally efficient, is used to

transform the set of dependent input random variables into a set of inde-

pendent ones, which can be processed readily via point-estimate methods.

Obtained results are then transformed back to the original space. In a gen-

eral mathematical framework, the use of an orthogonal transformation to

deal with correlated random variables via point estimates was first proposed

by Harr [6].
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Table 1: Methodologies to solve the PPF

Methodologies
Analytical Approximate Heuristic Monte Carlo

methods techniques procedures simulation

Examples FFT, CM FOSMM, PEMs Fuzzy logic —

References [8], [9–11] [12] [13] [14, 15]

FFT: Fast Fourier Transform; CM: Cumulant Method; FOSMM: First-Order Second-

Moment Method; PEMs: Point-Estimate Methods

The proposed technique is validated by comparing it with a cumber-

some Monte Carlo procedure, which is fed with statistically dependent sam-

ples. The generation of such samples is not straightforward and constitutes a

spinoff contribution of this paper. A method to produce correlated samples

from a set of normally distributed random variables modeling load uncertain-

ties in power systems can be found in [7]. Nonetheless, in this paper such a

method is extended to make it applicable to a much broader set of marginal

distributions apart from the Gaussian one.

1.3 Literature review

The probabilistic power flow problem was first introduced by Borkowska in

1974, [1]. Since then, a number of different methodologies have been proposed

in the technical literature to solve it in an efficient and accurate manner.

Broadly speaking, these methodologies can be classified into the four groups

listed in Table 1.

Point-estimate methods [6,16–19] fit into the family of approximate tech-

niques. Su [20] was the first to tackle the probabilistic power flow problem by

applying a point-estimate method. Specifically, he used the 2m scheme de-
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veloped by Hong in [18]. Subsequently, Morales and Pérez-Ruiz [21] pointed

out the inadequate performance exhibited by this method if the number of

input random variables is large, and advocated the use of an alternative 2m+

1 scheme to overcome such a limitation. However, both Su [20] and Morales

and Pérez-Ruiz [21] sidestepped the problem of how to deal with correlated

input variables, a gap that this paper is intended to fill.

1.4 Contributions

The contributions of this paper are fourfold:

1. To formulate and characterize a probabilistic power flow considering

statistical dependencies among its input random variables, i.e., power

sources and loads.

2. To exhaustively describe an algorithm enabling the application of point-

estimate methods to solve the problem in point 1) above.

3. To provide a generalized procedure for the generation of the statistically

dependent samples from input random variables required to solve the

problem in point 1) via Monte Carlo Simulation.

4. To compare comprehensively the solution methods in points 2) and 3).

1.5 Paper organization

The rest of this paper is organized as follows. Section 2 reviews the PPF,

including how to solve it via point-estimate methods. Section 3 develops a
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modeling framework to address dependencies affecting the input variables of a

PPF, and provides an extended point-estimate technique to solve a PPF with

dependent input variables. Additionally, a Monte Carlo simulation procedure

is described along with a technique to generate dependent samples to feed

the corresponding Monte Carlo algorithm. Results from two case studies,

based on the IEEE 24-bus and IEEE 118-bus test systems, are presented in

Sections 4 and 5, respectively. Section 6 concludes the paper providing some

relevant conclusions.

2 Probabilistic power flow

2.1 Overview

The power flow problem consists in determining the steady-state operating

conditions of a power system. In more detail, given the load demanded at

consumption buses and the power supplied by generating units, the aim is

to obtain the voltages (magnitude and angle) at all system nodes and the

active and reactive power flowing through every network branch.

Mathematically, the power flow problem can be represented as a vectorial

function where the vector of input variables consists of the power injection

at every bus except the slack and the vector of output variables z is made

up of all bus voltages (except the voltage at the slack node) and all complex

power flows. In fact, from a broader perspective, the power flow solution

z is contingent on every factor able to modify the steady-state operating

condition of the power system, namely, network topology and generation
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and load values. If we denote the set of such factors by p, then we can state

that z = F (p).

The notion of probabilistic power flow comes up from the consideration

of the uncertainty intrinsic to the knowledge of the input vector p. This

uncertainty is transferred to the solution vector z through the vector func-

tion F (·). To deal with the variable and uncertain nature of p, both the

input vector p itself and the solution vector z are treated as vectors of ran-

dom variables. As a result, the aim of a probabilistic power flow analysis

is to characterize the random behavior of the solution z from the statistical

information on p that is at the analyst’s disposal.

2.2 Solution method

In order to solve the probabilistic power flow problem, we use the 2m + 1

point-estimate method developed in [18]. This method shows an appropriate

performance in the comprehensive comparison carried out in [21].

The aim of any point-estimate method is to compute the moments of each

random variable zi that is function Fi of m input random variables, i.e.,

zi = Fi(p1, p2, . . . , pm). (1)

For this purpose, just commonly available information on the random behav-

ior of input variables pl, l = 1, . . . , m, is required, in particular, their first few

statistical moments. This feature turns point-estimate methods into useful

tools for statistical analysis in applications where an accurate characteriza-

tion of the input random variables is arduous.
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The 2m + 1 point-estimate method used in this paper concentrates the

statistical information provided by the first four central moments of each

input random variable pl, namely, its mean, variance, and coefficients of

skewness and kurtosis, into three points often referred to as concentrations.

More precisely, each point or concentration is a pair (pl,k, wl,k), k = 1, 2, 3,

made up of a location pl,k at which function Fi(·) is to be evaluated and a

weighting factor wl,k measuring the impact of this evaluation on the random

behavior of output variable zi.

2.2.1 Locations and weights

According to the 2m+ 1 concentration scheme, each input random variable

pl gives rise to three locations pl,k, with k = 1, 2 and 3, expressed as:

pl,k = µpl + ξl,kσpl, k = 1, 2, 3, (2)

where ξl,k is the standard location, and µpl and σpl (input data) are the mean

and standard deviation of pl. Standard locations ξl,k are given by, [18, 20]:

ξl,k =
λpl,3

2
+ (−1)3−k

√

λpl,4 −
3

4
λ2

pl,3
, k = 1, 2, (3)

ξl,3 = 0. (4)

Input parameters λpl,3 and λpl,4 are, respectively, the third and fourth stan-

dardized central moments of pl, also known as coefficients of skewness and

kurtosis.

Each location pl,k is coupled with a weighting factor wl,k computed as,
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[18, 20]:

wl,k =
(−1)3−k

ξl,k (ξl,1 − ξl,2)
, k = 1, 2, (5)

wl,3 =
1

m
−

1

λpl,4 − λ2

pl,3

, (6)

with m being the number of input random variables involved.

2.2.2 Estimation of means and standard deviations

For each concentration (pl,k, wl,k), function F (·) is evaluated at the point

consisting of the location pl,k and the means of the m − 1 remaining input

variables. If we denote the solution vector of such an evaluation as Z(l, k),

then its i-th component is calculated as follows:

Zi(l, k) = Fi(µp1, . . . , µpl−1
, pl,k, µpl+1

, . . . , µpm)

= Fi(µp1, . . . , µpl−1
, µpl + ξl,kσpl, µpl+1

, . . . , µpm),

l = 1, 2, . . . , m, k = 1, 2, 3. (7)

By using weighting factors wl,k and Zi(l, k) values, the j-th raw moment of

the output random variable zi can be estimated as, [18, 20]:

E[zji ] ≈

m
∑

l=1

3
∑

k=1

wl,k(Zi(l, k))
j, (8)

where E[·] stands for the expectation operator. Therefore, approximations

of the mean and the standard deviation of zi, denoted by µzi and σzi , respec-
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tively, can be easily obtained from (8) as follows:

µzi =E[zi] ≈

m
∑

l=1

3
∑

k=1

wl,k Zi(l, k), (9)

E[z2i ] ≈

m
∑

l=1

3
∑

k=1

wl,k (Zi(l, k))
2
, (10)

σzi =

√

E[z2i ]− (E[zi])
2 =

√

E[z2i ]− µ2
zi
. (11)

Note that the number of evaluations of function F (·) to be performed

is equal to 3m. However, it can be inferred from expression (4) that the

third location of every input random variable pl coincides with its mean, i.e.,

pl,3 = µpl, because ξl,3 = 0. As a result, m of these 3m evaluations are to

be carried out at the same point (µp1, µp2, . . . , µpl, . . . , µpm). Being so, it is

possible, and computationally advantageous, to run just one evaluation of

F (·) at that point as long as the associated weight is updated to the value

w0 given by:

w0 =

m
∑

l=1

wl,3 = 1−

m
∑

l=1

1

λpl,4 − λ2

pl,3

. (12)

This is the reason why this concentration scheme is referred to as 2m+1

point-estimate method despite the fact that it actually makes use of three

points per input variable.

We refer the reader to references [18] and [21] for a complete review on

Hong’s point-estimate methods. Likewise, references [20] and [21] provide a

detailed description of the algorithm to be run for the application of these

methods.
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2.3 Monte Carlo method

The Monte Carlo method is a well-known computational technique to charac-

terize the random behavior of a physical system by simulating the uncertain

nature of its inputs. This technique has been used in the technical literature

to solve the probabilistic power flow problem (see, for instance, [15]). Since

the underlying algorithm is based on a repeated random sampling, the as-

sociated computational burden is usually high. In this sense, point-estimate

methods constitute a much more efficient solution approach, [20, 21].

In this paper, the Monte-Carlo method fed with statistically dependent

samples is employed as a benchmark to test and validate the results provided

by the 2m+ 1 point-estimate scheme.

2.4 Uncertainty characterization

In this paper, two sources of uncertainty are considered, namely, the wind

power production and the power consumed at load buses. For the sake of

simplicity, we focus the power flow analysis on those variables susceptible

of being strongly dependent, and consequently, we treat conventional gen-

eration plants (e.g., thermal units) as deterministic. The incorporation of

generation forced outages into the PPF problem is straightforward under a

point-estimate or Monte Carlo approach (see, e.g., [21]).

The amount and quality of the statistical information required to charac-

terize these sources of uncertainty is different depending on the method, point

estimate or Monte Carlo, used to tackle a probabilistic power flow analysis.
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In this respect, point-estimate techniques solely require the first few statisti-

cal moments of the input random variables. Specifically, the 2m+ 1 scheme

just needs the means, standard deviations, and skewness and kurtosis coef-

ficients of such variables. These parameters are generally easy to estimate

accurately from historical records. In contrast, the application of the Monte

Carlo method necessitates the knowledge of the whole probability distribu-

tions of input variables, information that, at least, is hard to get in a precise

manner.

In order to use the Monte Carlo technique as a benchmark, we generate

samples from Weibull distributions modeling wind speed uncertainty at wind

farms, which are subsequently converted into power production by using the

power curve of the considered turbine model. This transformation is valid

on the assumption that the characteristics of the wind are the same all over

the wind plant at each instant. In addition, we also assume that all the

turbines comprising wind farms are available. Note that we need to resort to

these assumptions due to the lack of public data on the power production of

particular wind farms. On the other hand, Normal distributions are used to

simulate the active and reactive power consumed at load buses as in [20,21].

3 Managing spatial correlations

An appropriate modeling of the wind power generation requires recogniz-

ing the likely spatial correlation existing among wind sites. This correla-

tion can have a significant impact on the reliability and security of power

systems [22, 23], an impact that a probabilistic power flow analysis should
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reflect. Likewise, correlation among loads in power systems is apparent and

needs to be taken into account. For this purpose, an enhanced 2m+1 point-

estimate method capable of managing the spatial correlations among loads

and among intermittent sources is introduced in this paper. This improve-

ment is achieved through an orthogonal (rotational) transformation that al-

lows us to convert the set of correlated input variables into an uncorrelated

one. Equations (2)–(6) are then applied to this uncorrelated set of input vari-

ables, thus obtaining the transformed concentrations. Finally, these concen-

trations are untransformed, and from this point on, the rest of the algorithm

runs conventionally as described in [21]. The above process is described in

detail below.

3.1 Orthogonal transformation

Let us consider m random variables:

p =
(

p1 · · · pm
)T

,

with a mean vector µp:

µp =
(

µ1 · · · µm

)T
,

and a variance-covariance matrix Cp:

Cp =











σ2

p1
σp1p2 · · · σp1pm

σp2p1 σ2

p2
· · · σp2pm

...
...

. . .
...

σpmp1 σpmp2 · · · σ2

pm











.

Superscript T denotes the transpose of a matrix.
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In addition, input variables p are further characterized by a matrix of

skewness coefficients λ3:

λ3 = diag
(

λp1,3 · · · λpl,3 · · · λpm,3

)

and a matrix of kurtosis coefficients λ4:

λ4 = diag
(

λp1,4 · · · λpl,4 · · · λpm,4

)

,

where diag stands for the operator that yields a diagonal matrix of the ele-

ments specified in brackets. Therefore, the non-diagonal elements of matrices

λ3 and λ4 are assumed to be nil, or equivalently, the crossed moments of an

order higher than two are disregarded.

Matrix Cp is symmetric by definition. As a result, there always exists

a matrix B of an orthogonal transformation through which the set p of

correlated variables can be transformed into a new set q of uncorrelated ones

as follows:

q = Bp. (13)

According to this transformation, the variance-covariance matrix Cq of the

new set q of input variables is equal to the m-dimensional identity matrix I.

In most engineering applications, matrix Cp, besides being symmetric, is

also positive definite, and as such, can be decomposed through the computa-

tionally advantageous Cholesky decomposition, which avoids the calculation

of eigenvalues and eigenvectors. The Cholesky decomposition can be stated

as

Cp = LLT , (14)
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where L is an inferior triangular matrix whose inverse turns out to be the

orthogonal matrix B required for transformation (13), i.e., B = L−1, as

shown below.

The variance-covariance matrix Cq can be computed as

Cq = cov
(

q, qT
)

= cov(Bp,pTBT )

= B cov(p,pT )BT = BCpB
T = I, (15)

where cov(·, ·) stands for the covariance operator.

By using the Cholesky decomposition (14), equation (15) yields:

Cq =
(

BL
)(

LTBT
)

=
(

BL
)(

BL
)T

= I ⇒ B = L−1.

On the other hand, the transformed vector q satisfies the following prop-

erties:

1. It has a mean vector µq computed as:

µq = L−1µp. (16)

2. It has a variance-covariance matrix Cq equal to the identity matrix:

Cq = L−1Cp(L
−1)T = I. (17)

3. It can be easily shown that the coefficients of skewness and kurtosis

of its component variables ql are given by equations (18) and (19),

respectively, under the assumption that the crossed moments of an

order higher than two are zero.

λql,3 =
m
∑

r=1

(

L−1

lr

)3

λpr,3 σ
3

pr
, (18)
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λql,4 =
m
∑

r=1

(

L−1

lr

)4

λpr,4 σ
4

pr
. (19)

Scalar Llr represents the element located at the l-th row and r-th col-

umn of the matrix L resulting from the Cholesky decomposition (14).

3.2 Point-estimate for correlated input variables

The algorithm to solve the probabilistic power flow problem with correlated

input variables by means of the 2m+ 1 point-estimate method is as follows:

1. Given the variance-covariance matrixCp of the input random variables,

obtain the matrix B of the orthogonal transformation (13) by using the

Cholesky decomposition (14).

2. Transform the first four central moments of the input variables as stated

in equations (16)–(19).

3. Compute the concentrations (ql,k, wl,k) defining the 2m + 1 scheme in

the transformed space according to equations (2)–(6).

4. Construct the 2m+1 transformed points in the form (µq1, . . . , ql,k, . . . , µqm).

5. Take the points defined in step 4 above to the original space by applying

the inverse transformation of (13), i.e., p = B−1 q.

6. Solve a deterministic power flow problem for each one of the points

resulting from step 5). This steps yields the solution vectors Z(l, k).

7. Estimate the means and standard deviations of output random vari-

ables zi as expressed in (9) and (11).
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3.3 The Monte Carlo method for correlated input vari-

ables

Dealing with correlated input variables in the Monte Carlo method entails

the generation of vectors of random numbers preserving both the correlation

and the marginal distributions of such variables. To this end, we propose

a procedure based on a normal transformation through which these vectors

of random numbers are obtained from samples of correlated standard nor-

mal distributions. The crux of the matter lies then in the determination

of the correlation matrix characterizing these standard normal distributions.

We provide below the theoretical guidelines required to build the suggested

procedure.

We can standardize the vector of input random variables p as follows:

p′ = D
−

1

2

p (p− µp),

where Dp = diag(σ2

p1
, . . . , σ2

pm
). In consequence, the new set p′ of input

variables has a zero mean vector and a variance-covariance matrix Cp′ :

Cp′ =











1 ρ12 · · · ρ1m
ρ21 1 · · · ρ2m
...

...
. . .

...
ρm1 ρm2 · · · 1











,

with −1 ≤ ρlr ≤ 1, l = 1, . . . , m, and r = 1, . . . , m. Matrix Cp′ is also known

as the correlation coefficient matrix of the original set of input variables p,

and as such, is renamed as Rp hereinafter, i.e., Rp = Cp′. In the context

of this paper, the non-diagonal elements ρlr (l 6= r) of matrix Rp constitute

a non-dimensional measure of the spatial interrelations existing among wind

sites or among loads.



Submitted to IET, January 22, 2010 18

Let us consider next a series of standard normal variables y =(y1, . . .,

yl, . . ., ym) obtained by marginal transformations of the original set of input

variables p = (p1, . . . , pl, . . . , pm):

yl = Φ−1 [Hpl(pl)] , (20)

where Hpl is the cumulative distribution function (CDF) of the input variable

pl and Φ(·) is the cumulative distribution function of the standard normal

random variable (with zero mean and unit standard deviation). The aim is

to create samples of p from samples of y by reverting the normal transfor-

mation (20), i.e.:

pl = H−1

pl
[Φ(yl)] . (21)

The m-dimensional normal vector y is characterized by a correlation coeffi-

cient matrix Ry with the following structure:

Ry =











1 ρ′
12

· · · ρ′
1m

ρ′
21

1 · · · ρ′
2m

...
...

. . .
...

ρ′m1
ρ′m2

· · · 1











.

It is possible to establish a multiplicative factor G relating each correlation

coefficient ρ′lr in Ry to its corresponding counterpart ρlr in Rp, i.e.:

ρ′lr = G(ρlr) ρlr. (22)

In fact, factor G(·) is a function of the correlation coefficient ρlr itself, the

type of probability distributions associated with the correlated variables pl

and pr, and the parameters determining such distributions. Reference [24]

provides mathematical expressions to compute the value of G for a number

of probability distributions.
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Note that Ry and Rp are the two sides of the same coin, i.e., Ry is

the transform of Rp through (20), and conversely, Rp is the transform of

Ry by (21). This means that every sample of standard normal distributions

correlated according to Ry is transformed into a sample of p by using (21).

Therefore, once the correlation matrix Ry has been obtained by applying the

transform (22) to the elements ρlr of the input matrix Rp, the problem boils

down to generating samples from a set of m standard normal variables that

are precisely correlated in accordance with Ry. However, this is a simple

task to accomplish by means of the orthogonal transformation studied in

Section 3.1. Specifically, we can use this transformation to produce such

samples from a vector w of independent standard normal variables.

Therefore, the algorithm to solve the probabilistic power flow problem

with correlated input variables via the Monte Carlo method is as follows:

1. Given the marginal distributions of input variables pl and their associ-

ated correlation matrix Rp, build matrix Ry by using (22). The value

of G for each conversion ρlr → ρ′lr can be obtained from the expres-

sions provided in [24]. In particular, if pl and pr follow both Weibull

distributions, factor G is given by:

G =1.063− 0.004ρlr − 0.200(γl + γr)− 0.001ρ2lr + 0.337(γ2

l + γ2

r )

+0.007ρlr(γl + γr)− 0.007γlγr, (23)

where γl and γr are, respectively, the coefficients of variation of pl and

pr, i.e., γl =
σpl

µpl

and γr =
σpr

µpr
. According to [24], the maximum error

incurred by using expression (23) above is below 2.6% with respect to
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the exact conversion provided that 0.1 ≤ γl, γr ≤ 0.5.

If pl and pr are normally distributed, the value of G is equal to 1.

2. Apply the Cholesky decomposition toRy in order to obtain an orthogo-

nal matrix B such that w = By, with w being a vector of independent

standard normal variables.

3. Generate a sample ws = (w1,s, . . . , wl,s, . . . , wm,s) of independent stan-

dard normal variables. This is a common function included in most

commercially available software for statistical analysis.

4. Correlate, according to Ry, the sample ws produced in step 3) above

by reversing the orthogonal transformation, that is: ys = B−1ws.

5. Apply transformation (21) to ys so as to finally obtain the sample

ps of the original vector p of correlated input variables. This step is

graphically represented by the bold path in Fig. 1 and is mathematically

expressed as:

pl,s = H−1

pl
[Φ(yl,s)] .

As indicated by the direction of the arrows in this figure, the cumulative

probability of the standard normal sample yl,s is first computed. The

inverse cumulative distribution function of input variable pl is then

evaluated for this probability, thus obtaining the target sample pl,s.

6. Solve a deterministic power flow problem for the sample vector ps ob-

tained in 5).

7. Repeat steps 3)-6) until a sufficient number NS of simulations (s =

1, 2, . . . , NS) is performed.
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Figure 1: Graphical representation of the marginal transformation (21).

8. Compute means, standard deviations and any other statistical infor-

mation of interest.

4 24-bus case study

Results from a test case based on the IEEE 24-bus Reliability Test System

[25] are presented in this section. This system consists of 24 buses, 38 lines,

32 generating units, and 17 loads. The active power consumed by each

load is assumed to be normally distributed with means equal to the values

provided in Table 5 of [25], and standard deviations of 5 % with respect to

such mean values (i.e., with coefficients of variation, CV, equal to 5%). The

reactive power consumption of each load is such that its power factor is kept

constant. Load power factors can be also computed from the bus load data

provided in the aforementioned table.

We distinguish two regions in the 24-bus system, namely, the northern
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region, which is made of nodes 1–10, and the southern one, comprising buses

11–24. Loads situated within the same area are correlated with a correlation

coefficient of 0.9. This correlation drops up to 0.5 for loads in different

regions.

Two 299-MW wind farms having 130 2.3-MW commercial wind genera-

tors each (model Nordex N90/230 with a hub height of 80 m) are located

at bus 7. The same Weibull distribution, with scale and shape parameters,

α and β, equal to 9 and 2.025, respectively, is used to model wind speed at

both sites. Both wind farms are correlated with a correlation coefficient of

0.9. The power curve of the considered turbine model can be found in the

manufacturer data base and is provided in [26].

For the sake of simplicity and without loss of generality, we assume that

wind plants and loads are uncorrelated.

The characteristics listed above for the 24-bus case study apply integrally

hereinafter, unless explicitly stated otherwise.

4.1 Performance appraisal

The accuracy and efficiency of the proposed point-estimate methodology to

handle correlated input variables is assessed by comparing the obtained re-

sults with those provided by the Monte Carlo method with 15,000 samples.

This number of samples is sufficiently high to yield estimates for means and

standard deviations with a degree of precision (coefficient of variation of es-

timates expressed in percentage) below 0.9 and 1.3 %, respectively.
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Table 2: Average relative errors (%). 24-bus case study. CV = 5%

Vi δi Pi Qi Pi−j Qi−j

ε̄µ 0.0024 0.3218 0.0085 0.1806 0.2650 0.2267

ε̄σ 2.0023 0.5652 0.0274 3.9465 0.4056 1.6057

In order to offer a general and concise overview of the conclusions drawn

from the comparison, we present the average relative errors [21] for means

(ε̄µ) and standard deviations (ε̄σ) computed in terms of percentages of the

solution values obtained from the Monte Carlo simulation. Table 2 provides

the values of these errors associated with the estimates of voltages (Vi), angles

(δi), active power injections (Pi), reactive power injections (Qi), active power

flows (Pi−j) and reactive power flows (Qi−j). It should be noted that all these

errors are smaller than 4 %, which highlights the good performance of the

proposed point-estimate methodology. Note also that the average relative

errors associated with the estimation of standard deviations are greater than

those corresponding to the means, which is in accordance with the common

behavior of point-estimate methods, whose accuracy worsens as the order of

the estimated statistical moment becomes higher.

On the other hand, the CPU times required by the point-estimate method

and the Monte Carlo simulation to compute the means and standard devi-

ations of output variables are 0.46 and 164.61 seconds, respectively. That

is, the Monte Carlo method takes about 350 times longer than the proposed

point-estimate algorithm. Therefore, we confirm the common conclusion that

the point-estimate methodology is computationally much more efficient than

the Monte Carlo technique. Both methods have been implemented in MAT-
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Table 3: Average relative errors (%). 24-bus case study. CV = 10%

Vi δi Pi Qi Pi−j Qi−j

ε̄µ 0.0061 1.1555 0.8375 0.5915 0.3958 0.6917

ε̄σ 2.1428 1.3095 1.1815 4.1724 0.4553 6.5194

LAB on a Intel Pentium 1.60-GHz PC with 1 GB RAM. MATPOWER [27]

has been employed to solve the deterministic power flow problems.

In order to appraise the impact of the uncertainty level on the perfor-

mance of the proposed PEM, Table 3 provides the estimation errors in average

and relative terms for a coefficient of variation of loads equal to 10%. From

the comparison between Tables 2 and 3, it can be inferred that the uncer-

tainty level involved in the probabilistic power flow problem has a detrimental

effect on the accuracy of the estimates yielded by the proposed solution algo-

rithm, which is, on the other hand, in line with the general results reported

in the technical literature in this respect. Note that if the coefficients of vari-

ation of loads are doubled from 5% to 10%, the maximum average relative

error increases from 3.95 to 6.52%, approximately.

Fig. 2 illustrates the standard deviation of the active power flow through

line 7-8 estimated with both the proposed point-estimate method and the

Monte Carlo simulation as a function of the correlation coefficient between

wind farms. The 95 % confidence limits for the standard deviation estimator

provided by the Monte Carlo simulation are also depicted. The active power

flow in this line is the output variable on which correlation between wind

farms impacts the most. In this sense, note that if such a correlation is in-

creased from 0.02 to 0.93 the standard deviation of this flow grows from 158.4
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Figure 2: Correlation effect on the standard deviation of active power flow
through line 7-8

to 217.8, which means a 37.5% of increase. On the other hand, observe that

the Monte Carlo method exhibits an oscillatory behavior, which is inherent

to this simulation process. As the number of samples used in the simulation

increases, the amplitude of oscillations diminishes. Aside from this undesir-

able, but expected fluctuating behavior of the Monte Carlo method, what is

actually important in Fig. 2 is that the point-estimate solution falls within

the 95 % confidence interval associated with the standard deviation estimator

provided by the Monte Carlo simulation. Therefore, statistically speaking,

we can state that the solutions provided by both techniques are the same

with a 95 % confidence level, albeit, in practice, the behavior of the standard

deviation yielded by the point-estimate method as the correlation coefficient

increases is smooth and non-oscillatory, and as such, more convenient.

For the reasons above, just the results obtained from the proposed point-

estimate technique are shown henceforth.



Submitted to IET, January 22, 2010 26

4.2 Impact of wind site correlations

Next, we present some results to illustrate how the correlation level between

wind farms has a remarkable influence on system conditions. In order to

offer a general overview of such influence, we define two indices, namely, the

Voltage Profile Variability (VPV) and the Transmission System Available

Margin (TSAM):

VPV(%) =

NB
∑

i=1

(1− Vi)
2
·

1

NB

· 100 (24)

TSAM(%) =

NL
∑

k=1

Smax

k − Sk

Smax

k

·
1

NL

· 100 (25)

where NB, NL, Sk, and Smax

k are, respectively, the number of system buses,

the number of transmission lines, the apparent power flow magnitude in line

k, and the transmission capacity limit of line k.

The VPV measures how far the bus voltages are from the flat profile, while

the TSAM quantifies the room available in the network to accommodate

additional power injections.

In Figs. 3 and 4, the evolution of the standard deviations of indices VPV

and TSAM are represented, respectively, as the correlation coefficient be-

tween wind sites increases. We should point out that, for a correlation coef-

ficient between 0.10 and 0.17, the standard deviation of the VPV is so small

that Equations (9)-(11) yield a non-real number for the estimate of this pa-

rameter due to the estimation errors associated with the proposed PEM.

In such cases, the estimated value of the standard deviation of the VPV is

considered to be zero.
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The standard deviations can be seen as a measure of the uncertainty

level affecting the power system, and therefore, the smaller they are, the

better. Means are barely impacted by wind site correlation, with a maximum

variation below 0.05 %. On the contrary, the standard deviations of VPV

and TSAM are significantly affected by wind site correlation. Observe the

marked rise undergone by the standard deviations of VPV and TSAM as the

correlation coefficient approaches 1. In numbers, if the correlation coefficient

is augmented from 0.02 to 0.93, the standard deviations of the VPV and the

TSAM grow from 3.7 × 10−4 to 0.014 and from 0.91 to 2.56, respectively,

which translates into relative increases of 3684% and 181%, in that order.

In general, lower/higher correlations among wind sites translate into a

lower/higher variability of the total wind power injected into the network.

5 118-bus case study

In this section, the probabilistic power flow problem is solved for the IEEE

118-bus test system [28] with the only purpose of assessing how an increase

in the number of uncertain variables affects the performance of the proposed

PEM. This system comprises 186 transmission lines, 54 generating units, and

99 loads. We distinguish four areas covering nodes 1-31, 32-58, 59-92, and

94-118. The active power consumed by each load is modeled as a normally

distributed random variable with a mean equal to the value provided in [28]

and a coefficient of variation of 5%. As in the 24-bus case study above, the

reactive power consumption of each load is such that its power factor is kept

constant. Moreover, loads are correlated with a correlation coefficient equal
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to 0.9 if they are placed within the same area, and equal to 0.5 otherwise.

For comparative purposes, wind speed uncertainty is described by the

same Weibull distribution used in the previous 24-bus case study, irrespec-

tive of the wind farm location. Likewise, the same wind turbine model is

considered.

Two variants of the 118-bus case study are examined, namely:

Variant 1: Two 483-MW wind farms are located at node 59, with a corre-

lation coefficient of 0.9.

Variant 2: Six 161-MW wind farms are connected in pairs to nodes 59, 90,

and 116. The correlation coefficient between two wind farms is equal

to 0.9 if they are located at the same node, and 0.5 otherwise.

It should be pointed out that, in these two variants, the wind power

penetration level is kept around the 20% of the average total system demand,

which represents a percentage similar to that considered in the 24-bus case

study.

Table 5 shows the average relative errors of the mean and standard devi-

ation estimates provided by the proposed PEM. In this case, 50,000 samples

for the Monte Carlo simulation are used in order to guarantee stable results.

Note that these errors are of the same order of magnitude as those figuring

in Table 2 for the 24-bus case study. Therefore, the number of uncertain

input variables does not have, by itself, a clear impact on the performance of

the extended 2m+1 PEM, which is in accordance with the results provided
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Table 4: Average relative errors (%). 118-bus case study

Vi δi Pi Qi Pi−j Qi−j

Variant 1
ε̄µ 0.0001 0.1130 0.0008 0.3599 0.3278 0.1845

ε̄σ 1.5084 0.4160 3.6607 1.5329 0.4056 0.7563

Variant 2
ε̄µ 0.0001 0.1120 0.0033 0.3832 0.3568 0.1823

ε̄σ 1.9543 0.6113 3.6739 1.4668 0.6636 1.9598

in [21]. Notwithstanding this, observe that the estimations errors pertaining

to the variant 2 of the 118-bus case study, characterized by a higher num-

ber of wind farms, are, in general, greater than those of variant 1. This is

mainly due to the discrete nature of the power generated by a wind plant.

Consequently, the growth of the number of wind farms does have a nega-

tive, although small, effect on the accuracy of the estimates yielded by the

considered PEM.

6 Conclusions

This paper considers a probabilistic power flow and models loads and wind

sources as correlated random variables. If a point-estimate method is used,

the consideration of these dependencies requires a significantly modified so-

lution algorithm. If, on the other hand, a Monte Carlo simulation procedure

is used, an algorithm needs to be devised to generate properly correlated

samples. This paper provides both a point-estimate solution algorithm that

allows treating correlated random variables and an algorithm to generate

correlated samples.
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Results from simulations allow deriving the relevant conclusions below:

1. The proposed point-estimate method handles properly correlations and

presents high computational efficiency.

2. The uncertainty level affecting the probabilistic power flow problem,

measured by the coefficients of variation of the input random variables,

has a significant impact on the performance of the extended 2m + 1

PEM in such a way that larger variations usually lead to larger esti-

mation errors. In contrast, the effect of the number of input random

variables on the PEM performance is comparatively small and mostly

caused by the number of wind farms in the power system under con-

sideration.

3. The Monte Carlo algorithm fed with properly correlated samples gives

the same results as the proposed point-estimate method, but its com-

putational burden is high.

4. The expected values of output variables remain basically unchanged

as the correlation among the input variables increases; however, the

standard deviations of these output variables increase significantly as

the correlation grows. The proposed methodology allows quantifying

precisely these increases.

Lastly, the extended point-estimate method described in this paper en-

ables the use of the probabilistic power flow as an efficacious power system

analysis tool to address long-term studies such as transmission expansion



Submitted to IET, January 22, 2010 32

planning and reliability analysis related to electric energy systems with a

high penetration of wind power.
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