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Abstract Hindcast or Wave Reanalysis Data Bases (WRDB) constitute a power-

ful source with respect to instrumental records in the design of offshore and coastal

structures, since they offer important advantages for the statistical characteriza-

tion of wave climate variables, such as continuous long time records of significant

wave heights, mean and peak periods, etc. However, reanalysis data is less accu-

rate than instrumental records, making extreme data analysis derived from WRDB

prone to under predict design return period values. This paper proposes a Mixed

Extreme Value (MEV) model to deal with maxima, which takes full advantage

of both i) hindcast or wave reanalysis and ii) instrumental records, reducing the

uncertainty in its predictions. The resulting mixed model consistently merges the

information given by both kinds of data sets, and it can be applied to any extreme

value analysis distribution, such as GEV, POT (Peaks Over Threshold) or Pareto-

Poisson. The methodology is illustrated using both synthetically generated and

real data, the latter taken from a given location on the Northern Spanish coast.
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1 Introduction

Extreme value analysis is of paramount importance for the design process of coastal

and offshore structures. The objective of the design is to verify that the structure

satisfies the project requirements during its lifetime in terms of acceptable failure

rates and costs. One of these project requirements is the ultimate limit state design,

i.e. the structure must withstand the maximum stresses which are expected to

occur during its lifetime. The appropriate definition of this ultimate limit state

design relies on the correct evaluation of the wave climate producing the worst

case scenario, i.e. on extreme wave climate analysis.

Over the last decade, in an attempt to improve the knowledge on wave climate,

there has been an outstanding development of wave reanalysis models. These mod-

els allow a detailed description of wave climate in locations where long-term buoy

records do not exist. This fact has raised the attention of scientists and engineers,

who have tried to use them for design purposes. However, several authors (Caires

and Sterl (2005); Cavaleri and Sclavo (2006); Mı́nguez et al (2011, 2012)) have

pointed out discrepancies when comparing reanalysis versus instrumental data.

The reasons are multiple: numerical models are simplifications of reality, they

have discrete spatio-temporal resolutions, temporal resolutions are too coarse (6

hours) to include high-frequency energy, the orography in certain regions is very

complex, or bathymetric deficiencies among others. These discrepancies are es-

pecially relevant in shallow waters, and during the occurrence of hurricanes and

typhoons, where the model does not reproduce the physics appropriately.

In order to reduce these discrepancies, several authors have attempted to com-

bine reanalysis and instrumental observations, taking full advantage of the good-

ness of both types of information. For example, Caires and Sterl (2005) establish

a nonparametric correction based on analogs, Cavaleri and Sclavo (2006) calibrate

decadal time series over the Mediterranean Sea using buoys and satellites, Tomás

et al (2008) propose a spatial calibration procedure based on empirical orthogonal

functions and a non-linear transformation of the spatial-time modes, Mı́nguez et al
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(2011) present a nonlinear regression model for directional calibration. Although

these methods perform appropriately for most of the range of the probability den-

sity function of the reanalysis variables, they are not adequate for extremes. In

fact, Mı́nguez et al (2012) demonstrate the importance of removing these extreme

events from the calibration process, since on certain occasions they may distort

the calibration procedure while still not solving the extreme event discrepancies.

In addition, they introduce several regression models for automatic detection of

these events, before removing them from the calibration process.

The statistical theory of extreme values (Castillo, 1988; Coles, 2001; Katz et al,

2002; Castillo et al, 2005) provides the mathematical framework to model the

tail distribution, i.e. the extreme values, when maximum datasets are available.

These models allow us to obtain useful information, such as return period values

for certain variables. Several models and applications have been used in different

climate studies to model block extremes, typically annual maxima or minima,

both in observed and simulated data (Kharin et al, 2005; Goubanova and Li,

2007; Kioutsioukis et al, 2010; Nikulin et al, 2011). In addition, recent advances in

extreme value theory allow introducing time-dependent variations in the extreme

value models. In this kind of approach, parameters are replaced by different time

dependent functions (Coles, 2001). In a simple setting, the parameters can include

a trend term varying linearly with time (Cooley, 2009) or a forcing term varying

with some external climatic indices, such as the Southern Oscillation Index or

the North Atlantic Oscillation (NAO). There are also studies combining both

approaches (Méndez et al, 2007). The most complex approaches consider harmonic

functions reflecting the seasonality of the occurrence of maxima. For instance,

Menéndez et al (2009); Izaguirre et al (2010); Mı́nguez et al (2010) developed

a time-dependent model based on the GEV distribution which accounts for the

seasonality and interannual variability of extreme wave height. A similar approach

has been considered by Rust et al (2009) to model extreme precipitation in the

UK on a seasonal basis. Galiatsatou and Prinos (2011) present a statistical model
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for extreme value analysis considering seasonality. They use a non-stationary point

process approach estimated through the wavelet transform. Vanem (2011) presents

a literature survey on time-dependent statistical modelling of extreme waves and

sea states.

The main problem, from an engineering design perspective, is that neither i)

any of the previous calibration/correction approaches, nor ii) the extreme value

analysis models proposed in the literature, provide an answer on how to deal with

extreme events appropriately in the case of reanalysis and instrumental data. The

aim of this paper is to fill this niche by presenting a general method to deal with

extremes that takes full advantage of both i) hindcast or wave reanalysis, and

ii) instrumental records. The resulting model consistently merges the information

given by both kinds of data sets, reducing the uncertainty of its predictions. In

addition, it can be applied to any extreme value analysis distribution, such as

GEV, POT or Pareto-Poisson.

The paper is organized as follows. Section 2 presents the proposed Mixed Ex-

treme Value model, while in Section 3 several diagnostic tests are given to check

the appropriateness of the model hypothesis. In Section 4, the functioning of the

method is illustrated through two different simulation experiments. In contrast,

Section 5 shows the performance on real data from a given location in the North

of Spain. Finally, in Section 6 relevant conclusions are drawn.

2 Mixed Extreme Value Analysis Model

Extreme value analysis studies the occurrence of extreme events and their fre-

quency, and a careful analysis requires the availability of data on such extremes

(Castillo et al, 2008). The larger the size of the data record, the more accurate the

statistical model for those extremes will be, which leads to better predictions with

lower uncertainties. Vanem (2011) points out the importance of available wave

data in order to develop adequate probabilistic models, and although buoy mea-

surements are generally regarded as the most reliable, alternatives exist in satellite
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Fig. 1 Instrumental and reanalysis significant wave height records for Bilbao buoy location.

data and in reanalysis data obtained from wave models forced by various meteo-

rological parameters. However, discrepancies between numerical and instrumental

records must be accounted for within the analysis.

Figure 1 shows the significant wave height instrumental (black line, taken from

Puertos del Estado (Spain) buoys database) and reanalysis (gray line) records for

the Bilbao (Spain) buoy location, and their corresponding annual maxima (star

and triangle dots, respectively). Reanalysis data is taken from the Downscaled

Ocean Waves (DOW) database, a numerical wave database propagated to the

Spanish coastal areas by the Environmental Hydraulics Institute (Spain). The

DOW database is a hybrid downscaling (Camus et al, 2011) obtained using the

GOW hindcast database (Global Ocean Waves, Reguero et al (2012)).
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The most reliable and accurate maxima corresponds to instrumental data, in

fact, for years where both maxima are available, the differences between them are

shown in the panels below. These panels represent the reanalysis versus instru-

mental maxima, and reanalysis maxima versus the differences between them, re-

spectively. If Extreme Value (EV) analysis were performed using instrumental and

reanalysis data, respectively, the instrumental EV model would be more reliable

with respect to expected return periods, however the uncertainty would increase

compared to that of the reanalysis EV model, because the latter uses more data.

The model presented in this paper allows using both instrumental and reanalysis

data, which results in a more robust estimation of return period values, decreasing

the uncertainty.

Let the maximum annual records from reanalysis (xmax) and instrumental

(zmax) have lengths nx and nz, respectively. Note that we assume that nz <<

nx. For years where both maxima are available, we obtain the vector ymax as

the differences between instrumental and reanalysis maxima. The proposed mixed

model relies on the following assumptions:

1. The annual maximum reanalysis random variable X is assigned a probability

density function fX(x, θX) and a cumulative distribution function FX(x, θX).

The distribution function may correspond to any type of distribution for max-

ima, such as, GEV, Pareto-Poisson, Gumbel, POT, etc.

2. The random variable Y corresponding to the difference between instrumental

and reanalysis data conditioned to the reanalysis maximum data (X) follows

a normal distribution, i.e. fY |X(y) ∼ N
(
µY |X , σ2

Y |X
)
. Note that µY |X and

σY |X correspond to the conditional mean and standard deviation parameters,

which can be obtained using an heteroscedastic regression model.

The annual maximum instrumental random variable is equal to Z = X + Y ,

and their corresponding cumulative distribution function is equal to:

FZ(z) = Prob(Z ≤ z) =

∫

x+y≤z

fX,Y (x, y)dydx, (1)
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where fX,Y (x, y) is the joint probability density function of the random variables

X and Y . Considering assumptions 1 and 2, expression (1) becomes:

FZ(z) =

∞∫

−∞
fX(x, θX)




z−x∫

−∞
fY |X(y)dy


 dx, (2)

and since the distribution of Y conditioned to X is normally distributed, expres-

sion (2) results in:

FZ(z) =

∞∫

−∞
fX(x, θX)Φ

[
z − x− µY |X

σY |X

]
dx, (3)

where Φ(·) is the cumulative distribution of the standard normal random variable.

The corresponding probability density function is obtained differentiating (3)

with respect to z:

fZ(z) =

∞∫

−∞
fX(x, θX)φ

[
z − x− µY |X

σY |X

]
1

σY |X
dx, (4)

where φ(·) is the probability density function of the standard normal random

variable. Note that the integration limits range from −∞ to ∞, however, these

limits may change depending on the type of X probability density function.

Both PDF (4) and CDF (3) require solving an integral over a varying do-

main. This task can be efficiently achieved using numerical quadrature methods.

Numerical tests performed using different methods, indicate that the adaptive

Gauss-Kronrod quadrature method (Shampine, 2008) is the most appropriate,

since it supports infinite intervals and can handle moderate singularities at the

endpoints.

The corresponding quantile zq for a given probability q is obtained by solving

the following implicit equation:

FZ(zq) = q, (5)
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which can be transformed into the problem of finding the root of the function

g(zq) = q − FZ(zq). Numerical tests indicate that the algorithm proposed by

Forsythe et al (1976), which uses a combination of bisection, secant, and inverse

quadratic interpolation methods, is robust and efficient.

An important feature of any EV model corresponds to the calculation of the

confidence intervals on both model parameters and estimates, i.e. uncertainty.

Since the proposed mixed model depends on two independent distributions, prior

to analyzing confidence intervals related to Z, we will briefly describe how to

deal with fX(x) and fY |X(y) distributions, and their confidence intervals. Finally,

estimated parameters and quantile confidence intervals for the proposed model are

given in Appendixes A and B respectively.

2.1 Reanalysis annual maxima distribution (fX(x))

One of the advantages of the proposed mixed model (MEV) is that annual maxima

can be analyzed using an extreme value analysis distribution. In this paper, we

only provide expressions and examples for the Generalized Extreme Value (GEV)

distribution and the Pareto-Poisson model (Castillo, 1988).

2.1.1 GEV Distribution

Within this approach, annual maxima of successive years are assumed to be i)

independent random variables and ii) identically distributed. Annual maximum

X of the climate variable follows a GEV distribution with time-dependent loca-

tion parameter µ, scale parameter ψ, and shape parameter ξ, with a cumulative

distribution function (CDF) given by:

FX(x; µ, ψ, ξ) =





exp




−

[
1 + ξ

(
x− µ

ψ

)]−1

ξ

+





; ξ 6= 0,

exp

{
− exp

[
−

(
x− µ

ψ

)]}
; ξ = 0,

(6)
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where [a]+ = max(0, a), and the support is x ≤ µ−ψ/ξ, if ξ < 0, or x ≥ µ−ψ/ξ, if

ξ > 0. The GEV family includes three distributions corresponding to the different

types of tail behavior: Gumbel (ξ = 0) with a light tail decaying exponentially;

Fréchet distribution (ξ > 0) with a heavy tail decaying polynomially; and Weibull

(ξ < 0) with a short tail.

From (6), the corresponding quantiles xq can be straightforwardly calculated,

where q is the corresponding probability.

Model parameters θX = (µ, ψ, ξ)T may be estimated using the method of

maximum likelihood.

2.1.2 Pareto-Poisson Distribution

This model combines the Generalized Pareto Distribution (GPD) for studying

exceedances over a threshold u, and the Poisson distribution for occurrence of

exceedances. It is based on the following assumptions:

1. The number of exceedances over the level u during the year has a Poisson

distribution with parameter λ.

2. Those exceedances follow the GPD distribution.

Under these hypothesis, the cumulative probability distribution (CDF) of the

annual maximum can be expressed as:

FX(x; λ, ψ, ξ) =





exp




−λ

[
1 + ξ

(
x− u

ψ

)]−1

ξ

+





; ξ 6= 0,

exp

{
−λ exp

[
−

(
x− u

ψ

)]}
; ξ = 0,

(7)

where [a]+ = max(0, a), and the support is x > u, x ≤ ψ/|ξ| if ξ < 0, or x ≤ ∞
if ξ > 0. The Pareto-Poisson family includes, as does the Pareto family, three

distributions corresponding to the different types of tail behavior: Exponential

(ξ = 0); traditional Pareto tail (ξ > 0), and an analogous Weibull distribution

(ξ < 0) with a bounded tail.
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Analogously to the GEV model, quantiles and parameter estimates can be

obtained from (7) and the method of maximum likelihood, respectively.

2.2 Heteroscedastic regression model (fY |X(y))

Consider the standard nonlinear regression model

y = fµ(x, βµ) + ε, (8)

where y = (y1, y2, . . . , yny )T is the ny × 1 response variable vector associated

with the differences between instrumental and reanalysis maxima, x is a ny × 1

vector of predictor variables related to annual reanalysis maxima, the function

fµ is known and nonlinear in the parameter vector βµ, and εi; i = 1, . . . , ny are

jointly normally distributed ε ∼ N(0, σ2V ) errors, where σ2V is a positive definite

variance-covariance matrix.

In the standard Nonlinear Least Square (NLS) method, the parameter estima-

tion problem can be stated as:

Minimize
β

εT (σ2V )−1ε. (9)

However, for the kind of data considered in this regression model, a simple

scatter plot of differences (y) versus reanalysis data (x) allows observing how

the variance of the regression model may change over the regression function

(Mı́nguez et al, 2012). Consequently, we consider a nonlinear heteroscedastic re-

gression model in which the standard deviation σi of the ith error is a function of

the predictor variable (xi):

σi = fσ(xi; βσ), (10)



Mixed extreme wave climate model for reanalysis data bases 11

where βσ is a vector of coefficients or parameters. The parameter vector β =

[βµ; βσ], of size np × 1, can be estimated maximizing the log-likelihood function:

`(β; x, y) = −
ny∑

i=1

log (fσ(xi; βσ))− 1

2

ny∑

i=1

(
yi − fµ(xi; βµ)

fσ(xi; βσ)

)2

. (11)

The advantage of defining the regression model in a general manner is that it

allows using different parameterizations for the mean and standard deviation. For

instance, possible models are:

fµ(xi, βµ) = β0 + xiβ1; fσ(xi, βσ) = β2 + xiβ3, (12)

fµ(xi, βµ) = β0x
β1
i ; fσ(xi, βσ) = β2x

β3
i , (13)

but different expressions for fµ and fσ could be used instead, for instance, fµ be

a linear and fσ an exponential function. Note that both models in (12) and (13)

include the classical homoscedastic linear regression model provided that β3 = 0.

3 Hypothesis testing

The mixed model (MEV) proposed in this paper is based on several assumptions.

For this reason, once the parameter estimation processes for both the EV model

over x and the regression model over y conditional on x, are finished, it is very

important to make and run different diagnostic plots and statistical hypothesis

tests to check whether the selected distributions are appropriate or not.

3.1 EV model for X

Related to the EV model fitted to the reanalysis data, we use the following diag-

nostic plots and tests:

– Probability-probability (PP) and Quantile-quantile (QQ) plots. Points over the

diagonal are indicative of a good quality fit.
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– A one-sample Kolmogorov-Smirnov test (Massey (1951)). This test compares,

for a given significance level α, the transformed values xN using transforma-

tion xN = Φ−1 [FX (xmax)] with respect to a standard normal distribution.

The null hypothesis is that the transformed sample follows a standard normal

distribution.

– Sample autocorrelation and partial autocorrelation functions related to the

transformed sample xN. These functions help checking the independence as-

sumption between maxima. Their values should be within the confidence bounds.

– The Ljung-Box lack-of-fit hypothesis test (Brockwell and Davis, 1991) to fur-

ther explore the independence hypothesis. This test is applied to study the

model misidentification. It indicates the acceptance or not of the null hypoth-

esis that the model fit is adequate (no serial correlation at the corresponding

element of Lags).

3.2 Regression model for Y |X

Related to the heteroscedastic conditional regression model, the basic assump-

tion for this model to be considered appropriate, is that studentized residuals are

independent and normally distributed. Studentized residuals are computed as:

ε̂N
i =

ε̂i√
Ωi,i

=
yi − fµ(xi; β̂µ)√

Ωi,i

i = 1, . . . , ny, (14)

where Ωi,i is the ith diagonal element of the residual variance-covariance matrix

Ω. Details on the derivation of this matrix can be found in Mı́nguez et al (2012).

According to this, we use the following diagnostic plots and tests:

– A one-sample Kolmogorov-Smirnov test (Massey (1951)), for a given signif-

icance level α, to check that studentized residuals follow a standard normal

distribution.

– Sample autocorrelation and partial autocorrelation functions related to stu-

dentized residuals.
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– To further explore the independence hypothesis, the Ljung-Box lack-of-fit hy-

pothesis test (Brockwell and Davis, 1991) for model misidentification is applied.

In case any test allows rejecting the null hypothesis with a given significance

level, the probability distribution assumptions must be revisited before accepting

the model for return level predictions.

Additional or alternative tests to those selected above could be applied instead.

4 Simulation Case Study

Prior to the application of the proposed method to a realistic case, we will perform

a simulation study to check whether the method provides consistent results when

the data follow the required assumptions. This step is very important to increase

the confidence in the model and compare the results achieved with those obtained

using traditional methods. We consider two different simulated samples with the

following characteristics:

Case 1: The reanalysis simulated sample follows a GEV distribution with parame-

ters θtrue
X = (10, exp(0.5),−0.15)T , and the heteroscedastic model corresponds

to that given in (12) with parameters βtrue = (−0.5, 0.7,−0.3, 0.1)T . The sam-

ples xmax
1 and y1 have n = 1000 records each, corresponding to a simulated

period of 1000 years.

Case 2: The reanalysis simulated sample follows a Pareto-Poisson distribution

with parameters θtrue
X = (25, exp(−0.13),−0.05)T , where the first parameter

corresponds to the expected number of exceedances per year, i.e. λ, and the

remainder to the GPD distribution parameters. The threshold is equal to u =

2.5. Regarding the heteroscedastic model, it also corresponds to that given in

(12) with parameters βtrue = (0.16, 0.04, 0.3, 0.06)T . In order to obtain 1000

years of maximum data, we sample n = 1000 × λtrue = 25000 records of ex-

ceedances using the given GPD distribution, which constitutes the sample x2.

The maximum of each year constitutes the sample xmax
2 , and the associated

difference with respect to instrumental data corresponds to y2.
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With both sample records (xmax
1 , y1) and (x2, x

max
2 , y2), we proceed to perform

the following steps:

1. We fit samples xmax
1 and x2 to GEV and Pareto distributions, respectively, by

maximizing the log-likelihood function.

2. We fit samples (xmax
1 , y1) and (xmax

2 , y2) to the conditional regression model

by maximizing the log-likelihood function (11). It is important to emphasize

that, as expected, in all previous fits the true parameter values were all within

the estimated 95% confidence bounds.

3. Additionally, we fit each instrumental sample, i.e. zmax
1 = xmax

1 + y1 and

zmax
2 = xmax

2 + y2, to the GEV distribution. This allows performing the tra-

ditional analysis. Note that for the second case, related to the Pareto-Poisson

model, we also use a GEV model because the shape parameter of the Pareto

distribution fit is lower than −1/2, and therefore, even though the maximum

likelihood estimators are generally obtainable, they do not have the standard

asymptotic properties.

4. Using the three fitted models for each case, the quantiles and their 95% con-

fidence intervals related to i) the reanalysis (X) data fit, ii) instrumental (Z)

data fit using the proposed model, and iii) instrumental (Z) data fit using the

GEV fit, are calculated.

Results are shown in Figures 2 and 3, where the following observations are perti-

nent:

1. The three models related to case 1 provide very good fits to simulated data,

an expected result due to the length of the data samples. In case 2, both the

Pareto-Poisson and the proposed models provide very good fits to simulated

data, however, the GEV fit to instrumental maxima is not appropriate for

return periods longer than 20 years.

2. For case 1, both the GEV and MEV fits provide the same return levels, how-

ever, the MEV fit is slightly better in terms of uncertainty, presenting lower

confidence intervals.
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Fig. 2 Simulated data, fitted quantiles and their 95% confidence intervals related to i) the
reanalysis (X) data using the GEV model, ii) instrumental (Z) data using the MEV model,
and iii) instrumental (Z) data also using the GEV model.

Simulation results for both cases demonstrate the adequate functioning of the

MEV model which, besides providing consistent results with respect to traditional

Extreme Value analysis methods, decreases the uncertainty in model predictions.

Nevertheless, the MEV will be further tested using real data.

5 Realistic Illustrative Example

In order to show the performance of the proposed methodology in a realistic case

study, we have selected the record previously shown in Section 2, i.e. a specific

location close to Bilbao Harbor (Northern coast of Spain). At this site, we have at

our disposal i) hourly reanalysis significant wave height records from February 1st,

1948 up to January 1st, 2011, and ii) instrumental buoy records from February

21st, 1985 to July 13th, 2009. Both records are shown in Figure 1.
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Fig. 3 Simulated data, fitted quantiles and their 95% confidence intervals related to i) the
reanalysis (X) data using the Pareto-Poisson model, ii) instrumental (Z) data using MEV
model, and iii) instrumental (Z) data using the GEV model.

We analyze in detail the Bilbao record using as EV model the GEV. Suppose

the vectors x, xmax, zmax, and y to be the reanalysis significant wave height

records, the corresponding annual maxima, the instrumental annual maxima, and

the differences between xmax and zmax for those years where we have both records.

Using this information, we proceed to perform the following steps:

Step 1: Using the sample set xmax, we fit the GEV distribution using the max-

imum likelihood method. The following parameter estimates and 95% confi-

dence bounds are obtained:

µ̂x = 5.1046 (4.9497, 5.2596)

ψ̂x = exp(−0.5173) (exp(−0.7125), exp(−0.3222))

ξ̂x = 0.

(15)
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Fig. 4 Diagnostic plots for the GEV model fitted to Bilbao site reanalysis maxima (xmax):
i) PP plot, ii) QQ plot, iii) autocorrelation and iv) partial autocorrelation functions.

Note that since the shape parameter ξ̂x within the GEV model was not sta-

tistically significant, we fitted the data to the Gumbel distribution (ξ̂x = 0), and

thus there are no confidence interval estimates. In Figure 4 several diagnostic plots

of the fitting are shown. Note that PP and QQ plots (panels above) present good

diagnostic statistics with points close to the diagonal. In addition, we apply the

one-sample Kolmogorov-Smirnov test with 0.05 significance level for the trans-

formed sample xN = Φ−1
[
F̂X (xmax)

]
. Note that the p-value obtained is 0.9410,

and therefore accepting the null hypothesis by which the transformed sample fol-

lows a standard normal distribution. This implies that the Gumbel model is ap-

propriate. In addition, Figures 4(iii, iv) show, respectively, the autocorrelation

and partial autocorrelation functions of the transformed values. Note that in both
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cases the autocorrelation and partial autocorrelation functions for different time

lags are within or close to the confidence bands, confirming that the values are

uncorrelated. Finally, the Ljung-Box lack-of-fit hypothesis test, considering the

null hypothesis that no serial correlation at the lags 1, 2, 3, 4, and 5 years exist,

has been applied on the xN sample. The p-values obtained for a 5% significance

level are (0.3896, 0.6897, 0.5897, 0.7386, 0.5840), respectively. Note that since the

p-values are higher than the significance level in all the studied cases, the null hy-

pothesis is accepted, hence confirming the independence assumption for reanalysis

annual maxima.

Step 2: Using the samples (xmax, y) and assuming model (12) for the conditional

mean and standard deviations, we fit the regression model by maximizing the

log-likelihood function (11), obtaining the following parameter estimates and

95% confidence bounds:

β̂1 = −0.0219 (−1.8532, 1.8094)

β̂2 = 0.1111 (−0.2482, 0.4705)

β̂3 = −0.9966 (−2.1516, 0.1585)

β̂4 = 0.2894 (0.0608, 0.5179)

(16)

Figure 5 shows different diagnostic plots for the regression model fitted. Fig-

ure 5 (i) presents the scatter plot (triangle dots), the conditional mean response

(black line), 95% confidence bands for the mean response (dashed black line), and

95% confidence bands for the predicted values (dashed gray line). To check the

normality assumption for studentized residuals given by (14), Figure 5 (ii) shows

the studentized residuals on a normal probability plot. Note that data points are

aligned with the normal fit, that is, they follow a standard normal distribution. To

further reinforce this statement, we perform the one-sample Kolmogorov-Smirnov

test with 5% significance level for the studentized residuals, obtaining a p-value

equal to 0.9967, meaning that the sample comes from a standard normal distribu-

tion. Finally, Figures 5 (iii, iv) show, respectively, the autocorrelation and partial
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Fig. 5 Diagnostic plots for the regression model fitted to Bilbao site (xmax, y): i) data pairs,
mean values, upper and lower bounds for both expected values and predicted response, ii)
normal probability plot of studentized residuals, iii) autocorrelation function of studentized
residuals and iv) partial autocorrelation function of studentized residuals.

autocorrelation functions of the studentized residuals. Note that in both cases,

the autocorrelation and partial autocorrelation functions for different time lags

are within the confidence bands, confirming that the values are uncorrelated. This

is reinforced by performing the Ljung-Box lack-of-fit hypothesis test at , 2, 3, 4,

and 5 lag years. The p-values obtained for a 5% significance level are (0.7730,

0.9016, 0.9686, 0.7379, 0.8508) respectively, and the independence hypothesis of

the data is accepted.

Step 3: Finally, for comparison purposes we fit the sample zmax to the GEV dis-

tribution. The following parameter estimates and 95% confidence bounds are

obtained:
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Fig. 6 Diagnostic plots for the GEV model fitted to Bilbao site instrumental maxima (xmax):
i) PP plot, ii) QQ plot, iii) autocorrelation function and iv) partial autocorrelation function.

µ̂z = 5.6301 (5.2956, 5.9646)

ψ̂z = exp(−0.2090) (exp(−0.52745), exp(0.1094))

ξ̂z = 0.

(17)

This fit also corresponds to the Gumbel case (ξ̂z = 0), as no confidence bands

for the shape parameters exist. In Figure 6, analogous to the reanalysis maxima

fit, several diagnostic plots of the fitting are shown. The fit is considered good

because the one-sample Kolmogorov-Smirnov test with 5% significance level for

the transformed sample zN = Φ−1
[
F̂Z (zmax)

]
allows accepting the null hypothe-

sis. The associated p-value is 0.6830. Analogously, the autocorrelation and partial

autocorrelation functions of the transformed values, shown in Figures 6 (iii, iv),
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indicate that the values are reasonably uncorrelated. This result is confirmed using

the Ljung-Box lack-of-fit hypothesis test considering the null hypothesis that no

serial correlation exists at 1, 2, 3, 4, and 5 lag years. The p-values obtained for

a 5% significance level are (0.2243, 0.2877, 0.4378, 0.4377, 0.5101), respectively,

confirming the independence assumption for instrumental annual maxima.

Step 4: Using the information given by the three fitted models, we calculate the

return levels using: i) reanalysis maxima information, ii) instrumental max-

ima information, iii) reanalysis and instrumental maxima through the method

proposed in this paper.

Results are summarized in Figure 7, where return level estimates from the

models and the data are shown. From this figure, the following comments are

pertinent:

1. The reanalysis fit (GEV(x), black line) presents good agreement with the data,

and the confidence bands are the narrowest among the three models. This result

is obvious since the number of data values used for the fitting is the highest.

2. Performing extreme value analysis using reanalysis data may lead to under pre-

dictions of return level estimates. For the Bilbao case study, it varies between

0.5 and 2 meters depending on the return level, being 1 meter for the 10-year

return period. This is not acceptable from an engineering design perspective.

3. Both the instrumental (GEV(z)) and the proposed model (MEV(z)) fits, are

very close to each other, presenting slight differences. Most of the data are

within the confidence bands. Note that both models present the same return

level estimates for all return periods longer than 30 years.

4. Confidence bands for the proposed model (MEV(z)) are always narrower than

those for the instrumental fit (GEV(z)), and are included between them. This

proves that the proposed method decreases uncertainty in return level predic-

tions.
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model fitted to reanalysis data, iv) the GEV model fitted to instrumental data and v) the MEV
fitted model using reanalysis and instrumental data. For all models, 95% confidence bands are
also plotted.

6 Conclusions

The model proposed in this paper allows performing extreme value analysis by

merging together reanalysis and instrumental data. The proposed method has the

following characteristics:

1. The model is supported by probability distribution and non-linear regression

theory.

2. The hypothesis required to consider the proposed mixed model to be valid for

EV analysis are properly established. In addition, several diagnostic plots and

hypothesis tests are proposed to check whether these assumptions are certain

by the data.
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3. Numerical cases prove that the use of the proposed procedure provides more

accurate return level estimates, thereby reducing uncertainty.

4. The model is very flexible, not only in terms of the marginal EV probability

density function selected for the reanalysis maxima study, but also for the

regression model, which may deal with homoscedastic, heteroscedastic, linear

and nonlinear models.

Although the method is useful, especially for engineering design on specific

locations, it would also be interesting to include spatial variability (Vanem et al,

2012a,b). This is a subject for further research.
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A Estimated parameter confidence intervals

The estimates θ̂X and β̂ that maximize the log-likelihood functions of the selected EV distribu-

tion for reanalysis and (11), respectively, can be obtained using any of the available solvers for

nonlinear programming. For specific details about the heteroscedastic model and algorithms

to solve (11) see Mı́nguez et al (2012).

The estimated parameters θ̂X and β̂ correspond to mean values, and assuming that ob-

servational errors are normally distributed, the estimated parameter vectors are distributed as

follows:

θX ∼ N
(
θ̂X , ΣθX

)
; β ∼ N

(
β̂, Σβ

)
, (18)

where N denotes the multivariate normal distribution, and ΣθX
and Σβ are the variance-

covariance matrices of the parameter estimates. Using the method of maximum likelihood, if

`(·) is twice differentiable with respect to estimated parameters, and under certain regular-

ity conditions which are often satisfied in practice (Lehmann and Casella (1998)), then the

parameter covariance matrices are equal to the inverses of the Fisher information matrices

(IθX
, Iβ). Assuming that the log-likelihood is approximately quadratic in a neighborhood
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of the maximum, the Fisher information matrices are equal to the Hessian matrices of the

log-likelihood functions with the sign changed:

IθX
= −∂2`(θX ; xmax)

∂2θX
; Iβ = −∂2`(β; x, y)

∂2β
. (19)

The (1− α) confidence interval for each parameter is equal to:

θup
Xj

= θ̂Xj
+ t(1−α/2,nx−npx−1)σ̂Xj

, j = 0, 1, . . . , npx

θlo
Xj

= θ̂Xj
− t(1−α/2,nx−npx−1)σ̂Xj

, j = 0, 1, . . . , npx ,

βup
j = β̂j + t(1−α/2,ny−np−1)σ̂j , j = 0, 1, . . . , np

βlo
j = β̂j − t(1−α/2,ny−np−1)σ̂j , j = 0, 1, . . . , np,

(20)

where npx is the number of components of vector θX , t(1−α/2,ndf ) is the Student’s t-distribution

(1−α/2) quantile with ndf degrees of freedom and σ̂Xj
and σ̂j are the corresponding estimated

standard deviations for parameters j (square root of the corresponding diagonal term in ΣθX

and Σβ , respectively).

B Quantile confidence intervals

From an engineering design perspective, the calculation of return levels for different time spans

(Td) (usually in years) is of great interest. These return periods correspond, within the extreme

value model selected, to quantiles associated with the following probability of not exceeding

qTd
= 1− 1/Td.

For the reanalysis case, these estimated quantiles x̂q are calculated depending on the

EV analysis model selected. For the proposed model, combining instrumental and reanalysis

information, quantiles are obtained solving the implicit equation (5).

If we are interested in calculating the confidence bands for reanalysis quantiles xq , it is

known that for large sample sizes nx, the quantile xq is asymptotically normal, and thus, the

delta method (Oehlert, 1992) can be applied as follows:

xq ∼ N
(
x̂q ,∇T

θX
xqΣθX

∇θX
xq

)
, (21)

where ∇θX
xq is the npx vector of partial derivatives of quantile expressions with respect to

θX .
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Note that equation (21) allows obtaining the estimated variance σ̂2
xq

of the quantile, and

the confidence intervals then become:

xup
q = x̂q + t(1−α/2,nx−npx−1)σ̂xq ,

xlo
q = x̂q − t(1−α/2,nx−px−1)σ̂xq ,

(22)

For the proposed model, the process is analogous, we use the delta method in order to

obtain the estimated variance of the corresponding quantile zq :

zq ∼ N

(
ẑq ,∇T

(θX ;β)
zqΣ(θX ;β)∇(θX ;β)zq

)
, (23)

where ∇(θX ;β)zq is the npx + np vector of partial derivatives of quantiles from solving the

implicit equation (5) with respect to θX and β. Σ(θX ;β) is the variance-covariance matrix of

all the estimated parameters, including the extreme value and the regression models. Since the

models are independent by definition, it is equal to:

Σ(θX ;β) =


 ΣθX

0

0 Σβ


 . (24)

Note that the required derivatives for the reanalysis case are easily obtained analytically,

however, for the composed model it is a challenge. For this reason, these are obtained numer-

ically by finite differences:

∂zq

∂γ
=

zq(γ(1 + ε))− zq(γ(1− ε))

εγ
, (25)

where γ represents the corresponding parameter and ε = 10−6.
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