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Abstract

During the last decade, there has been a substantial interest in how to determine the
optimal number and locations of traffic counters for origin-destination (OD) trip matrices
estimation. On the contrary, the optimal allocation of plate scanning devices has received
very limited attention, even though several authors have demonstrated that plate scanning
(route identification) techniques are much more informative than those based on traditional
link count information. This paper provides techniques for obtaining the optimal number and
location of plate scanning devices for a given prior OD distribution pattern under different
situations, i.e. maximum route identifiability or budget constraints. Two rules analogous to
the counting location problem are developed, and several integer linear programming models
fulfilling these rules are proposed. The proposed methods are finally illustrated by their
application into Nguyen-Dupuis and Cuenca networks.

Key Words: Plate scanning, OD trip matrix estimation, route identification, traffic count location
problem.

1 Introduction

Origin-destination (OD) trip matrices estimation is an essential process for efficient traffic control
and management. Existing approaches combine, in an efficient way, the information obtained
from link counts with other information (prior or target matrix, socioeconomic data, etc.). The
most widely used methods for OD matrix estimation are based, among others, on mathematical
programming techniques, such as, least squares methods (Cascetta and Nguyen (1988)), entropy or
information based methods (Willumsen (1984)), classical statistical techniques (Hazelton (2000)),
statistical methods based on Bayes theorem (Maher (1983)) or recent works which use Bayesian
Networks to predict traffic flows (Sun et al. (2006); Castillo et al. (2008c,d)).

Data needed for these models are:

• A prior OD matrix given by the OD flows T0 = [. . . , t0i , . . .]
T , which is usually obtained from

an out-of date matrix resulting from other studies or methods.

• The observed link flows V̂ = [. . . , v̂a, . . .]T , where a refers to links.

• The assignment map which describes the relationship between the observed link flows and
the OD matrix:

va =
∑

r

∑

i

pi
rδ

i
arti, (1)

or in matrix form:
V = P∆T, (2)

where V = [. . . , va, . . .]T are the link flows, T = [. . . , ti, . . .]T are the OD flows, both repre-
sented as column vectors, ∆ ≡ {δi

ar} is the path-link incidence matrix, and P ≡ {pi
r} is a

matrix defining the probabilities of the users to select the different paths (routes) associated
with all OD pairs.
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Due to the importance of the traffic count locations to obtain good traffic flow predictions,
several authors have focused on solving the problem of determining the optimal number and al-
location of traffic counts. The target is to identify the number and links to be observed over a
transportation network to reproduce a prior OD matrix as exactly as possible together with route
flows. Castillo et al. (2008a) discuss the observability problem, and Yang et al. (1991), based on
the maximal possible relative error (MPRE), examined the reliability of the estimated OD matrix
with respect to the number and locations of counting points in the network. Yang and Zhou (1998)
addressed the problem of how to determine the optimal number and locations of traffic counting
points for a given prior OD distribution pattern, and proposed four location rules:

1. OD covering rule. Traffic counting points should be located so that a certain portion of
trips between any OD-pair will be observed.

2. Maximal flow fraction rule. For a particular OD pair, traffic counting points on a road
network should be located at the links with the highest fraction of OD flow.

3. Maximal flow-intercepting rule. Given a certain number of links to be observed, the
chosen links should intercept as many flows as possible.

4. Link independence rule. The traffic counting points should be located on the network so
that the resulting traffic counts on all chosen links are linearly independent.

Yim and Lam (1998) recommend an optimal data collection method based on the results of the
OD estimation problem sensitivity analysis. Chung (2001) added the purchasing and installing
detector costs into the count location problem, proposing two different but equivalent models: (i)
budget minimization subject to complete OD coverage, and (ii) maximization of OD coverage
subject to budget limitations. Bianco et al. (2001) developed a two-stage procedure, which in
its first stage minimizes the cost of traffic sensors installation on the network nodes, obtaining
coefficients to get the observed flows over the network from the sensor information, and in the
second stage uses common OD matrix estimation models. Bierlaire (2002) proposed a new model
based on the total demand scale as a measure of the quality of the estimated OD flows from traffic
counts. Ehlert et al. (2006) proposed several extensions to previous existing methods of practical
relevance: (i) consideration of previously existing detectors, and (ii) adding the information content
of the prior OD flows into the count location problem. Yang et al. (2006) considered that the traffic
flow measurement is carried out at screen lines, through which all traffic movements with the origin,
on one side of the screen line, and the destination, on the other, are intercepted. The basis of the
model consists of the interesting idea of allocating the traffic counting stations so as to separate
as many OD pairs as possible.

Note that the models above deal only with traffic counting points in links, and the only infor-
mation available corresponds to a subset {v̂a|a ∈ OL ⊆ A} of total link flows, where A is the set of
links, and OL is the subset of observed links. However, Castillo et al. (2008b) combined the trip
matrix and path flow reconstruction problem based on plate scanning and link flow observations,
showing that the plate scanning method leads to better estimates in terms of OD and route flows
because it provides much more information than link flow observations. Castillo et al. (2008b) also
provided a method for selecting minimal sets of links to be scanned for predicting exact traffic
flows for a given enumeration of possible routes.

Hellinga and Van Aerde (1994) use probe vehicles to determine network OD trip demands. In
particular, the work is focused on determining the number of probe vehicles required to obtain
some minimum quality in the estimation of the network flow, i.e. define the best population level
for market penetration for each OD pair. Some authors, as for example Ben-Akiva et al. (1994),
pointed out the importance of the market penetration in the quality of the results, in the sense that
if the market penetration of probe vehicles is not exactly the same for all OD pairs, the estimation
will be biased, and note that due to the spatial heterogeneity of urban land used patterns, the
market penetration rates of probe vehicles may differ considerably among various OD pairs, leading
to under or over estimation of the departure rates for some OD pairs.
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Bianco et al. (2006) addressed the so called Sensor Location Problem, i.e. determine the mini-
mum number of counting sensors on nodes of the network in order to obtain all arc flow volumes
making a combinatorial analysis. Note that dealing with node sensors is more complicated than
link sensors but, on the other hand, it has similar practical possibilities for real networks

Another research trend on locating active sensors is followed by Gentili and Mirchandani (2005),
who developed two decision models under three different scenarios for locating active sensors so
that: i) the minimum number of links and their locations in order to obtain flow volumes on
specified paths is determined, and ii) if there exist total link flow counters (passive sensors), the
question about how many and where should active sensors be located in order to get the maximum
information on flow volumes on specified paths is answered. However, Gentili and Mirchandani
(2005) use path-ID sensors and their work is based on the assumption that path-ID sensors on a
given arc of the network is able to measure the flow of the paths (routes) to which the arc belongs.
This is a strong assumption from the practical point of view, as indicated by the authors, because
that information is not available from regular vehicles unless you stop them and ask drivers about
their route. Nevertheless, as Gentili and Mirchandani (2005) pointed out, this assumption is rea-
sonable for certain clases of vehicles, as for example, buses and trucks which normally has specified
routes. Furthermore, toll tags which are monitored upstream (when entering the subnetwork) and
downstream (when leaving the network), and license plate and blue-tooth readers can provide also
route information.

The models proposed in this paper enrich the model proposed by Castillo et al. (2008b) con-
sidering alternative mathematical programming formulations to take into account some practical
considerations. For example, the model proposed by Castillo et al. (2008b) worked for full observ-
ability, but in many situations the number of possible scanners is limited by budget constraints,
or scanning devices can fail. Our models allow considering these limitations, constituting a novel
and important contribution specially from the practical point of view.

The aim of this paper is to gain insight into the traffic plate scanning location problem, and to
propose several methods for optimizing the location of traffic scanning devices considering different
situations: (i) budget minimization subject to complete route identifiability, (ii) maximum route
identifiability subject to budget constraints, and (iii) consideration of existing plate scanners.

The rest of the paper is organized as follows. Section 2 introduces the traffic plate scanning
location problem and presents the location models and the corresponding implementations. Section
3 illustrates the models with an example of application. Section 4 presents the Cuenca network,
that is, a realistic example. Finally, Section 5 provides some conclusions.

2 The traffic plate scanning location problem

In this section the plate scanning location problem is introduced. Firstly, the plate scanning
technique is summarized. Next, proposed rules are described and some location models together
with some implementation details are provided.

2.1 Plate scanning to predict traffic flow

Consider a traffic network (N ,A) where N is the set of nodes and A is the set of links. From
N one can distinguish two subsets of nodes, O and D, corresponding to origins and destinations,
respectively.

Let OL ∈ A be the set of nsc 6= 0 observed links, containing information about plate number
(Ik), link (ak), and time (tk) of registration, i.e. the information provided consists of the set:

SI ≡ (Ik, ak, tk); k = 1, . . . , no, (3)

where k is the k-th plate scanned, and no is the total number of plates scanned. Note that ak ∈ OL.
As shown in Castillo et al. (2008b), the plate scanning technique consists of registering plate

numbers and the corresponding times of the vehicles at some subset of links to reconstruct vehicle
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routes by identifying identical plate numbers at different locations and times. Castillo et al. (2008b)
also pointed out that the set of links to be scanned must be chosen adequately so that all different
combinations of scanned links belong to a unique route, which means that the scanning process
allows identifying uniquely the path of any scanned user. This allows us to summarize the scanned
observations as

f̂r : r ∈ OR, (4)

where OR is the set of observed routes OR ≡ 1, . . . , nr ∈ R, R is the set of all considered routes
and nr is the number of different Cr sets of scanned links which allows us identifying uniquely
every observed route r.

This information is used for route flow estimation by means of the following model:

Minimize
fr;∀r ∈ R

∑

∀x∈R

∑

∀y∈R
(fx − f0

x)γxy(fy − f0
y ) , (5)

subject to

f̂r = fr; ∀r ∈ OR (6)

v̂a =
∑

∀r∈R

δr
afr; ∀a ∈ OL, (7)

where f0
r and f̂r are the prior and observed flows through route r, respectively, v̂a is the observed

flow in link a, and γxy are the weights (normally the elements of the inverse of the variance-
covariance matrix). Note that constraint (7) allows us including in the estimation model the total
link flows, which are also known from the scanning process. This constraint includes redundant
information for links where all the passing routes are observable, but it improves the prediction of
unobservable route flows.

Note that using this approach, the aim is to identify uniquely as many routes as possible
through scanner devices in links. Castillo et al. (2008b) proposed a binary linear programming
which selects the minimum number of links to distinguish the users of any pair of routes. The
plate number observations over this set of links, supposing that the scanning process is error free1,
allow us to have a full identifiability of all path flows. The problem is formulated as follows:

Minimize
z

nsc =
∑

a∈A
za (8)

subject to
∑

a∈A
zad(r, r1, a) ≥ 1; ∀(r, r1)|r 6= r1, (9)

∑

a∈A
zaδr

a ≥ 1; ∀r, (10)

where za is a binary variable such that it takes value 1 if the link a is scanned, and 0, otherwise,
r and r1 are paths, ∆ is the incidence matrix with elements δr

a, and d(r, r1, a) are defined by

δr
a =

{
1 if path r contains link a
0 otherwise (11)

d(r, r1, a) =
{

1 if δr
a 6= δr1

a

0 otherwise. (12)

Note that constraint (9) guarantees that the selected subset of scanned links is able to distin-
guish the users of any given pair of paths r and r1 based on their scanned plate numbers, i.e. there

1 Due to the design character of the optimal plate scanning location problem, it is reasonable to assume that
the scanning process is error free. This assumption may be no longer valid in the estimation process, however, in
Castillo et al. (2008b) several procedures to avoid this shortcoming are presented.
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exists at least one scanned link which is in path r and not in path r1 or vice-versa. In addition,
constraint (10) ensures that any route or path contains at least one scanned link, and therefore
information, not only of all OD pairs but all the routes, becomes available.

The optimum nsc (n∗sc) is the minimum number of scanning device positions provided by model
(8)-(10) that allows estimating the OD matrix exactly (error free) if all possible routes between
any OD pair have been considered. The main shortcoming of model (8)-(10) is that it does not
include budget considerations, so in case the number of possible links to be installed is limited or
the scanning device costs are different between links this method is not suitable to get the best
possible scanner locations reproducing as exactly as possible the OD matrix with minimum cost.

Hereinafter we will refer to the apparatus which allows identification of vehicles as “scanning
device” instead of “camera”. The reason is simple, the route identification method was initially
proposed to be used with plate scanning information but the method can be applied using any
identification method capable of distinguishing uniquely between vehicles, for example, using trans-
mitters installed inside vehicles, GPS, etc.

2.2 Location rules

In real life, the true error or reliability of an estimated OD matrix is unknown. Yang et al. (1991)
proposed the concept of maximal possible relative error (MPRE), which represents the maximum
possible relative deviation of the estimated OD matrix from the true one. Based on this concept
Yang and Zhou (1998) proposed several location rules. In this paper, since the scanner location
problem is of different nature to the counting location problem based on link flows, we derive
analogous rules based on prior link and flow values and the following measure (RMSRE, root mean
squared relative error):

RMSRE =

√√√√ 1
m

∑

i∈I

(
t0i − ti

t0i

)2

, (13)

where t0i and ti are the prior and estimated flow of OD-pair i, respectively, and m is the number
of OD-pairs belonging to the set I. Note that we propose this alternative formulation because
our model uses prior information and we also assume that the real network flows will be similar
to those given by the prior approach, therefore our location rules try to reproduce through an
estimation method the prior OD pair flows as exactly as possible, when other information is not
available. Since the prior OD pair flows t0i are known, they are used to calculate the relative error.

Given the set R of all possible routes, any of them corresponding to a unique OD pair, if Ri

is the set of routes belonging to OD-pair i, we have t0i =
∑

r∈Ri
f0

r , and then the RMSRE can be
expressed as:

RMSRE =

√√√√ 1
m

∑

i∈I

(
t0i −

∑
r∈Ri

f0
r yr

t0i

)2

, (14)

where yr is a binary variable equal to one if route r is identified uniquely (observed) through the
scanned links, and zero otherwise. Note that the minimum possible RMSRE-value corresponds to
yr = 1; ∀r ∈ R, where ti = t0i and RMSRE=0.

However, if nsc =
∑
∀r∈R yr ≤ nr then RMSRE> 0, and then, one interesting question is: how

do we select the routes to be observed so that the RMSRE is minimized? From (14) we obtain

m× RMSRE2 =
∑

i∈I

(
1−

∑

r∈Ri

f0
r

t0i
yr

)2

, (15)

where it can be deduced that the bigger the value of
∑

r∈Ri

f0
r

t0i
yr the lower the RMSRE. If the set

of routes is partitioned into observed (OR) and unobserved (UR) routes associated with yr = 1
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or yr = 0, respectively, (15) can be reformulated as follows

m× RMSRE2 =
∑

i∈I


1−

∑

r∈(Ri∩OR)

f0
r

t0i




2

=
∑

i∈I


 ∑

i∈(Ri∩UR)

f0
r

t0i




2

, (16)

so that routes to be observed (yr = 1) should be chosen minimizing (16).
The main shortcoming of equations (15) or (16) is their quadratic character which makes the

RMSRE minimization problem to be nonlinear. Alternatively, the following RMARE (root mean
absolute value relative error) based on the mean absolute relative error norm can be defined:

RMARE =
1
m

∑

i∈I

∣∣∣∣
t0i − ti

t0i

∣∣∣∣ =
1
m

∑

i∈I

∣∣∣∣∣
t0i −

∑
r∈Ri

f0
r yr

t0i

∣∣∣∣∣ , (17)

and since the numerator is always positive for error free scanners (0 ≤ ∑
r∈Ri

f0
r yr ≤ t0i ; ∀i ∈

I), the absolute value can be dropped, so that the RMARE as a function of the observed and
unobserved routes is equal to

RMARE = 1− 1
m


∑

i∈I

∑

r∈(Ri∩OR)

f0
r

t0i


 =

1
m


∑

i∈I

∑

r∈(Ri∩UR)

f0
r

t0i


 , (18)

which implies that minimizing the RMARE is equivalent to minimizing the sum of relative route
flows of unobserved routes, or equivalently, maximize the sum of relative route flows of observed
routes. Note that this result derives in a rule that can be denominated the Maximum Relative
Route Flow rule.

The above location rule has been derived by supposing that the prior trip distribution matrix
is reasonably reliable and close to the actual true value, because the accuracy of the prior matrix
has a great impact on the estimates of the true OD matrix. This is clear for a small number of
scanned links, where the reliability of the OD estimations is dependent on the quality of the priors,
but for increasing number of scanned links, this dependency decreases substantially, and vanishes
for full identifiability of routes.

Note also that even though the knowledge of prior OD pair flows could be difficult in practical
cases, the aim of the proposed formulation is determining which OD flows are more important
than others in order to prioritize their real knowledge. In fact the prior OD matrix is only used as
a weighting factor for O-D pairs flows. Alternatively, the MPRE criterion proposed by Yang et al.
(1991) could be used for those cases where a prior O-D matrix is unavailable. Note that existing
methods such us the one proposed by Yang and Zhou (1998), which is based on Hodgson (1990)
and according to their maximal flow-interception rule, also use a flow pattern associated with a
prior O-D matrix.

Analogously to Yang and Zhou (1998) who proposed the OD covering rule related to link
observations, the equivalent rule could be stated in terms of route flows, so that at least one route
for any OD pair should be observed. However, we consider more relevant from the practical point
of view the problem of optimal route observation subject to budget constraints, which means that
in many situations there are routes and/or OD pairs uncovered by the set of observed links.

Note also that since the proper identifiability of routes must be made through plate scanner
devices in links, an additional rule related to links should be considered, which states that scanned
links must allow us to identify uniquely the routes to be observed (yr = 1) from all possible routes
being considered. This rule can be denominated the Full Identifiability of Observed Path
Flows rule.

2.3 Location models

In this section several models accounting for the derived rules and considering different assumptions
are developed.
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2.3.1 Budget considerations and partial covering

The first location model to be proposed in this paper considers full route observability, i.e. RMSRE=
0, but including budget considerations. Note that in the transport literature, each link, denoted
by a, is considered independently of the number of lines of each link. Obviously, if we are trying to
scan plate numbers it is likely to be more expensive in links with higher number of lanes (usually
the number of scanning devices is bigger). Thus, problem (8)-(10) is reformulated as:

M1 = Minimize
z

∑
a∈A

Paza (19)

subject to (9)-(10), where Pa is the cost of plate scanning link a. Note that constraint (9) forces
to select the scanned links so that every route is uniquely defined by a given set of scanned links
(every row in the incidence matrix ∆ is different from the others) and (10) ensures that at least one
link for every route is scanned (every row in the incidence matrix ∆ contains at least one element
different from zero). Both constraints (9) and (10) force the maximum relative route flow and full
identifiability of observed path flows rules to hold. Note also that all OD pairs are totally covered.
In addition, this model allows the estimation of the required budget resources B∗ =

∑
a∈A

Paz∗a for

covering all OD pairs in the network.
However, budget is limited in practice, meaning that some routes or even some OD pairs may

remain uncovered, consequently based on the maximum relative route flow rule given by (18) the
following model is proposed:

M2 = Maximize
y, z

∑

∀i∈I

∑

r∈Ri

f0
r

t0i
yr (20)

subject to
∑

a∈A
zad(r, r1, a) ≥ yr; ∀(r, r1)|r 6= r1, (21)

∑

a∈A
zaδr

a ≥ yr; ∀r, (22)

∑

a∈A
Paza ≤ B, (23)

where f0
r and t0i are the route and OD-pair flows, respectively, of a prior out-of-date OD matrix,

yr is a binary variable equal to 1 if route r can be distinguished from others and 0 otherwise, za is
a binary variable which is 1 if link a is scanned and 0 otherwise, and B is the available budget.

Constraint (21) guarantees that the route r is able to be distinguished from the others if
the binary variable yr is equal to 1. Constraint (22) ensures that the route which is able to be
distinguished contains at least one scanned link. Both constraints (21) and (22) force the model
to fulfill the full identifiability of observed path flows rule, i.e. all routes such that yr = 1 can be
uniquely identified using the scanned links. It is worthwhile mentioning that using yr instead of 1
in the right hand side of constraints (21) and (22) immediately converts into inactive the constraint
(10) for those routes the flow of which are not fully identified.

The OD coverage rule has become the object of the optimization itself and it will be ensured
or not depending on the available budget B, i.e. depending on whether or not constraint (23)
becomes active. For example, if the available budget equals the optimal value of the objective
function given by model M1 (B = B∗), model M2 provides full OD coverage.

From the practical point of view constraint (21) can be replaced by the following alternative
and equivalent constraint

∑

a∈{A}
(δr

a + δr1
a )(1− δr

aδr1
a )za ≥ 1; ∀(r, r1)|r < r1 and

∑

a∈A
δr
aδr1

a > 0 (24)

which has the following important advantages:
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1. The parameter d(r, r1, a), using a huge amount of memory, needs not be stored.

2. It does not consider constraints relating routes without common routes (
∑

a∈A
(δr1

a δr
a) > 0).

3. It does not compare routes r and r1 twice, because of the < instead of the 6= relation.

Alternatively, for those cases where no prior O-D matrix information is available and based on
the MPRE concept derived by Yang et al. (1991), the following model is proposed:

M3 = Maximize
y,z

∑

∀i∈I

∑

r∈Ri

yr (25)

subject to (21)-(23). Note that in this case the number of observed routes is maximized but no
information is given about the prior route flows. This problem maximizes the number of routes
that are exactly observed for a given budget without considering the amount of flow intercepted
by those routes, however this solution is not necessarily optimal in terms of route and/or OD
observed flows by the selected scanners. Nevertheless, this problem rarely happens in practice
since traffic planners have information about which routes are more relevant to observe in terms
of flow interception.

2.3.2 Practical considerations

Consideration of previously existing devices For real moderate to large problems, complete
OD coverage is often imposible due to the number of origins and destinations in the network. In
addition, the network configuration and its behavior may have changed due to several reasons:
consideration of new OD pairs, construction of new links between nodes, or consideration of new
or alternative routes between OD pairs. Under this circumstance, if some detectors are already
installed and additional budget is available to increase observability in the network, new scanning
devices should be located on unobserved links (a ∈ UL) leading to the following models associated
with models M1 and M2, respectively:

M4 = Minimize
z

∑
a∈UL

Paza (26)

subject to (9)-(10) and

za = 1; ∀a ∈ OL, (27)

where OL is the set of already observed links (links with scanning devices already installed), and

M5 = Maximize
y, z

∑

∀i∈I

∑

r∈Ri

f0
r

t0i
yr (28)

subject to (21)-(22) and
∑

a∈UL
Paza ≤ B (29)

za = 1; ∀a ∈ OL. (30)

Note that A = OL∪ UL and OL∩ UL = Ø, i.e. the sets of observed and unobserved links are
disjoint and complementary.
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Obtain redundant information to avoid mistakes Unfortunately, it is relatively easy for a
scanning device to fail identifying the plates of some users. Therefore, these users, which belong
to an specific route, can be assigned to another one (see section 3 for an illustrative example).

To deal with this problem in a simple way, redundant information can be included to cover
possible failures by means of the following binary linear programming problem:

M6 = Minimize
z

∑
a∈A

na∑
i=1

Pa,iza,i (31)

subject to

∑

a∈A|δr1
a 6=δr

a

(
na∑

i=1

za,i) ≥ q;
∑

a∈A
(δr1

a δr
a) > 0; ∀(r, r1)|r < r1 (32)

∑

a∈A

na∑

i=1

za,iδ
r
a ≥ 1; ∀r, (33)

where za,i is a binary variable such that it takes value 1 if the link a is scanned using scanner i,
and 0 otherwise, na is the maximum number of duplicate scanning devices to be installed in each
link, and q is the redundancy level, i.e. the minimum number of failures in the scanning devices
which are necessary for confusing two routes. Note that the larger the value of q, the larger the
reliability of the system.

Note that the model above does not consider scanner devices failure rates, which should be
included in the model somehow in order to consider if it is more convenient to spend the money
in increasing the redundancy ratio in scanner locations, or to allocate new scanners in unobserved
links. The solution of this problem is out of the scope of this paper and is proposed for further
research.

2.4 Model implementation

The proposed models M1, M2, M3, M4 and M5 are mixed-integer linear programming problems
(MIP), which are known to require dramatically more mathematical computation than those for
similar sized pure linear programs. For problems with integer variables, Branch and Bound (BB)
and Gomory Cuts (GC) methods are available. The BB is the most used and usually the most
computationally efficient technique. However, more recently, a hybrid highly efficient technique
of both methods, denominated branch-cut (BC), is being successfully applied (see Castillo et al.
(2001)).

The solver used in this paper is CPLEX that uses a branch and bound algorithm with cuts
(BC) which solves a series of LP subproblems. Note that the branching strategy used by this
solver iteratively decreases the upper bound and increases the lower bound of the optimal solution,
being the difference a measure of the proximity of the current solution to the optimal solution
if it exists. The lower bound is obtained relaxing the integrality constraints, whereas the upper
bound is obtained from any solution satisfying the integrality constrains. The solution holding
the integrality constraints is looked for through an enumeration tree which increases exponentially
with the number of integer variables. Due to this, reducing the integer variables is important from
the practical point of view, and in models M2, M3 and M5 it is possible, since the corresponding
models with relaxed variables yr; ∀r ∈ IR and adding constraints

0 ≤ yr ≤ 1; ∀r ∈ R, (34)

provide a solution which satisfies the integrality constraints of variables yr ∈ {0, 1}; ∀r ∈ R,
reducing considerably the number of integer variables and the computational burden.

This is an important practical result that is precisely given in the following theorem.
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Theorem 1 If in the problem M2 given by (20)-(23) and assuming, without loss of generality,
fr 6= 0; ∀r, the yr variables are relaxed to continuous variables in the closed interval [0, 1], the
optimal solution and the corresponding optimal value remains invariant (Schrijver (1987)).

Proof. Assume that the optimal solution of problem M2 with the variables yr relaxed to be
continuous in the interval [0, 1] is attained for 0 < ys < 1, where s is a given index value. We
will prove that this is not possible. Since the left hand sides of constraints (21)-(22) can only get
integer values since z,d and ∆ take binary {0, 1}-values, that is,

∑
a∈A

zad(r, r1, a) ∈ {0, 1, 2, 3, . . .}; ∀r1 6= r, (35)
∑

a∈A
zaδr

a ∈ {0, 1, 2, 3, . . .}, (36)

and since ys > 0, the associated constraints (20)-(22) are equivalent to constraints (9)-(10), i.e.,
with ys = 1. Since ys appears in no other constraint, and the objective function (20) increases with
ys because fs is positive, a larger value of the objective function is obtained for ys = 1 without
changing the constraints from inactive to active or vice-versa. In other words, if in the assumed
solution ys is replaced by 1 while keeping unchanged the remaining variable values, we get another
feasible solution with a better value of the objective function. Thus, the solution with ys < 1 is
not optimal. This concludes the proof.

Note that the number of constraints in (9) and (21) increases exponentially with the number
of routes making the use of CPLEX not possible for large size networks. In those cases alternative
solvers and/or more computational resources, or even a more ad hoc branch and cut procedure
could be suitable to solve the problem. Nevertheless, since the proposed models are devoted to
scanning location design, computational times are not especially critical if they remain below a
reasonable bound.

Note also that we use available mathematical programming solvers instead of a tailor-made
ad hoc branch and cut procedure, which is almost always better than general purpose software,
because the latter is more reliable, and besides, current state-of-the-art nonlinear programming
solvers incorporate state-of-the-art treatment of sparse matrices and are both numerically robust
and computationally efficient. Additionally, they may include parallelization features. Given
the aforementioned characteristics, we think that these solvers constitute appropriate tools for
model/algorithm development and model/algorithm testing.

3 Illustrative Example: the Nguyen-Dupuis network.

In order to understand the behavior of the proposed methods, consider the Nguyen-Dupuis network
topology, with 13 nodes and 38 bidirectional links as shown in Figure 1. A total of 18 OD pairs are
considered, whose origins and destination nodes are outlined in the figure and the corresponding
origin-destination nodes are provided in Table 1 together with the corresponding out-of-date OD
flows. Routes and associated route flows are shown in Table 2. They were obtained using a MNL
logit assignment model (the link parameters used in this example are those exposed in Castillo et al.
(2008b)) for the OD flows provided in Table 1.

To identify all path flows, a minimum number of links have to be scanned. To this end, problem
(8)-(10) has been solved, resulting 18 links to be observed:

{1, 2, 3, 5, 8, 9, 11, 13, 18, 20, 21, 22, 23, 29, 31, 33, 34, 36}, (37)

which have been also outlined in Figure 1. Note that a set of 18 scanned links of a total of 38
possible are needed. Alternatively, model M1 for Pa = 1; ∀a ∈ A could have been solved resulting
in the same solution.
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Figure 1: Nguyen-Dupuis traffic network used in the Example of application.

Table 1: OD pairs and corresponding flows used in the Nguyen-Dupuis example.

OD Origin O Destination D Prior or out-of-date OD flow

1 1 2 210
2 1 3 430
3 1 8 320
4 2 1 210
5 2 4 320
6 2 12 50
7 3 1 430
8 3 4 110
9 3 12 40
10 4 2 320
11 4 3 110
12 4 8 210
13 8 1 320
14 8 4 210
15 8 12 60
16 12 2 50
17 12 3 40
18 12 8 60

The model proposed by Gentili and Mirchandani (2005) with zero count information, i.e. none
arc flow is known and path-ID sensors have to be located to determine all path flows, is as follows:

Minimize
xi

∑m
i=1 xi, (38)

subject to ∑m
i=1 bij ≥ 1; j = 1, . . . , p

xi ∈ {0, 1}; i = 1, . . . , m,
(39)

where xi is 1 if a path-ID sensor is located in arc i and 0 otherwise, bij is 1 if the arc i belongs
to route j, m is the number of arcs, and p is the number of routes. If this model is applied in the
Nguyen-Dupuis network example, the path-ID sensors are located in the following arcs:

{6, 14, 17, 22, 29, 33, 36, 37}, (40)
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which is a completely different solution from (37). Note in Table 2 that solution in (40) ensures
that using those 8 path-ID sensors, all routes have one of their arcs covered by one path-ID sensor,
but nothing is said about how the sensor obtains route flows from link flows.

Table 2: Set of OD-pairs and paths (routes) considered in the Nguyen-Dupuis network

Route (r) Links (a) Prior route flow (fr)
OD pair 1

1 1 11 14 18 20 27.87
2 2 35 14 18 20 13.87
3 2 36 20 168.26

OD pair 2
4 1 11 14 19 31 67.84
5 1 11 15 29 31 76.72
6 1 12 25 29 31 31.22
7 1 12 26 37 182.29
8 2 35 14 19 31 33.75
9 2 35 15 29 31 38.18

OD pair 3
10 1 11 14 18 42.47
11 2 35 14 18 21.13
12 2 36 256.40

OD pair 4
13 3 21 17 13 9 29.17
14 3 21 17 16 34 15.44
15 3 22 34 165.40

OD pair 5
16 3 21 17 13 10 47.54
17 3 21 19 33 28 23 19.95
18 4 33 28 23 252.51

OD pair 6
19 3 21 17 16 4.27
20 3 22 45.73

OD pair 7
21 5 32 17 13 9 64.95
22 5 32 17 16 34 34.37
23 5 33 27 13 9 72.04
24 5 33 27 16 34 38.13
25 5 33 28 24 9 37.50
26 6 38 24 9 183.01

OD pair 8
27 5 33 28 23 18.71
28 6 38 23 91.29

OD pair 9
29 5 32 17 16 18.96
30 5 33 27 16 21.04

OD pair 10
31 7 11 14 18 20 49.93
32 8 25 29 30 250.84
33 8 25 29 32 18 20 19.23

OD pair 11
34 8 25 29 31 16.09
35 8 26 37 93.91

OD pair 12
36 7 11 14 18 151.61
37 8 25 29 32 18 58.39

OD pair 13
38 21 17 13 9 44.45
39 21 17 16 34 23.52
40 22 34 252.03

OD pair 14
41 21 17 13 10 147.92
42 21 19 33 28 23 62.08

OD pair 15
43 21 17 16 5.12
44 22 54.88

OD pair 16
45 35 14 18 20 3.81
46 36 20 46.19

OD pair 17
47 35 14 19 31 18.77
48 35 15 29 31 21.23

OD pair 18
49 35 14 18 4.57
50 36 55.43

Table 3 shows all routes defined by their order r, and the scanned links of each route (marked
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Table 3: The set of scanned link and its combination in order to identify all the route flows.

Scanned links
Route (r) 1 2 3 5 8 9 11 13 18 20 21 22 23 29 31 33 34 36

1 X X X X
2 X X X
3 X X X
4 X X X
5 X X X X
6 X X X
7 X
8 X X
9 X X X
10 X X X
11 X X
12 X X
13 X X X X
14 X X X
15 X X X
16 X X X
17 X X X X
18 X X
19 X X
20 X X
21 X X X
22 X X
23 X X X X
24 X X X
25 X X X
26 X
27 X X X
28 X
29 X
30 X X
31 X X X
32 X X
33 X X X X
34 X X X
35 X
36 X X
37 X X X
38 X X X
39 X X
40 X X
41 X X
42 X X X
43 X
44 X
45 X X
46 X X
47 X
48 X X
49 X
50 X

with an X). They include the combinations of scanned links that, considering all routes, must be
simultaneously registered for a single user to identify his route. For example if a user is scanned in
links 2, 18 and 20, then he travels using route 2, because he is included in one and only one of the
sets shown in the table. Thus, scanning the set of links resulting from model M1 the identification
of all route flows is possible. However, several routes can be confounded if the set of scanned links
is not adequately chosen. For example, if link 34 is not scanned, the users of route 24 can be
confounded with those of route 30. After the scan process is finished some standard procedure
must be used for a correct estimation of the flows, as for example, solving problem (5)-(7).

As shown in previous sections, the application of this location problem to real situations often
involves substantial investment in equipment and installation of scanning devices (cameras or video
cameras, the plate reader, etc.). Therefore, a budget restriction should be included in the previous
formulations to get the best and the maximum amount of information using a limited number of
traffic scanner devices.

To deal with this problem, model M2 has been solved. Table 4 shows the resulting sets of
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Table 4: The set of scanned link using the proposed model for different available budget

Scanned links
Route (r) 2 7 20 36

1 X
2 X X
3 X X X
4
5
6
7
8 X
9 X
10
11 X
12 X X
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 X X
32
33 X
34
35
36 X
37
38
39
40
41
42
43
44
45 X
46 X X
47
48
49
50 X

Scanned links
Route 2 3 7 10 20 22 34 36

1 X
2 X X
3 X X X
4
5
6
7
8 X
9 X
10
11 X
12 X X
13 X
14 X X
15 X X X
16 X X
17 X
18
19 X
20 X X
21
22 X
23
24 X
25
26
27
28
29
30
31 X X
32
33 X
34
35
36 X
37
38
39 X
40 X X
41 X
42
43
44 X
45 X
46 X X
47
48
49
50 X

Scanned links
Route 1 2 3 5 8 9 11 13 19 20 22 23 29 33 34 36

1 X X X
2 X X
3 X X X
4 X X X
5 X X X
6 X X
7 X
8 X X
9 X X
10 X X
11 X
12 X X
13 X X X
14 X X
15 X X X
16 X X
17 X X X X
18 X X
19 X
20 X X
21 X X X
22 X X
23 X X X X
24 X X X
25 X X X
26 X
27 X X X
28 X
29 X
30 X X
31 X X
32 X X
33 X X X
34 X X
35 X
36 X
37 X X
38 X X
39 X
40 X X
41 X
42 X X X
43
44 X
45 X
46 X X
47 X
48 X
49
50 X

links to be scanned for three different budget levels, i.e using the necessary budget for 4, 8 and 16
scanned links. Note that when the X in the same row appear as X , it means that this specific route
is able to be identified due to the plate scanning procedure. The tables on the left, center and right
show that for 4, 8 and 16 scanned links one can observe 7, 14 and 45 of 50 routes, respectively.
Using this information with that in Table 2 (the routes of each OD-pair), we find that the case of
16 scanned links permits having the perfect knowledge of 13 of a total of 18 OD pair flows.

Note also that it is easy to make scanning errors so that some users could be assigned to a
wrong route. For example, from Table 2, if any user traveling through route 24 fails to be scanned
at link 34, he will be assigned to route 30, which is wrong.

To solve this problem, model M6 could be solved increasing the redundancy ratio, i.e. q = 2.
In this case, the solution provides the following links to be scanned:

{1, 1, 2, 2, 3, 3, 4, 5, 9, 10, 11, 13, 15, 17, 19, 20, 20, 22, 23, 28, 30, 31, 32, 34, 34, 35, 36, 37}, (41)

where 28 scanning devices are needed. Note that some links are scanned once, some links twice,
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and some links not included in the set of links shown in (37) are now included in order to have
redundant information.

In order to illustrate the goodness of the proposed methods, a simulation with 1000 replications
has been done.

In each simulation we have assumed as true OD flows different set of values, obtained multi-
plying the prior flows in Table 1 by a uniformly distributed random factor (U(0.8, 1.2)). To obtain
the true route and link flows the corresponding SUE problem is solved. These values are used to
get the subset of observed route flows f̂r, and the observed isolated link flows v̂a if any. Finally,
using these observed route and link flows and as prior the route flows2 f0

r , the problem (5)-(7) is
solved to estimate the remaining route flows of the current simulation. Comparative results are
provided decreasing the number of scanning devices from 18 (fully observability) down to 1, the
positioning of scanning devices and therefore the knowledge of observed routes has been obtained
using the proposed method (models M2 and M3 have been used in order to check the influence of
prior information) and the following alternative methods, which consists of:

1. If the number of scanning devices nsc is lower than the minimum number of counting points
required to satisfy the OD covering rule (see Yang and Zhou (1998)), which in this case is
equal to l∗ = 4, the BIP-5 model proposed by Ehlert et al. (2006) is used.

2. If nsc ≥ 4 and nsc ≤ 12 the TCL-P2 model in Yang and Zhou (1998) is used (see also
Hodgson (1990)). Note that this model has a maximum limit of counting points (nmax = 12)
which does not allow the objective function to increase.

3. If nsc > 12 we have chosen the set of links to be scanned selecting them randomly from the
set given in (37), which allows fully observability.

Note that existing methods are specially suitable to work with link flows and comparison could
seem to be unfair, however, since there is no alternative method for scanning device location, we
have decided to use them for comparison purposes.

Figures 2(a), (c) and (e) show the simulation box plots (including the median, 25 and 75
quantiles and the outliers3) corresponding to the root mean squared relative error (RMSRE) of the
OD predictions with different number of scanning devices selected through alternative methods,
model M2 and model M3, respectively. Analogously, Figures 2(b), (d) and (f) show the same
information but using the root mean absolute relative error (RMARE) (13) of the OD predictions.
Note that errors are calculated with respect the assumed true flows.

Note that the performance of the proposed method using prior information (M2) and without
prior information (M3) is statistically better specially when the number of scanning devices is in
the range 3 to 17, where it is clearly shown that for any given number of scanning devices located,
the mean is clearly smaller for the graphs c), d), e) and f) than those in a) and b), and also the
interquartile range is smaller, which indicates that the variance of the errors is lower. Since results
using RMSE and RMARE are analogous it can be concluded that the use of the root mean absolute
value relative error for model derivations is justified.

These conclusions are confirmed from Tables 5 and 6, which provide the mean and standard
deviation (in parenthesis) of the root mean squared relative errors for each OD flow and for
different number of scanning devices installed, corresponding with the proposed method using
prior information (model M2) and alternative methods, respectively. Note that the mean and
standard deviation tend to decrease when the number of scanning devices increases, being equal to
zero (indicated in boldfaced) if the OD flow is completely observed. Note also that the percentage
of times that the mean of the true error using the proposed method is lower than using existing
methods in ≈55% of the times, whereas the standard deviation is lower in ≈61.5% of times.

Regarding results from models M2 and M3 shown in graphs (c)-(d) and (e)-(f), respectively. It
can be observed that the use of prior information provides better results, as expected, which are

2These are the SUE route flows associated with the OD flows in Table 1
3Values above or below the mean 1.5 times the interquartile range are assumed to be outliers in this example.
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Figure 2: Box plots corresponding to 1000 different OD demand simulations, plotting the RMSRE
and RMARE locating scanning devices through traditional methods (a and b) and by the proposed
method: model M2 (c and d) and model M3 (e and f), respectively.

more clear with respect the RMSE. However, differences indicate that model M3 is an appropriate
alternative for those cases where no prior O-D matrix is available, providing also better results that
traditional methods. Note that both models M2 and M3 for total observability (18 scanned links)
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Table 5: Mean and standard deviation (between brackets) of the OD prediction errors obtained
using 1000 simulations and locating the scanning devices using the proposed method.

OD
nsc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 0.2 0.1 0.6 0.4 -2.4 0.1 1.6 -0.6 -0.1 -0.8 0.4 -0.9 0.6 -1.0 -0.0 -0.1 -0.2 -0.2

(24.6) (49.1) (36.9) (24.1) (25.4) (5.7) (48.6) (12.4) (4.6) (37.3) (12.6) (24.2) (35.2) (24.6) (6.9) (5.8) (4.7) (7.0)
2 1.0 0.0 -1.1 -0.1 -1.7 -0.2 -1.8 -0.4 -0.1 -1.4 -0.9 1.3 -0.9 -0.5 0.3 -0.0 -0.0 -0.1

(24.6) (48.6) (37.1) (24.1) (25.1) (5.7) (49.2) (12.4) (4.6) (25.7) (12.8) (24.8) (38.0) (23.9) (7.0) (5.7) (4.6) (6.8)
3 -0.1 1.1 -0.9 1.3 -0.8 -0.0 0.1 0.1 -0.1 1.7 0.5 1.3 1.1 -0.6 -0.0 0.0 0.1 0.0

(10.7) (45.3) (19.1) (24.1) (36.1) (5.8) (49.6) (12.5) (4.6) (22.0) (12.5) (24.0) (37.1) (24.3) (7.1) (1.2) (4.7) (1.1)
4 -0.1 0.7 -0.1 -0.2 -1.3 -0.2 0.6 0.2 0.1 1.4 -0.7 -1.1 -1.5 -0.6 0.2 0.0 -0.2 0.0

(5.2) (44.5) (19.5) (24.2) (37.0) (5.8) (50.1) (12.9) (4.6) (16.0) (12.8) (9.6) (37.0) (24.3) (7.0) (0.6) (4.6) (1.1)
5 0.0 -0.9 0.2 0.8 -1.1 -0.3 -0.5 -0.4 0.0 0.5 -0.2 -0.8 -0.9 0.6 -0.1 0.1 0.1 0.1

(5.3) (44.6) (18.9) (24.1) (25.8) (5.7) (49.9) (12.6) (4.6) (15.9) (12.8) (9.4) (37.4) (24.1) (6.8) (0.6) (4.6) (1.0)
6 0.3 0.3 -0.1 0.6 -0.2 0.2 -1.9 -0.1 0.1 1.1 0.3 0.4 0.2 0.6 0.0 0.1 -0.0 0.0

(10.6) (45.0) (18.7) (10.6) (21.8) (1.3) (45.0) (12.6) (4.5) (21.7) (12.7) (24.1) (19.4) (24.5) (1.1) (1.2) (4.6) (1.0)
7 -0.3 -0.1 0.3 0.5 0.3 0.1 1.9 0.5 -0.1 2.0 -0.6 -1.1 0.2 -1.1 0.0 -0.0 0.3 0.1

(5.2) (43.9) (19.7) (11.2) (22.6) (1.3) (44.5) (12.7) (4.7) (16.0) (12.5) (9.5) (19.6) (24.3) (1.1) (0.6) (4.7) (1.1)
8 -0.0 1.3 -0.6 -0.1 1.8 0.0 -1.5 -0.3 -0.0 0.7 -0.6 -0.9 0.2 -1.3 0.1 0.0 -0.1 0.0

(5.3) (44.1) (19.5) (5.2) (16.2) (0.7) (44.2) (12.5) (4.6) (16.1) (12.8) (9.4) (19.5) (9.9) (1.1) (0.6) (4.5) (1.0)
9 -0.1 -2.2 -0.2 0.2 -0.1 -0.0 2.6 -0.8 0.2 1.3 -0.4 -1.2 0.6 -0.8 0.0 0.0 0.1 0.0

(5.1) (44.9) (19.1) (5.3) (5.6) (0.7) (44.7) (12.7) (4.6) (15.9) (13.1) (9.7) (19.6) (10.1) (1.1) (0.6) (4.6) (1.1)
10 0.7 0.1 -0.2 0.0 0.0 0.0 0.0 0.4 0.0 -0.1 0.3 -0.4 0.0 0.0 0.1 0.1 -0.1 0.1

(11.0) (45.0) (19.3) (0.0) (0.0) (0.0) (0.0) (8.9) (0.0) (22.2) (13.0) (23.7) (0.0) (0.0) (6.5) (1.2) (4.6) (1.1)
11 0.0 1.7 -0.5 0.0 0.0 0.0 0.0 0.0 0.0 1.3 -0.0 -0.8 0.0 0.0 0.1 0.1 0.1 0.0

(11.2) (45.0) (20.2) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (22.4) (12.7) (24.4) (0.0) (0.0) (6.3) (1.2) (4.6) (1.1)
12 0.7 1.8 -0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 -0.4 0.6 0.0 0.0 0.0 0.1 0.0 0.0

(11.0) (44.4) (19.7) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (22.1) (13.0) (24.3) (0.0) (0.0) 0.0 (1.2) (4.6) (1.1)
13 -0.0 3.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -0.1 -0.5 0.0 0.0 0.0 -0.0 -0.1 0.0

(5.0) (44.1) (18.8) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (15.6) (13.1) (9.3) (0.0) (0.0) 0.0 (0.6) (4.6) (1.0)
14 0.0 0.0 -0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 -0.3 0.7 0.0 0.0 0.0 0.1 0.1 0.0

(0.0) (15.5) (15.5) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (13.1) (3.8) (24.3) (0.0) (0.0) (1.1) (1.7) (2.5) (1.0)
15 0.0 -0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -0.2 -0.8 0.0 0.0 0.1 0.1 0.0 0.1

(0.0) (14.1) (14.1) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (12.5) (3.9) (9.5) (0.0) (0.0) (1.1) (1.2) (2.5) (1.0)
16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 -0.2 -1.3 0.0 0.0 0.1 0.0 0.0 0.0

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (9.7) (3.9) (9.3) (0.0) (0.0) (1.1) (0.0) (0.0) (1.1)
17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 -0.1 0.0 0.0 0.1 0.0 0.0 0.1

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (3.9) (3.9) (0.0) (0.0) (1.1) (0.0) (0.0) (1.0)
18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

provide the same results, intercepting 100% of the real route flow, and for example, considering 11
scanning devices, optimal locations from models M2 and M3 are, respectively:

M2 = {2, 3,5, 9,13, 20, 21,23,33, 34,36}
and

M3 = {2, 3, 9,16,18,19, 20, 21,32, 34,35},
which are different results (different links are boldfaced). Note that the first solution recognizes
29 routes, intercepting 63.87% of the total flow, and the second solution recognizes 32 routes,
intercepting 51.76% of the total flow. Note that although the number of identified routes for the
prior based solution is lower, the intercepted flow is greater. For this reason, in cases where the
prior is known, results improve.

4 A Real example: the Cuenca network.

In order to apply the method to a realistic network, consider the Spanish city of Cuenca whose
network topology representation is shown in Figure 3, consisting of 139 OD and 336 bidirectional
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Table 6: Mean and standard deviation (between brackets) of the OD prediction errors obtained
using 1000 simulations and locating the scanning devices using existing methods.

OD
nsc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1.7 1.7 -0.9 -0.1 -0.3 0.2 0.6 0.2 -0.1 0.4 -0.6 1.2 0.2 -0.3 -0.1 0.1 -0.1 -0.1

(23.4) (48.8) (35.2) (25.0) (36.2) (5.8) (48.4) (12.5) (4.6) (34.8) (12.9) (22.7) (36.8) (24.4) (7.0) (5.8) (4.9) (6.8)
2 0.5 2.1 -0.9 -0.2 -0.1 0.0 -0.3 -0.9 0.2 -1.8 -0.5 0.7 -1.4 0.5 0.3 -0.2 -0.1 -0.1

(23.7) (48.4) (35.0) (23.8) (35.1) (5.7) (48.0) (12.8) (4.7) (35.6) (12.9) (22.8) (35.1) (21.9) (6.9) (5.8) (4.8) (6.9)
3 1.2 1.8 0.7 -0.1 -0.9 -0.2 0.2 -0.6 0.1 -0.9 -0.5 -1.2 -0.1 0.8 0.1 0.0 0.0 0.2

(24.1) (45.9) (36.4) (23.8) (35.3) (5.7) (47.8) (12.7) (4.9) (32.1) (12.4) (22.6) (35.1) (22.8) (6.9) (5.8) (4.6) (7.0)
4 0.3 1.2 -0.7 1.1 -1.2 -0.3 0.1 0.1 0.2 2.1 0.3 -0.3 -0.9 -0.3 -0.1 0.1 0.2 -0.4

(22.1) (43.8) (30.4) (22.0) (35.9) (5.7) (44.8) (12.5) (4.7) (35.7) (12.5) (23.2) (30.6) (24.1) (7.0) (5.8) (4.6) (7.0)
5 -0.1 0.3 0.7 1.0 1.4 0.1 -0.5 0.2 -0.2 -0.8 -0.1 0.2 -1.3 -0.4 -0.0 0.2 0.1 -0.1

(22.5) (44.3) (31.2) (21.5) (33.5) (5.9) (42.6) (12.6) (4.9) (35.5) (12.6) (23.9) (29.9) (22.3) (6.9) (5.7) (4.7) (6.8)
6 0.3 -0.6 0.3 -0.9 -0.2 -0.2 3.2 0.3 -0.2 -0.4 0.3 0.3 0.4 -0.6 -0.1 -0.1 0.3 -0.1

(21.1) (43.3) (30.0) (22.4) (33.8) (5.9) (43.3) (12.7) (4.9) (34.3) (12.7) (22.9) (29.7) (22.1) (6.9) (5.9) (4.8) (6.9)
7 -0.4 -1.6 0.2 0.3 -0.2 -0.1 0.4 -0.5 -0.1 1.4 0.5 -0.4 -0.7 1.3 -0.0 0.3 -0.0 -0.1

(22.0) (36.0) (30.8) (21.6) (34.2) (5.9) (43.7) (12.6) (4.8) (34.2) (12.6) (22.4) (29.5) (22.6) (6.8) (5.8) (4.8) (7.1)
8 0.3 -1.0 1.5 0.2 0.7 -0.1 -0.7 0.0 0.1 0.6 -0.3 -0.4 -0.7 0.2 0.2 -0.2 -0.5 -0.1

(22.4) (36.6) (31.2) (22.2) (34.5) (5.9) (36.7) (12.9) (4.9) (33.9) (13.0) (22.4) (29.9) (22.6) (6.9) (6.0) (4.9) (7.0)
9 -1.4 -0.5 1.4 1.1 0.6 -0.1 -1.4 -0.2 -0.1 -0.2 0.1 0.9 0.4 -0.3 0.0 0.4 0.2 -0.0

(22.0) (25.9) (28.0) (22.2) (34.2) (5.9) (36.5) (12.9) (4.8) (34.7) (12.9) (22.1) (29.3) (22.8) (7.1) (5.9) (5.2) (7.3)
10 -0.5 0.2 0.5 0.3 -2.2 -0.1 -0.3 0.0 0.3 -1.0 -0.0 0.8 0.6 1.0 0.4 0.1 -0.1 0.0

(21.9) (31.7) (30.3) (22.2) (24.3) (6.0) (6.3) (0.0) (6.3) (30.9) (13.0) (22.3) (28.6) (21.2) (7.0) (5.8) (5.0) (6.9)
11 0.6 1.1 -2.0 0.3 0.3 0.4 0.4 -0.2 0.3 0.1 -0.1 -0.0 -0.4 -1.2 -0.0 -0.1 -0.0 0.3

(22.1) (26.9) (28.8) (22.5) (32.0) (5.8) (35.5) (13.0) (4.7) (25.9) (4.0) (25.0) (30.4) (22.5) (6.9) (5.9) (4.6) (6.9)
12 -0.3 0.7 -0.8 -0.2 0.1 -0.1 1.3 -0.3 0.3 1.0 -0.2 -0.8 -1.3 0.2 -0.0 0.4 0.2 -0.2

(21.0) (26.8) (28.8) (22.4) (24.3) (5.8) (26.5) (4.4) (4.5) (24.9) (3.9) (24.1) (28.7) (23.4) (6.8) (6.0) (4.6) (7.1)
13 -1.4 0.0 1.4 -0.0 -0.1 -0.1 -0.2 -0.2 0.0 -1.9 -0.0 1.9 0.3 0.3 -0.0 -0.0 0.1 0.0

(21.0) (0.0) (21.0) (21.0) (25.3) (4.8) (20.1) (4.1) (2.3) (20.2) (11.2) (20.2) (25.7) (24.6) (5.3) (4.4) (2.5) (4.4)
14 0.2 0.1 -0.5 0.4 1.7 -0.4 0.1 -0.2 0.1 -0.2 0.0 0.5 -0.6 -1.4 0.3 0.0 0.1 0.0

(10.6) (22.1) (12.5) (6.8) (10.2) (6.8) (16.9) (4.3) (2.3) (10.6) (0.0) (12.5) (19.1) (9.9) (7.0) (0.0) (3.1) (0.0)
15 -0.7 0.0 0.7 0.6 -0.5 0.0 -0.4 -0.1 0.2 -0.9 0.0 0.9 -0.4 0.4 0.0 -0.1 0.0 0.1

(20.3) (0.0) (20.3) (10.9) (13.8) (0.0) (21.7) (7.2) (4.0) (20.5) (0.0) (20.5) (13.1) (13.1) (0.0) (4.5) (0.0) (4.5)
16 0.6 0.1 -0.8 0.0 0.8 0.0 0.0 0.0 0.0 -0.6 0.0 0.8 0.0 -0.8 0.0 0.0 0.0 0.0

(10.8) (21.2) (12.9) (0.0) (9.6) (0.0) (0.0) (0.0) (0.0) (10.8) (0.0) (12.9) (0.0) (9.6) (1.1) (0.0) (3.0) (0.0)
17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (9.3) (0.0) (9.3) (0.0) (0.0) (0.0) (0.0) (0.0) (1.1)
18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

links. A total of 528 routes, obtained using the Wardrop assignment model, are considered, which
corresponds on average between 3 and four paths per Origin-Destination.

To identify all path flows, a minimum number of links have to be scanned. To this end,
problem (8)-(10) has been solved, resulting 100 links to be observed. Note that the improved
models proposed in this paper were, in fact, motivated by the interest in applying the scanning
method proposed by Castillo et. al (2008) in this city, where budget limitations did not allow us
to observe all route flows. For this reason, model M2 is solved for different budgets, i.e., different
number of scanning devices, {100, 95, 90, 85, 80, 75}. Note that we have included 100 which is the
minimum number of scanning devices providing full observability.

In order to show computational time statistics, we have run 100 times problem M2 (20)-(23) for
the different number of scanning devices considered. All problems have been solved using CPLEX
under GAMS (Brooke et al., 2008) on a Linux-based server using four processors clocking at 2.6
GHz and 32 GB of RAM.

Note that for this particular example, model M2 has 38983 equations, 1201 continuous variables,
672 discrete variables, and 905351 non-zero elements. Simulation results are provided in Table 7
where the following comments are pertinent:
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Figure 3: Traffic network representation of the city of Cuenca (Spain).

Table 7: Mean and standard deviation of the computational time (CPU time) in seconds con-
sidering different number of available scanning devices and using 100 simulations for the Cuenca
network example.

Number of scanning devices
100 95 90 85 80 75

Mean (sec) 89.4 183.4 113.5 330.3 422.0 984.0
Std (sec) 19.1 28.1 8.5 70.7 74.8 115.9

1. All problems considered in this example are solved within a reasonable amount of time (less
than one 20 minutes of CPU time) for a design problem.

2. Computational time increases with the number of possible combinations of the available
scanning devices nsc (determined by the budget) in the existing links n`, given by the formula:

(
n`

nsc

)
=

n`!
nsc!(n` − nsc)!

. (42)

5 Conclusions

The main conclusions that can be drawn from this paper are the following:

1. Flow covering is a very important rule to be considered in order to reproduce the OD flows
as close as possible. In fact, location of plate scanning devices without consideration of this
rule cannot lead to good predictions.
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2. Including the prediction errors in the objective function leads to very important improvements
in the quality of predictions, not only in the mean values (accuracy), but in the standard
deviations (precision). This has been illustrated by simulations.

3. Prior O-D matrices provide better estimation results, nevertheless, for the cases where no
prior information is available, model M3 based on the MPRE concept derived by Yang et al.
(1991) provide satisfactory results, giving an insight of the overall problem.

4. Several models have been presented for an adequate selection and location of plate scanning
devices. They include budget constraints together with the consideration of already existing
devices.

5. Some of the natural binary variables involving routes can be replaced by continuous variables
in the range [0, 1]. This has been proved in Theorem 1 and leads to an important reduction
in cpu and memory resources.

6. A technique to reduce the possibility of scanning errors by using redundant measures have
been presented. However further research should be done on this topic using adequate sta-
tistical models to predict scanning devices failure behavior.
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