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Abstract

Recent advances in the description of environmental and geophysical extreme events
allow incorporating smooth time variations for the parameters of the GEV distri-
bution using harmonic functions, long-term trends and covariates (North Atlantic
Oscillation, El Niño, etc.). Most of the proposed models rely on the maximum like-
lihood estimation method for a given parameterization. However, finding the best
parameter selection for each case is not an easy task, since the number of possible
combinations grows exponentially with the number of possible parameters to be
considered. This problem is usually overcome by assuming simplified models based
on experience or using heuristic approaches, which are computationally very expen-
sive. In this paper, a method to obtain a pseudo-optimal parameterization using
the maximum likelihood method is presented. The proposed algorithm automati-
cally selects the parameters which minimize the Akaike Information Criterion within
an iterative scheme, including one parameter at a time based on a score perturba-
tion criteria. The process is repeated until no further improvement in the objective
function is achieved. The proposed method is applied for the adjustment of monthly
maximum significant wave height at different locations around the Atlantic coast
and results are compared with those obtained using an existing heuristic approach,
showing an important reduction in computational time and comparable results in
terms of fitting quality.
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1 Introduction

Recent advances in the extreme value theory (see Coles (2001); Katz et al.
(2002) as general references) allow modeling the natural variability of extreme
events of environmental and geophysical variables. These methods introduce
time-dependent variations within a certain time scale (year, season or month),
improving our knowledge on some important processes which are time depen-
dent. Additionally, a key issue is the possibility to construct regression models
to show how the variables of interest may depend on other measured covariates,
for example, how maximum significant wave heights for a particular location
depend on the North Atlantic Oscillation (NAO).

Examples of these kinds of models can be found in Carter and Challenor
(1981), which proposes a month-to-month distribution assuming that data are
identically distributed within a given month. Smith and Shively (1995) con-
structed a regression model for the frequency of high-level ozone exceedances
in which time and meteorology are regressors. Morton et al. (1997) apply a
seasonal Peak Over Threshold (POT) model to wind and significant wave
height data. Analogous models but applied to different geophysical variables
can be found in Coles (2001), Katz et al. (2002) or Méndez et al. (2007).
Méndez et al. (2006) developed a time-dependent POT model for extreme sig-
nificant wave height which considers the parameters of the distribution as func-
tions of time (harmonics within a year, exponential long-term trend, the South-
ern Oscillation Index (SOI), etcetera). Brown et al. (2008) studied the global
changes in extreme daily temperature since 1950 considering possible trends
and the influence of the North Atlantic Oscillation (NAO). Menéndez et al.
(2009a) and Izaguirre et al. (2010) developed a time-dependent model based
on the GEV distribution that accounts for seasonality and interannual vari-
ablility of extreme monthly significant wave height. The non-stationary be-
havior is parameterized using functions of time (harmonic functions and co-
variates) for the parameters of the distribution.

All these models try to reproduce the behavior of environmental or geophysical
extreme value variables using sophisticated parameterizations, whose param-
eter estimation is not an easy task because i) prior selection of significant
harmonic functions and covariates is not evident and the number of possible
models can be very large (2np − 1), which makes exploring all possible combi-
nations only feasible for small values of np (number of parameters), ii) once the
parameters are chosen, since its number can be high, appropriate estimation
methods not included in standard statistical packages are required. The first
problem is overcome assuming simplified models based on experience, which
are tested through goodness of fit methods, or using heuristic approaches.
For instance, Menéndez et al. (2009a) considers the largest parameterization
possible for including non-stationary effects using sinusoidal harmonics into
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a GEV distribution. The optimal parameterization is automatically selected
minimizing the Akaike Information Criterion (AIC)(Akaike, 1973), the opti-
mization problem is solved using a stepwise algorithm that combines forward
selection and backward elimination procedures. The second problem is solved
using nonlinear optimization subroutines for unbounded or bounded problems,
which allows obtaining the maximum likelihood estimates for complex mod-
els efficiently. A similar approach is used in Menéndez et al. (2009b) where
monthly maxima extreme sea levels are forecasted based on a time-dependent
GEV model.

The problem of selecting the best regression model for large scale problems has
been widely studied in the literature, but mostly related to linear regression
techniques. Since the leaps-and-bounds algorithm (Furnival and Wilson, 1974)
and forward, backward and stepwise selection techniques started by Hocking
(1976), different methods have been proposed, such as, the dropping column
algorithm (DCA) (Clarke, 1981), ridge regression, the non-negative garrote
and the lasso (Breiman (1995), Fan and Li (2001) and Tibshirani (1996)), se-
quential replacement algorithms (Hastie et al., 2001), branch-and-bound tech-
niques (Narendra and Fukunaga (1997), Roberts (1984), Somol et al. (2004),
Gatu and Kontoghiorghes (2006), and Hofmann and Kontoghiorghes (2007)),
and heuristic approaches (Hofmann and Kontoghiorghes, 2007). However, be-
sides the method proposed by Menéndez et al. (2009a), we have not found
in the literature methods for parameter selection related to the Generalized
Extreme Value (GEV) distribution.

In this paper, a new method for automatically selecting the best parameteriza-
tion and the corresponding optimal parameter estimates based on the Gener-
alized Extreme Value (GEV) distribution is proposed. The method minimizes
the Akaike Information Criterion (AIC), which establishes a compromise be-
tween obtaining a good fit and using a simple model. The main advantage of
the proposed method is that it converges monotonically to the final solution
incorporating one single parameter at a time. The parameter at each itera-
tion is included based on sensitivity analysis and/or perturbation techniques
from the last solution obtained. This procedure reduces drastically the num-
ber of different parameterizations checked out and it has proved to reduce
considerably computational times, providing analogous results as the alterna-
tive method. Note that proposing well-founded theoretical results on how to
choose the number of parameters to be included in the model is out of the
scope of the paper.

The rest of the paper is structured as follows. Section 2 gives an introduction to
the regression model based on the GEV distribution. In Section 3 the proposed
method is explained in detail. In Section 4 its functioning is illustrated by its
application to the study of the significant wave height maxima in different
locations around the Atlantic coast, comparing the results with the other
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existing approach. Section 5 offers some concluding remarks.

2 Regression Model based on the Time-Dependent GEV Distribu-
tion

Time-dependent methods within a certain time scale, use time series of block
maxima for successive periods (xt), which are called maxima series (MMS),
where xt is the selected maxima for a given period (e.g., month) t.

To account for this temporal dependence, Menéndez et al. (2009a) use an ex-
tension of the standard models of extreme value theory for non-stationary
variables proposed by Coles (2001), with a more complex parameterization.
Monthly maxima of successive months are assumed to be independent random
variables, but the hypothesis of homogeneity through consecutive months is
not needed (because they are not presumed to be identically distributed).
Monthly maximum Xt of the climate variable observed in month t follows a
GEV distribution with time-dependent location parameter µt, scale parameter
ψt, and shape parameter ξt, with probability density function (PDF) given by:

g(xt; µt, ψt, ξt) =





exp



−

[
ξt

(xt − µt)

ψt

+ 1

]−1/ξt

+





ψt

[
ξt

(xt − µt)

ψt

+ 1

]1+
1

ξt

+

; ξt 6= 0,

exp

{
µt − xt

ψt

− exp

(
µt − xt

ψt

)}

ψt

; ξt = 0,

(1)

where [a]+ = max(0, a), and the support is xt ≤ µt−ψt/ξt if ξt < 0 (Weibull),
xt ≥ µt−ψt/ξt if ξt > 0 (Fréchet), or −∞ < xt < ∞ if ξt = 0 (Gumbel). Note
that we consider Xt as the random variable associated with the maximum at
time t, and xt a particular instance, value or data of the corresponding random
variable.

The GEV distribution includes three distribution families corresponding to the
different types of the tail behavior: Gumbel family, the case ξt = 0; Fréchet
distribution, with ξt > 0; and Weibull family, with ξt < 0 and a bounded tail.

To introduce seasonality, possible long-term trends and the influence of differ-
ent covariates, the model proposed by Menéndez et al. (2009a) is extended as
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follows:

µt = β0 +
Pµ∑

i=1

[β2i−1 cos(iwt) + β2i sin(iwt)] + βLTt +
Qµ∑

k=1

βco
k nk,t (2)

log (ψt) = α0 +
Pψ∑

i=1

[α2i−1 cos(iwt) + α2i sin(iwt)] + αLTt +
Qψ∑

k=1

αco
k nk,t (3)

ξt = γ0 +
Pξ∑

i=1

[γ2i−1 cos(iwt) + γ2i sin(iwt)] , (4)

where t is given in years, log (ψt) ensures positiveness of the scale parameter
(ψt > 0), β0, α0, and γ0 are mean values, βi, αi, and γi are the amplitudes
of harmonics considered in the model, w = 2π/T is the angular frequency,
T is one year, and Pµ, Pψ and Pξ are the number of sinusoidal harmonics to
be considered within the year, associated with the location, scale and shape
parameters, respectively. Note that it is possible to consider the effects of long-
term trends and covariate influences for both location and scale parameters,
through the coefficients βLT, αLT, βco

k ; k = 1, . . . , Qµ and αco
k ; k = 1, . . . , Qψ,

where Qµ and Qψ are the number of covariates considered (SOI, NAO, monthly
mean sea level pressure principal components, etc.) for location and scale
parameters, respectively. nk,t is the value of covariate k at time t. We assume
that long term and covariate components related to the shape parameter are
negligible, nevertheless, it could be incorporated easily in the methodology.
Note that the results are limited to the use of the proposed model (2)-(4), it is
however complex enough to account for seasonality, covariates and long term
trends.

For any model including a certain number of model parameters Pµ, Pψ, Pξ,
Qµ, and Qψ represented by the following parameter vector

θ = (β0, βi, βLT, βco
k , α0, αi, αLT, αco

k , γ0, γi), (5)

and for nd observations of monthly maxima xt occurring at time t, model
parameters are estimated using the method of maximum likelihood (see details
in Section 3.3). We advocate this approach for the following reasons:

(1) The maximum likelihood estimation is an optimization problem, and cur-
rently available optimization software is versatile, efficient and robust.
Details about particular optimization methods used are given in Sec-
tion 3.

(2) The iterative parameter selection is based on sensitivity analysis or per-
turbation techniques, which requires first order derivative evaluation of
the objective function. This can be easily done for the log-likelihood func-
tion, but it is more difficult to accomplish using Bayesian methods.
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Note that the estimation procedure starts once the vector of parameters (5)
is selected, however the selection of which parameters are going to be incor-
porated in order to obtain the best model parameterization possible is not
an easy task. In the following Section, the proposed method is explained in
detail.

Time dependent return level quantiles qt,T associated with the return period
T (in years) are calculated using:

qt,T =





µt − ψt

ξt

[
1−

(
− log

(
1− 1

T

))−ξt
]
, if ξt 6= 0,

µt − ψt log
(
− log

(
1− 1

T

))
, if ξt = 0.

(6)

Confidence intervals are obtained, assuming approximate normality for the
maximum likelihood estimators, using the delta method (Rice, 1994).

3 Automatic Regression Model Selection Based on Sensitivity Anal-
ysis

Parameterizations like (2)-(4) allow constructing complex models that better
capture the characteristics of the extreme tail behavior related to environmen-
tal and geophysical variables. However, the increasing number of parameters
(harmonics, trends or covariates) makes it more difficult to select the subset
providing the best model.

Based on Menéndez et al. (2009a), the quality of the model is determined using
the Akaike Information Criterion (AIC, Akaike (1973)), which establishes a
compromise between obtaining a good fit and keeping the model as simple
as possible. The best model is, therefore, selected based on minimizing the
following objective function:

Minimize
θ

AIC = −2`∗(x, t; θ) + 2np (7)

where `∗(x, t; θ) is the maximum log-likelihood optimal objective function for
given parameters θ, and np is the number of parameters (harmonics, trends
and/or covariates) included in θ. The term −2`∗(x, t; θ) measures the good-
ness of fit, while the number of parameters np favors the simplicity of the
model. The proposed method remains valid if alternative criteria, such as
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the φ-criterion (Hannan and Quinn (1979)), the Bayesian information crite-
rion (Schwarz (1978)), George and Foster (1994) criterion or Hurvich and Tsai
(1989) criterion are considered. Each of these criteria assess the quality of each
model by making a compromise between goodness of fit and simplicity, so that
the smaller the criterion, the better the model.

Note that problem (7) is difficult to solve, being a mixed-integer nonlinear
programming (MINLP) problem, where the binary variables are related to
the inclusion or not of certain parameters in the model, and the nonlinearity
is associated with the estimation problem procedure based on the maximum
likelihood method. An alternative to solving this problem is exploring all the
possible models, which is only feasible for small values of np. Several meth-
ods based on branch and cut techniques or heuristic approaches have been
proposed in the linear regression literature. Menéndez et al. (2009a) propose
a chromosome codification for the optimal selection of harmonics in (2)-(4)
and use a stepwise algorithm that combines forward selection and backward
elimination procedures. Computational time increases exponentially with the
number of possible parameters to be included, which is more relevant if trends
and covariates are incorporated. Note that in Menéndez et al. (2009a) ap-
proach, the maximum number of possible harmonics to be included must be
fixed beforehand.

To improve the automatic model selection, we propose an iterative method
based on the following assumptions:

(1) The process starts from the simplest model possible, which corresponds
to the traditional stationary model whose parameter vector corresponds
to θ = (β0, α0, γ0).

(2) The method does not require establishing a priori the maximum number
of possible parameters Pµ, Pψ and Pξ to be considered, it automatically
includes new parameters as long as the Akaike criterion decreases.

(3) Based on sensitivity analysis information, the number of parameters is
increased by one unit at each iteration, except for the harmonic case,
which includes two new parameters (see equation 2).

(4) It is recognized in the literature that the shape parameter has longer time
scale dependent variations than the location and scale parameters, and
for this reason, the shape parameter should not vary without allowing
any of the other parameters also to vary.

(5) For model selection, the order of parameter inclusion is i) harmonics
(βi, αj, γk), that account for the non-stationary behavior (intra-annual
variability), ii) covariates (βco

i , αco
j , for inter-annual variability), and iii)

tendencies (βLT, αLT, for long-term trends). Note that the order crite-
rion is based on physical considerations, from lower to higher time-scale
effects. Numerical tests have confirmed the validity of these assumptions.

(6) The inclusion of a new parameter requires a new parameter estimation
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process, which results in an optimal log-likelihood function greater than
or equal to the previous value:

`∗(x, t; θ̂) ≥ `∗(x, t; θ), (8)

where θ̂ includes the new parameter.
(7) Harmonics are included in the model in increasing order for location, scale

and shape parameters respectively, i.e. once a new harmonic is introduced
it is not removed even though new harmonics are included afterwards.

The main purpose of the methodology is to use a pseudo-steepest descent
algorithm, which at every iteration and based on sensitivity analysis (first-
order derivative) information, selects the best parameter to be introduce in the
model that maximizes the increment in the log-likelihood function, which in
this case is the parameter whose perturbation in the log-likelihood function is
maximum. The algorithm continues including new parameters until no further
improvement in the AIC is achieved.

Note that some could argue about the criterion used to select the best pa-
rameterization, claiming that it is over-specified, but we believe that it is not
pertinent to a paper describing a fitting code. Besides, at the end of the pro-
cess, standard errors of the parameter estimates could be used, and if the
t-statistics of some of the parameters were not significant, this would suggest
that those terms should be omitted from the model.

3.1 Maximum perturbation selection criteria

Let us consider a parameter vector θ. The parameter estimates are obtained
by maximizing the log-likelihood function, which is an unconstrained non-
linear optimization problem. At its optimal solution (θ∗, `∗) (see Bazaraa et al.
(1993) or Luenberger (1984)), the Karush-Kuhn-Tucker (KKT) first order op-
timality conditions reduce to:

∇θ`(θ∗) =0, (9)

which establishes that the gradient of the objective function with respect to
θ at the optimal solution θ∗ must be zero.

Note that using the chain rule, the derivatives of the log-likelihood function
with respect to parameters associated with the location parameter (µt), i.e.
Ωµ ∈ {β0, βj; j = 1, . . . , Pµ, βLT, βco

k ; k = 1, . . . , Qµ}, are (see Appendix A.1
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for a complete derivation):

∂`

∂Ωµ

=
∑

∀t

∂`

∂µt

∂µt

∂Ωµ

, (10)

where

∂µt

∂Ωµ

=





1 if Ωµ = {β0}
t if Ωµ = {βLT}
nk,t if Ωµ = {βco

k }
cos

(
j+1
2

wt
)

if Ωµ = {βj} and j odd

sin
(

j
2
wt

)
if Ωµ = {βj} and j even.

(11)

Expression (10) would allow us to evaluate the perturbation produced by
a possible additional parameter set (θ̂) because expressions in (11) do not
depend on the new parameter values but on data related to time, covariates
or harmonics. Note that (10) is the derivative of the log-likelihood function
with respect to parameters, which is also known as score U(Ωµ). Analogous
results are obtained for the scale and shape parameters. In addition and using
expressions provided in Appendix A.2 the hessian of the log-likelihood function
can be calculated.

For this reason once the optimal solution of the log-likelihood function is
known, and considering different sets of possible parameters to be included in
the model θ̂1, θ̂2, . . . , θ̂`, it is possible to obtain which additional parameter
would produce more perturbation (maximum decrement in Akaike Information
Criterion) if it is included in the model, which corresponds to the one with
maximum score test statistic absolute value (Cox and Hinkley, 1974):

|S(θ̂i)| = |U(θ̂i)
T I−1(θ̂i)U(θ̂i)|, (12)

where U(θ̂i) is the score associated with parameter set θi, and I is the observed
Fisher information matrix, i.e. the negative of the log-likelihood Hessian ma-
trix. This is considered the most influential parameter and it is the one chosen
for the next iteration (see Theorem 1 in Appendix B). We use the score test
statistic as selection criterion for the following reasons:

(1) It allows comparing the influence of different sets with multiple parame-
ters, and even if the sum of scores is small detects if yet the increase in
the log-likelihood is significant and the set worth including.

(2) In order to compare the different sets of parameters, they should be di-
vided by the square root of their variance so that, for each parameters
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set, its square has expectation 1 under the null hypothesis. The score test
statistic has this property, i.e. is properly scaled.

For example, let us consider that our last optimal fitted model (θ∗) has i
harmonics for the location, j for the scale and k for the shape parameters, and
we wish to know the influence of an additional harmonic in the log-likelihood
function, i.e. the inclusion of the following plausible terms in (2), (3) and (4),
respectively:

β2(i+1)−1 cos((i + 1)wt) + β2(i+1) sin((i + 1)wt), (13)

α2(j+1)−1 cos((j + 1)wt) + α2(j+1) sin((j + 1)wt), (14)

γ2(k+1)−1 cos((k + 1)wt) + γ2(k+1) sin((k + 1)wt), (15)

which correspond to the harmonics i+1, j+1 and k+1 associated with location,
scale and shape parameters. Parameter set values θ̂i = {β2(i+1)−1, β2(i+1)},
θ̂j = {α2(j+1)−1, α2(j+1)}, θ̂k = {γ2(k+1)−1, γ2(k+1)} are unknown, because we
have not fitted the model including these new parameters. However, using (10)
and the expressions for the hessian given in Appendix A.2, the scores and the
observed Fisher information matrix assuming that β2(i+1)−1 = 0, β2(i+1) = 0,
α2(j+1)−1 = 0, α2(j+1) = 0, γ2(k+1)−1 = 0, and γ2(k+1) = 0 can be calculated.
The harmonic with maximum absolute value of the score test statistic:

max
(
|U(θ̂i)

TI−1(θ̂i)U(θ̂i)|; |U(θ̂j)
TI−1(θ̂j)U(θ̂j)|; |U(θ̂k)

TI−1(θ̂k)U(θ̂k)|
)

(16)

is the next harmonic to be considered in the model. This is the one which
can potentially produce a greater change in the log-likelihood function and
thereby in the Akaike Information Criterion.

This method uses local derivatives information and is valid for small pertur-
bations on parameters, i.e. if the resulting parameters θ∗ after fitting do not
change significantly. This method allows us to make the decision about which
parameters should be incorporated without the need to solve the fitting pro-
cess for all possible alternatives. Note that there is no mathematical proof
that the resulting parameter selection is a global optimum. However, compu-
tational tests have confirmed the effectiveness of the method to provide the
same selection as the alternative, but more time consuming method, proposed
by Menéndez et al. (2009a).

The process is analogous for the covariates, where the score test statistic (12)
becomes:

S(θ̂i) =
U2(θ̂i)

I(θ̂i)
, (17)
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where θ̂i corresponds to a single parameter, and thus the covariate with higher
value of the expressions:

maximum
i = 1, . . . , Qµ, j = 1, . . . , Qψ

(∣∣∣∣∣
U2(β̂co

i )

I(β̂co
i )

∣∣∣∣∣ ;
∣∣∣∣∣
U2(α̂co

j )

I(α̂co
j )

∣∣∣∣∣

)
, (18)

is the next covariate to be considered in the model. This is the one which can
potentially produce a greater change in the log-likelihood function.

3.2 Algorithm for automatic model selection

The proposed pseudo-optimal parameter selection algorithm shown in Figure 1
works as follows:

Step 1:

 = 1;ν θ ν(  ) = (   0,     0,    0)α β γ

Step 2: ML estimation

θ ν(  ) θ ∗= ; AIC
ν(  )

Step 3   

<AIC
ν(  )

AIC
ν(  −1)

If

Step 4: Score test

statistics for new 

potential harmonics

Step 6: Include

new harmonic θ ν(  )

 > 1ν

Yes

No

 =   + 1ν ν

Yes

Step 7: 

Best harmonic

model         νθ (   −1)

No

Step 15: Include

location trend β
LT

Step 16: ML estimation

θ ν(  ) θ ∗= ; AIC
ν(  )

Step 17  

<AIC
ν(  )

AIC
ν(  −1)

If

...

...

...

HARMONICS TRENDS

Yes No

 =   + 1ν ν Remove βLT

Step 18: Include

scale trend α
LT

Step 19: ML estimation

θ ν(  ) θ ∗= ; AIC
ν(  )

Step 20  

<AIC
ν(  )

AIC
ν(  −1)

IfYes No

 =   + 1ν ν Remove αLT

...

Step 11: ML estimation

θ ν(  ) θ ∗= ; AIC
ν(  )

Step 12   

<AIC
ν(  )

AIC
ν(  −1)

If

Step 9: Score test

statistics for new 

potential covariates

Step 10: Include

new covariate θ ν(  )

COVARIATES

 =   + 1ν ν

Step 14: Best model

parameter θ ν(   −1)

No

Yes

More possible

covariates?

Yes

Step 13: Best model

parameter θ ν(   )

No

End

Step 5   

If     =1

& best har.

ξ

ν

No

Step 8: 

Best harmonic

model        νθ (   )

Fig. 1. Structure of the proposed pseudo-optimal parameter selection framework.

Algorithm 1 (Automatic model selection).

Input: Data (x,t,n), which correspond to maximum data, time and covari-
ates.
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Output: Vector of selected parameters which minimize (7), and their optimal
values θ∗.

• Step 1: Harmonics. Set the iteration counter to ν = 1, for this iteration
the simplest model is selected θ(ν) = (β0, α0, γ0).

• Step 2: Obtain the maximum-likelihood estimators for the selected param-
eters, i.e. θ(ν) = θ∗, and calculate the AIC objective function AIC(ν) from
(7). If ν > 1 go to Step 3, otherwise continue in Step 4.

• Step 3: If AIC(ν) <AIC(ν−1), go to Step 4, otherwise go to Step 7.
• Step 4: Calculate the score test statistics for possible additional harmonics

related to the location, scale and shape parameters using (12) and expres-
sions given in Appendix A.

• Step 5: If ν = 1 and the maximum score test statistic absolute value is
associated with the shape parameter ξ go to Step 8, otherwise go to Step 6.

• Step 6: Update the iteration counter ν → ν + 1, include in the parameter
vector θ(ν) the harmonic, i.e. the parameters (β2(ν+1)+1, β2ν), (α2(ν+1)+1, α2ν)
or (γ2(ν+1)+1, γ2ν), corresponding to the maximum value of (16) and continue
in Step 2.

• Step 7: End of the harmonic checking, the optimal model parameter vector
so far is θ(ν−1). Go to Step 9.

• Step 8: End of the harmonic checking, the optimal model parameter vector
corresponds to the stationary model, i.e. θ(1). Continue in Step 9.

• Step 9: Covariates. Calculate the score test statistics for possible additional
covariates related to the location and scale parameters. Make use of (17) and
expressions given in Appendix A.

• Step 10: Update the iteration counter ν → ν + 1, and include in the pa-
rameter vector θ(ν) the covariate corresponding to the maximum value of(∣∣∣∣∣

U2(β̂co
i )

I(β̂co
i )

∣∣∣∣∣ ; ∀i,
∣∣∣∣∣
U2(α̂co

j )

I(α̂co
j )

∣∣∣∣∣ ; ∀j
)
.

• Step 11: Obtain the maximum-likelihood estimators for the selected param-
eters, i.e. θ∗, and calculate the AIC objective function AIC(ν) from (7).
Continue in Step 12.

• Step 12: If AIC(ν) <AIC(ν−1) and there are additional covariates which
could be incorporated in the model, go to Step 9, if there are not additional
covariates go to Step 13, otherwise continue in Step 14.

• Step 13: End of the covariate checking, the optimal model parameter vector
is θ(ν). Continue in Step 15.

• Step 14: End of the covariate checking, the optimal model parameter vector
is θ(ν−1). Continue in Step 15.

• Step 15: Trend. Continue with iteration ν, and include in the parameter
vector θ(ν) the tendency for the location parameter βLT. Go to the next step.

• Step 16: Obtain the maximum-likelihood estimators for the selected param-
eters, i.e. θ∗, and calculate the AIC objective function AIC(ν) from (7).

• Step 17: If AIC(ν) <AIC(ν−1), the trend with respect to the location param-
eter βLT is significant, update the iteration counter ν → ν +1, otherwise the
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iteration counter is not updated and the location trend is removed from the
parameter vector. For both cases continue with Step 18.

• Step 18: Tendency. Include in the parameter vector θ(ν) the trend for the
scale parameter αLT.

• Step 19: Obtain the maximum-likelihood estimators for the selected param-
eters, i.e. θ∗, and calculate the AIC objective function AIC(ν) from (7).

• Step 20: If AIC(ν) <AIC(ν−1), the trend with respect to the scale parameter
αLT is significant, update the iteration counter ν → ν + 1, otherwise the
iteration counter is not updated and the scale tendency is removed from the
parameter vector. End of the algorithm.

Note that the proposed algorithm has three different parts related to harmon-
ics, covariates and trends, respectively, as shown in Figure 1. The procedure
approaches the best model parameters decreasing the AIC monotonically until
no further improvement is possible.

3.3 Maximum likelihood estimation

For parameter statistical inference the method of maximum likelihood is used.
Note that this estimation process is repeated once a new parameter is included
in the vector θ. The log-likelihood function for the parameters given by (2)-(4)
is as follows:

`(x,θ) =
nd∑

t=1

log(g(xt; µt, ψt, ξt))

= −
nd∑

t=1

{
log ψt +

(
1 +

1

ξt

)
log zt + zn

t

}
,

(19)

where zt = 1 + ξt

(
xt − µt

ψt

)
and zn

t = z
−1/ξt

t are auxiliary parameters to

simplify the analytical expression (19) and its computational implementation.
For the Gumbel case, i.e. ξt = 0, the log-likelihood function is given by:

`(x, θ) = −
nd∑

t=1

{
log ψt +

xt − µt

ψt

+ exp

(
−xt − µt

ψt

)}
. (20)

Note that the tail of the distribution may change during the periods of time
considered, so that expressions (19) and (20) must be combined.

The maximization of the log-likelihood function can be done using an uncon-
strained nonlinear optimization routine. Additionally, a constrained optimiza-
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tion method including upper and lower bounds for some parameters could
be used. We have run different tests using alternative solvers to check the
consistency of the obtained results and the adequacy of the different solver
possibilities:

(1) Solver MINOS (Murtagh and Saunders, 1998) under GAMS (Brooke et al.,
1998) including bounds on parameters to be estimated, which uses a
reduced-gradient algorithm (Wolfe, 1963) combined with the quasi-Newton
algorithm described in Murtagh and Saunders (1978). The gradient vec-
tor information is obtained using numerical differentiation.

(2) A Trust Region Reflective Algorithm under Matlab without bounds using
function fminunc or with upper and lower bounds through the function
fmincon. For details about the method see Coleman and Li (1994) and
Coleman and Li (1996). In order to improve convergence properties both
the gradient and hessian of the objective function are calculated analyt-
ically (see Appendix A for details).

(3) A global optimization procedure, the shuffled complex evolution (SCE) al-
gorithm (Duan et al., 1992), which consists of an intelligent Monte Carlo
minimum search for obtaining global solutions.

Based on those tests, the following comments and recommendations are per-
tinent:

(1) Although the theoretical possibility of multiple local maxima exists, such
phenomenon is rare, and it has been speculated that they can not occur at
all for simple models (stationary) (Smith, 2001). However, in this paper
complex models with many covariates are used, and the possibility of
multiple maxima is real. Numerical tests using different data, different
solvers and different starting points converged to the same solution, which
indicates that these kinds of models for environmental data are well posed
from the numerical point of view. On the other hand, it has been checked
that once one parameter is included in the model, its optimal value does
not change significantly although new parameters are included.

(2) The trust region reflective algorithm has been chosen because i) analytical
first and second order derivative information can be included, ii) upper
and lower bounds on parameters can be considered easily, iii) it is com-
putationally faster than GAMS. Note that although the MLE parameter
fitting is an unconstrained maximization problem, we rather use a con-
strained optimization solver to including parameter bounds, which makes
the estimation more robust. These bounds help avoiding parameter zt in
(19) taking negative values. However, if, for any t, the zt value is below
a small quantity (10−4), its value is kept equal to this small quantity
(zt = min(zt, 10−4)).

(3) All Newton-type routines require the user to supply starting values, but
the importance of good starting values can be overemphasized. Simple
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guesses are enough (Smith, 2001). Thus, for the first iteration, initial
guesses are taken as:

β0 =
nd∑

t=1

xt/nd; α0 =

√√√√
nd∑

t=1

(xt − β0)
2/nd; γ0 = 0.1, (21)

where the first two parameters correspond to the sample mean and stan-
dard deviation, respectively.

Since the overall method increases the number of parameters sequen-
tially, the best optimal parameters obtained so far are used as starting
values for the parameters of the next iteration. Note that new parameters
are initialized to zero.

(4) Shape parameter bounds are critical for ensuring convergence, if no in-
formation is available, they are constrained to fall between the following
values:

γup
o = 0.2; γlo

o = −0.2; γup
j = 0.15; γlo

o = −0.15.

Note that if no convergence is achieved, or any of the optimal values
equals its corresponding upper or lower bounds, the optimization proce-
dure must be launched again modifying those bounds:

γup = γup + 0.05 and/or γlo = γlo − 0.05,

where γ corresponds to the corresponding active bound, until convergence
is achieved and the optimality conditions given by (9) hold. Note that
the remaining parameters do not need to be bounded, although if for a
given data set the method does not converge additional bounds would
probably help in the optimization procedure.

(5) The Gumbel case is treated as a particular case of the GEV distribution.
If the shape parameter absolute value |ξt| is below a given threshold εξt ,
we use expressions for the Gumbel case. In this particular case εξt = 10−8.

(6) Scaling data within numerical optimization procedures based on gradient
information enhances the efficiency and reliability of the numerical pro-
cess. Thus data must be scaled about 1.0, which means that, for example,
if maximum wave height data values are about 200 centimeters, we would
use the data in meters dividing by 100.

One important consideration for the justification of the functioning of the
method is that the effect of including an additional parameter is a perturbation
over the previous existing model, so that once one parameter is included in
the model, consideration of additional parameters does not change its value
significantly. From this result the following observations are pertinent:

(1) The sensitivity analysis provides the most likely relevant parameter to be
included in the model.

(2) The last optimal values are appropriate starting values for fitting a new
model, which includes an additional parameter.
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Fig. 2. Reanalysis domain and locations of the study: 15W55N (NA), Azores (AZ),
Bretagne (BR), Landas (LA), Coruña (CO) and Lisbon (LI).

The convergence characteristics of the proposed algorithm are discussed in
Appendix B.

4 Maximum Significant Wave Height Adjustment in Different Lo-
cations

In order to show the functioning of the method in real cases, maximum sig-
nificant wave height data from six different locations: 15W55N (NA), Azores
(AZ), Bretagne (BR), Landas (LA), Coruña (CO) and Lisbon (LI) (see Fig-
ure 2) are considered. Data records consist of 528 maximum monthly values
obtained from a wave reanalysis database from 1958 to 2001. We have cho-
sen these data because of their homogeneity, both in time and in space. It is
conformed by 6-hourly continuous significant wave height data records, which
affects positively the stability of parameter estimates. Note that reanalysis
data also include monthly mean Sea Level Pressures (SLP), which allows con-
sidering as covariates their first 10 principal components in the North Atlantic
area at the times when the maximum values occur. Note that considerations
about the adequacy of using reanalysis data for extreme value analysis is out
of the scope of the paper, since the methodology is suitable to be applied to
any set of maxima or minima data.

We have applied the proposed algorithm to get the best parameter selection for
those particular sites. Results are given in Table B.1, where the best or pseudo-
optimal parameter selection, the corresponding optimal maximum likelihood

16



t

J
2

4

6

8

10

12

14

µ
t (

m
)

Time (yearly scale)

1

0.8

1.2

1.4

1.6

1.8

2

ψ
 (
m

)

F M A M J J A S O N D

 (a)

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0
Time (yearly scale)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 (b)

ε
t

Empirical
0 0.1 0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1

1

 (c)

Empirical
-1

-1

0

0

1

1

2

2

3

3

4

4

5

5

6

6

 (d)

F
it

te
d

F
it

te
d

0.1

 

q0.95

µ t

Hs
max

ψt

Bretagne

Fig. 3. Goodness of fit plots for the Bretagne data location corresponding to the best
model: (a) Maximum significant wave height data, location and scale parameters of
the best model and 20-year return period quantile (95%), (b) shape parameter of
the best model, (c) probability plot, and (d) quantile plot.

estimators (θ∗) and their standard deviations (σθ) are provided. Additionally,
the pseudo-optimal number of parameters np, the pseudo-optimal Akaike In-
formation Criterion (AIC), and the optimal value of the log-likelihood function
are presented.

Note that even though there is a mechanism to avoid shape parameters from
varying along the year without the other parameters also varying, this never
occurred within our numerical experiments, which indicates that this rarely
happens in practice using real data. This confirms that the shape time scale
dependent variations are longer than those for the location and scale param-
eters.

In Figure 3 the evolution of the location, scale, and shape parameters (solid
lines) along the year for Bretagne (BR) site, and the 20-year return-period
quantile (95%, dashed line) are shown. The model checking is graphically
evaluated using quantile-quantile (QQ) and probability-probability plots (PP)
(see Figures 3 (c) and (d)) which show very good diagnostics, with points close
to the diagonal. Analogous results were obtained for the remaining sites.

In terms of location parameters, the optimal harmonic selection varies be-
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Fig. 4. Inter-annual variability induced by the covariate effects for the Azores site,
showing the location, scale, 95% quantile and different aggregated quantiles evolu-
tion through different years.

tween two parameters for 15W55N, Bretagne, Landas, Lisbon and Coruña,
which correspond to the annual cycle, and four parameters for Azores, which
correspond to the annual plus semiannual cycle. This is enough to catch up
the modulation in the mean values along the year for all sites. Note that in
all cases the higher values correspond to the winter season (from November to
March), whereas the lower values correspond to the summer season, reaching a
minimum in July (see Figure 3 (a)). The overall behavior of the scale parame-
ter is analogous to the location parameter, increasing the maximum variability
during the winter season and decreasing during the summer. However, the vari-
ation during the year is less smooth, which is accounted for in the model with
the inclusion of additional harmonics, up to four (eight parameters) for the
Landas site. Finally, the shape parameter presents less variability, so that it is
constant for all sites but for Bretagne and Coruña. Note that in 15W55N and
Coruña present a negative shape parameter (upper bounded tail) but close to
zero, which almost corresponds to a Gumbel distribution. Analogously, Azores
and Landas shape parameters are positive (heavy tail, Fréchet distribution)
but close to zero, whereas Lisbon distribution is Weibull. Bretagne presents a
different tail behavior along the year, being Weibull from November to April,
Gumbel around May, and turning to a Fréchet distribution for the rest of the
year (June to October) as shown in Figure 3 (b).

In Figure 4, the influence of the covariate effects in i) the inter-annual variabil-
ity of the GEV parameters, ii) the 95% quantile and iii) different aggregated
return period quantiles, are shown for the Azores site.

It is interesting to observe that Bretagne and Landas optimal models intro-
duce a positive long-term trend in the location parameter, and Bretagne also
includes a negative trend in the scale parameter.

In Figure 5, the evolution of the location and scale parameters corresponding
to the final selected model for all locations is shown. Note that the model is
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Fig. 5. Location and scale parameter seasonal evolution for the final model at all
locations .

flexible enough to represent the seasonal evolution of the parameters within
the year.

In Table B.2 the evolution of the model using the proposed method (see algo-
rithm 1), for the particular site 15W55N, is provided. For this particular case,
the sequence is as follows:

(1) The first model corresponds to the traditional stationary model θ =
(β0, α0, γ0), whose optimal values are given in column 1 of Table B.2.
Note that the number of parameters is np = 3, resulting in an AIC equal
to AIC = 2764.427.

(2) From all possible annual cycles to be incorporated, the higher score test
statistic absolute value corresponds to location, which is included in the
model. The new optimal values of the model parameters are given in
column 2. Note that the number of parameters has increased by two
since we introduce two additional parameters for harmonics. Note that
the AIC reduces considerably with respect to the stationary model.

(3) For iterations 3 and 4, higher score test statistic absolute value corre-
sponds to to the scale harmonic parameters, which are incorporated suc-
cessively, increasing the number of parameters up to np = 9 and decreas-
ing AIC down to AIC = 2338.251 at the end of iteration 4.

(4) For iteration 5, a new harmonic related to the shape parameter, which
is the one with higher score test statistic absolute value, is introduced.
However, for np = 11 parameters it results in a higher AIC = 2569.613.
This indicates that the harmonic is not significant and that the harmonic
process has concluded.

(5) At this step, the covariate process starts. For the best model so far (iter-
ation 4), the sensitivities of all possible covariates (ten principal compo-
nents of the SLP) both in location and scale parameters are evaluated.
Since the score test statistic absolute value is maximum for the first com-
ponent associated with location, it is introduced in the model resulting
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Fig. 6. Akaike Information Criterion (AIC) evolution for the automatic parameter
selection process at 15W55N (NA) site.

in AIC equal to (AIC = 2299.982), which is lower than the best model
so far, i.e. it is significant. Note that the first principal component of
the SLP is highly correlated with the North Atlantic Oscillation (NAO)
Index.

(6) The next component to be introduced is related to the second principal
component of the SLP, which is correlated with the North Atlantic Os-
cillation (NAO) and the Eastern Atlantic (EA) Pattern. Note that the
new parameter also reduces the AIC which means that it is significant.
The process continues.

(7) From iterations 8 to 11, the following covariate parameters are introduced:
βco

3 , αco
3 , αco

6 , and βco
7 , where the AIC reduces monotonically. Finally, at

iteration 12, αco
10 is introduced but resulting in an increase of the AIC.

This ends the process concluding that the best model is given at iteration
11, resulting in a pseudo-optimal value of the log-likelihood function of
(AIC∗ = 2215.984).

(8) At iteration 13, the location trend parameter βLT is introduced, optimal
parameter values are in column 13. Since the AIC is higher than at iter-
ation 11 (AIC = 2217.979 > 2215.984) this parameter is not significant
and it is removed for the remaining iterations.

(9) Analogously, at iteration 7, the scale tendency parameter αLT is intro-
duced. Since the AIC is higher than at iteration 4 (AIC = 2636.716 >
2215.984) this parameter is also not significant and it is removed for the
remaining iterations.
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In Figure 6 it is shown how the Akaike Information Criterion (AIC) evolves
during the iteration process. It can be observed that it is clearly divided in
three stages corresponding to harmonics, covariates and trends, respectively.
For each of these regions the objective function decreases monotonically until
an increase occurs, which means that the corresponding stage has concluded.
Analogous graphs are obtained for the remaining sites. Note that the order
criterion: harmonics, covariates and trends is based on physical considerations,
from lower to higher time-scale effects, which makes the method organization
clearer and easier to implement. Numerical tests have confirmed the validity
of these assumptions for most cases. For this reason we consider our solution
as pseudo-optimal instead of optimal.

Note that the proposed algorithm assumes that the process converges mono-
tonically to the optimal parameter selection. This hypothesis is justified since
consideration of subsequent parameters introduces a perturbation around the
existing model, so that new optimal values of existing parameters do not
change significantly between consecutive iterations. Once the optimal param-
eter values for a given parameterization are obtained, the method relies on
information about the maximum perturbation produced by additional param-
eters evaluated at those optimal values. This derivative information is only
true locally and valid for small variations of the optimal parameter values.
Note that once a new parameter is introduced, the only way to know its real
influence on the log-likelihood function and the new parameter estimates is
fitting the model again. Since we do not fit all possible alternatives, our result
would be valid if the new optimal parameter values associated with the already
existing parameters do not change significantly. Figure 7 shows both the loca-
tion parameters including i) harmonics and ii) harmonics and covariates; note
that they are almost indistinguishable. This justifies the good computational
behavior of the proposed method.
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4.1 Comparison with an existing method

In order to compare the results with an existing method, models proposed in
the previous section for the six locations have also been automatically fitted
using the method proposed in Menéndez et al. (2009a). In that work, based on
genetic algorithm nomenclature, a binary codification to represent each model
is adopted. Genes gi are related to cycles or harmonics (annual, semiannual,
and so on), covariates and trends, where gi = 1 indicates that the correspond-
ing factor is included. Afterwards, an automatic selection procedure based on
the AIC is performed using a stepwise algorithm that combines forward selec-
tion and backward elimination procedures. In addition to the steps performed
in the forward selection algorithm, all non-zero genes are tested backwards to
see if their contributions are significant after a new gene has been switched
on.

The set up for the Stepwise Forward selection and Backward elimination (SFB)
method is more complex than for the proposed method, since the maximum
number of genes must be fixed beforehand, and appropriate limits for all pa-
rameters must be provided for the Shufflex Complex Evolution Optimization
method to work appropriately. For this particular example, the following genes
are considered: two for the location harmonics (4 parameters), two for the scale
harmonics (4 parameters), no harmonics for the shape parameter, 10 genes as-
sociated to the location covariates, 10 genes related to the scale covariates, and
two additional genes for the trends.

In Table B.3 the comparison between both methods is provided. For each lo-
cation, optimal parameter values obtained through both methods are shown
in columns. If the method does not include a particular parameter, its cor-
responding cell is set to (−). Additionally, in the last rows, the number of
parameters of the final model, the optimal log-likelihood function obtained,
and the number of different models checked to attain the best solution are
provided. Note that using (7) the higher the log-likelihood function (which is
negative) the better the GEV fit, and the lower the AIC the better the com-
promise between fitting and model complexity (number of parameters). From
this table, the following observations are pertinent:

(1) For locations 15W55N, Azores, Bretagne, and Coruña the proposed method
incorporates more parameters than SFB, resulting in a higher value of
the log-likelihood function (better GEV fit) but also a higher value of the
AIC (worst compromise), however the differences are small. Note that in
terms of obtaining the best AIC value, the SFB defeats our algorithm
since our model always gets a better fit but worse AIC values (overpa-
rameterization). This is an expected result since the number of different
parameter combinations using SFB is about ◦(n2

p), comparatively much
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higher than the the ◦(np) parameter combinations using our approach.
In all cases, the computational time using our method decreases consid-
erably being, for these particular cases, about 100 times faster.

(2) For locations Lisbon and Landas the proposed method also incorporates
more parameters to the final fitted distribution; however, in these cases
both the log-likelihood function and AIC improve, i.e., higher and lower
values than the SFB solution respectively. This result is due to the limi-
tation of the SFB method, which fixes the maximum number of possible
harmonics to be incorporated at the beginning of the process to reduce
the number of combinations of the algorithm.

(3) Related to covariates, the more significant covariates (i.e., higher absolute
values of their corresponding parameters) are essentially the same for
both models, while those covariates that are different are associated with
comparatively lower parameter values. For example, for Bretagne, the
proposed model incorporates two additional scale covariates with respect
to SFB, αco

1 and αco
9 . However, their corresponding optimal parameters

are−0.036 and 0.01. Relatively small values compared with the maximum
covariate parameter value 0.132.

(4) Both methods incorporate the same trends with similar magnitudes, how-
ever for the Landas site long term trends related to the location param-
eters are of different sign and magnitude. This result is not surprising
because our method incorporates two additional harmonics with respect
to SFB, and the trend obtained by SFB is trying to explain the contri-
bution not considered through those harmonics. Note that our result is
more reliable since both the log-likelihood and AIC criteria are better.

5 Conclusions

Within the context of natural variability of extreme events associated with
environmental (geophysical) variables, the main contribution of the paper is
to establish valuable guidelines for practical applications, which can be used
for any scientist to make extreme value analysis from data sets. This work
provides an automatic method for parameter selection which minimizes the
Akaike Information Criterion (AIC) within an iterative scheme. It is based
on an iterative method which converges monotonically to the pseudo-optimal
selection. Incorporation of additional parameters at every iteration is based on
sensitivity analysis and score test statistic information. The method provides
an efficient and robust way for automatic calibration which clearly outperforms
an approach existing in the literature, in terms of the ratio of computational
time versus optimal objective function.

This work opens the possibility of an automatic fit for time-dependent extreme
value models considering different time scales of interest for any environmental
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variable. Note that Matlab functions for a) estimating the parameters of the
GEV distribution function based on the maximum likelihood method for a
given parameterization, and b) automatic selection and estimation minimizing
the AIC are provided.

The utilization of the perturbation criterion for the selection of parameters
brings new possibilities for using alternative criteria to the AIC, in terms of
assessing the quality of each model by making a compromise between goodness
of fit and simplicity. This constitutes a subject for further research.
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A Jacobian and Hessian of the log-likelihood function

For the best parameter selection at every iteration and for maximization of the
log-likelihood function, first and second order derivatives of the log-likelihood
function with respect to parameters θ at the optimum must be obtained. The
analytical derivation for all required matrices is provided below. Note that all
derivations are based on the chain rule. Hereinafter index i refers to maximum
data, j is related to harmonics of the location, scale and shape parameters, and
k is associated with possible covariates included in the model (SLP principal
components, NAO, SOI, etc.).

A.1 First order derivatives of the log-likelihood function

First order derivatives of the log-likelihood function with respect to location,
scale and shape parameters evaluated at point xt (time t) are:
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where xn
t = xt−µt

ψt
is the standardized maximum parameter value, which are

valid for the case ξt 6= 0 (Weibull or Fréchet), and
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for the Gumbel case ξ = 0.

Note that from the practical point of view the Gumbel distribution is a partic-
ular case of the generalized extreme value distribution for a small value of the
shape parameter ξ. For those cases, equations (A.1) and (A.2) are equivalent
to (A.4) and (A.5), respectively, and the partial derivative with respect to the
shape parameter is null. Analogously, hereinafter if ξt = 0 then all derivatives
related to parameters associated with the shape parameter are null.

Using the chain rule, the derivatives of the log-likelihood function with respect
to the harmonic amplitudes, including the constant terms, are:
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∂γj

=
∑

t

∂`

∂ξt

∂ξt

∂γj

; ∀j. (A.8)

The corresponding derivatives with respect to possible tendencies or covari-
ates, if they are considered, are:

∂`

∂βLT

=
∑

t

∂`

∂µt

∂µt

∂βLT

;
∂`

∂βco
k

=
∑

t

∂`

∂µt

∂µt

∂βco
k

; ∀k (A.9)
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∂`

∂αLT

=
∑

t

∂`

∂ψt

ψt
∂ log(ψt)

∂αLT

;
∂`

∂αco
k

=
∑

t

∂`

∂ψt

ψt
∂ log(ψt)

∂αco
k

; ∀k (A.10)

where index k refers to covariates.

The derivatives of the location, logarithm of the scale and shape parameters,
given by (2)-(4), the harmonic amplitudes, including the constant terms, are:

∂µt

∂β0
= 1; ∂µt

∂βj
=





cos( j+1
2

wt) if j odd

sin( j
2
wt) if j even

;∀j

∂ log(ψt)
∂α0

= 1; ∂ log(ψt)
∂αj

=





cos( j+1
2

wt) if j odd

sin( j
2
wt) if j even

;∀j

∂ξt

∂γ0
= 1; ∂ξt

∂γj
=





cos( j+1
2

wt) if j odd

sin( j
2
wt) if j even

;∀j.

(A.11)

Analogously, the corresponding derivatives with respect to possible tendencies
or covariates, if they are considered, are:

∂µt

∂βLT
= t; ∂µt

∂βco
k

= nkt ; ∀k,

∂ log(ψt)
∂αLT

= t; ∂ log(ψt)
∂αco

k
= nkt ; ∀k.

(A.12)

A.2 Second order derivatives of the log-likelihood function

Second order derivatives of the log-likelihood function with respect to location,
scale and shape parameters evaluated at point xt (time t) are:

∂2`
∂µ2

t
=

(1+ξt)(ξt−zn
t )

(ψtzt)
2

∂2`
∂ψ2

t
=

−zn
t xn

t ((1−ξt)xn
t −2)+

[
1−2xn

t −ξt(xn
t )

2
]

(ψtzt)
2

(A.13)

∂2`
∂ξ2

t
= −zn

t


xn

t

(
xn

t [1+3ξt]+2+[−2−ξt(3+ξt)xn
t ]z

1/ξt
t

)

(ξtzt)
2

+
zt
ξ2
t

log(zt)(2ξt(−xn
t (1+ξt)−1+z

1+1/ξt
t )+zt log(zt))

(ξtzt)
2




(A.14)

∂2`

∂µt∂ψt

=
−[1 + ξt − (1− xn

t )zn
t ]

(ψtzt)
2 (A.15)
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∂2`

∂µt∂ξt

= −zn
t

ξt [−(1 + ξt)x
n
t − ξt(1− xn

t )/zn
t ] + zt log(zt)

ψt [ξtzt]
2 (A.16)

∂2`

∂ψt∂ξt

= xn
t

∂2`

∂µt∂ξt

(A.17)

where xn
t = xt−µt

ψt
is a standardized maximum data value, which are valid for

the case ξ 6= 0 (Weibull or Fréchet), and

∂2`

∂µ2
t

=
− exp (−xn

t )

ψ2
t

(A.18)

∂2`

∂ψ2
t

=
1− 2xn

t + exp (−xn
t )(2− xn

t )xn
t

ψ2
t

(A.19)

∂2`

∂µt∂ψt

=
−1 + exp (−xn

t )(1− xn
t )

ψ2
t

(A.20)

for the Gumbel case ξt = 0.

For the definition of the second order derivatives for the Hessian matrix con-
sidering location, scale and shape parameters, two auxiliary variables Ω and Φ
are considered. These variables may represent any of the following parameters
θ = (β0, βi, βLT, βco

k , α0, αi, αLT, αco
k , γ0, γi), which can be equal (for second or-

der derivatives) or different (for second order cross derivatives). Considering
also that if Ω is equal to any of (β0; βi; βLT; βco

k ) then fΩ = µt, if Ω is equal
to any of (α0; αj; αLT; αco

k ) then fΩ = ψt, if Ω is equal to any of (γ0; γi) then
fΩ = ξt, and analogously for Φ, where fΩ and fΦ are auxiliary functions to
simplify analytical derivations. The second order derivatives can be calculated
as follows:

∂2`
∂Ω∂Φ

= ∂
∂Ω

(∑
t

[
∂`
∂µt

∂µt

∂Φ
+ ∂`

∂ψt

∂ψt

∂Φ
+ ∂`

∂ξt

∂ξt

∂Φ

])
=

∑
t

[(
∂2`
∂µ2

t

∂µt

∂Ω
+ ∂2`

∂µt∂ψt

∂ψt

∂Ω
+ ∂2`

∂µt∂ξt

∂ξt

∂Ω

)
∂µt

∂Φ
+ ∂`

∂µt

∂2µt

∂Ω∂Φ

+
(

∂2`
∂ψt∂µt

∂µt

∂Ω
+ ∂2`

∂ψ2
t

∂ψt

∂Ω
∂2`

∂ψt∂ξt

∂ξt

∂Ω

)
∂ψt

∂Φ
+ ∂`

∂ψt

∂2ψt

∂Ω∂Φ(
∂2`

∂ξt∂µt

∂µt

∂Ω
∂2`

∂ξt∂ψt

∂ψt

∂Ω
∂2`
∂ξ2

t

∂ξt

∂Ω

)
∂ξt

∂Φ
+ ∂`

∂ξt

∂2ξt

∂Ω∂Φ

]
.

(A.21)

Expression (A.21) simplifies as follows:

∂2`

∂Ω∂Φ
=

∑

t

[
∂2`

∂fΦ∂fΩ

∂fΦ

∂Φ

∂fΩ

∂Ω

]
, (A.22)

if any fΦ and fΩ do not correspond to parameter ψ, or
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∂2`

∂Ω∂Φ
=

∑

t

[
∂2`

∂fΦ∂fΩ

∂fΩ

∂Ω
fΦ

∂ log(fΦ)

∂Φ

]
, (A.23)

if fΦ corresponds to parameter ψ. This is due to the use of log(ψ) in (3), or

∂2`

∂Ω∂Φ
=

∑

t

[(
∂2`

∂f 2
Φ

fΦ +
∂`

∂fΦ

)
fΦ

∂ log(fΦ)

∂Φ

∂ log(fΩ)

∂Ω

]
, (A.24)

if both fΦ and fΩ correspond to parameter ψ, where ∂2`
∂fΦ∂fΩ

is given in (A.13)-

(A.15), whereas derivatives ∂fΦ

∂Φ
, ∂ log(fΦ)

∂Φ
and ∂fΩ

∂Ω
are equal to:

∂fΦ

∂Φ
or

∂ log(fΦ)

∂Φ
or

∂fΩ

∂Ω
=





1 if (Φ or Ω) = {β0, α0, γ0}
t if (Φ or Ω) = {βLT or αLT}
nkt if (Φ or Ω) = {βco

k or αco
k }

cos( j+1
2

wt) if (Φ or Ω) = {βj, αj, γj} & j odd

sin( j
2
wt) if (Φ or Ω) = {βj, αj, γj} & j even

(A.25)

where ∂ log(fΦ)
∂Φ

is meaningful if fΦ corresponds to ψ.

A.3 Hessian

Once all second order derivatives of the log-likelihood function with respect to
all parameters to be estimated are obtained, the Hessian matrix (Hθθ) has
the structure shown in Figure A.1.

B Convergence Discussion

Convergence of the method is based on the following proposition:

Proposition 1 Once the optimal log-likelihood estimators for a given param-
eter vector θ∗ are obtained, the new optimal estimators including a new pa-
rameter set θ̂ in the model do not change significantly, since they produce
perturbations around the previous model.

Based on this proposition, the following theorem is derived:

Theorem 1 For given sets of new possible parameters Θ̂ = {θ̂1, . . . , θ̂m},
which can be introduced in model (1)-(4), the maximum decrement in the AIC
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is produced by the parameter whose score test statistic absolute value is maxi-
mum, i.e.,

θ̂
∗

= θ/Minimum
θ ∈ Θ̂

AIC(θ∗,θ)− AIC(θ∗) = Maximum
θ ∈ Θ̂

|S(θ)| (B.1)

where AIC(θ∗,θ) is the AIC criterion (7) for the parameter vector θ∗ including
the new parameter set θ.

Proof 1 Considering the optimal log-likelihood estimators for a given parame-
terization θ∗ with np parameters, assuming that a new set of parameters θ̂ = 0

of length m is included in the model and defining the vector θ = [θ∗; θ̂], the
second order Taylor series expansion of the log-likelihood function is given by:

`(θ + δθ) = `(θ) + U (θ)T δθ +
1

2
δθT Hθθδθ, (B.2)

where U (θ) is the score vector whose components are equal to U(θj) = ∂`(θ)
∂θj

; j =
1, . . . , np + m.

The perturbation which produce the maximum or minimum change in the log-
likelihood function can be obtained forcing the derivative of the increment with
respect the perturbation to be equal to zero as follows:

∂ (`(θ + δθ)− `(θ))

∂ (δθ)
= U (θ) + Hθθδθ = 0, (B.3)

where the optimal perturbation becomes:

δθ∗ =
(
−Hθθ

)−1
U (θ). (B.4)

The corresponding maximum or minimum change in the log-likelihood function
can be obtained replacing (B.4) in (B.2), which neglecting second order terms
becomes:

Ω (`(θ + δθ)− `(θ)) = U (θ)T δθ∗ = U (θ)T
(
−Hθθ

)−1
U (θ), (B.5)

where function Ω(•) corresponds to the maximum or minimum function de-
pending on the Hessian, and expression (B.5) coincides with the score test
statistic S(θ).

Due to the optimality condition (9) it is known that U (θ∗) = 0 and therefore
parameter set θ̂ is the only one contributing to the change in the log-likelihood
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function. (B.5) becomes:

Ω (`(θ + δθ)− `(θ)) = U (θ̂)T I−1
ˆθ ˆθ

U (θ̂) = S(θ̂), (B.6)

where matrix I−1
ˆθ ˆθ

is the diagonal block matrix from the inverse of the observed

Fisher information matrix associated with parameters belonging to θ̂.

Finally, since it is known that at the optimal solution of new parameters θ̂
∗
the

difference in the maximum possible change in (B.6) is always positive, but the
score test statistic could be negative, the maximum change would correspond
to the absolute value of the score test statistic, i.e.:

max (`(θ + δθ)− `(θ)) = |S(θ̂)|. (B.7)

Thus, if different parameter sets Θ̂ = {θ̂1, . . . , θ̂m} can be introduced in the
model, the set that produces the maximum change in the log-likelihood function
corresponds to the parameter whose score test statistic absolute value |S(θ̂i)|
is maximum. Note that using the chain rule the maximum derivative of the
AIC coincides, since:

∂AIC(θ∗, θ̂)

∂θ̂
= −2

∂`(θ∗, θ̂)

∂θ̂
+ 2. (B.8)

This completes the proof.

Numerical tests have demonstrated the validity of these assumptions for en-
vironmental variables.

Note also that the optimal estimators solution of best selected model at a
given iteration is an appropriate starting point for the log-likelihood maxi-
mization when an additional parameter is introduced, the new parameter is
taken equal to zero. Since the solution does not change significantly, Newton
method converges to the optimal solution (see Bazaraa et al. (1993)).
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θ∗ σ
(1)
θ

θ σθ θ σθ θ σθ θ σθ θ σθ

β0 7.740 8.239 4.410 5.212 5.666 11.649 4.431 9.390 4.994 5.516 4.694 5.434
β1 3.232 10.586 1.970 7.192 2.497 8.183 2.022 7.694 2.266 7.009 1.642 7.006
β2 0.402 10.763 0.526 6.705 0.378 8.031 0.350 7.060 0.561 7.141 0.537 5.340
β3 – – -0.251 5.896 – – – – – – – –
β4 – – -0.208 5.866 – – – – – – – –
α0 0.489 3.620 -0.099 3.635 0.349 7.932 0.085 3.804 0.014 6.863 -0.082 3.452
α1 0.241 7.344 0.636 3.285 0.365 5.213 0.407 4.879 0.474 4.346 0.698 3.600
α2 0.050 7.473 0.125 2.645 0.052 5.268 0.115 4.976 0.065 4.441 0.046 2.882
α3 -0.086 6.593 -0.153 3.245 -0.107 4.411 -0.111 4.187 -0.147 4.800 -0.026 3.234
α4 0.033 3.620 -0.123 3.497 0.018 4.268 -0.029 3.695 -0.055 4.577 -0.090 2.959
α5 – – 0.070 3.635 – – 0.035 4.639 0.043 3.884 -0.035 3.452
α6 – – 0.063 5.229 – – 0.110 4.934 0.057 6.863 0.120 4.808
α7 – – – – – – -0.005 3.804 – – – –
α8 – – – – – – -0.059 5.629 – – – –
γ0 -0.009 3.365 0.012 3.356 0.089 3.551 0.063 3.748 -0.041 3.328 -0.087 2.939
γ1 – – – – -0.020 5.015 – – 0.034 5.161 – –
γ2 – – – – -0.018 5.099 – – -0.018 4.548 – –
βLT – – – – 0.012 0.404 0.007 0.335 – – – –
βco
1 0.654 7.333 -0.311 3.712 – – -0.101 4.934 -0.115 4.578 – –

βco
2 0.490 7.344 – – 0.606 5.214 0.496 4.879 0.508 5.560 0.222 3.907

βco
3 -0.378 7.473 – – -0.529 5.269 -0.446 4.976 -0.225 4.347 -0.168 3.600

βco
4 – – 0.063 3.245 – – 0.130 4.639 0.148 4.800 – –

βco
5 – – 0.234 3.285 -0.114 4.411 -0.205 4.187 – – -0.088 2.882

βco
6 – – – – – – – – 0.112 4.441 0.085 3.234

βco
7 0.177 6.593 – – – – – – -0.078 3.884 – –

βco
8 – – 0.079 2.645 -0.163 4.268 -0.111 3.695 – – -0.070 2.959

βco
9 – – – – -0.121 4.234 – – – – – –

βco
10 – – 0.064 3.497 – – – – – – – –

αLT – – – – -0.008 7.932 – – -0.005 6.863 – –
αco

1 0.076 3.443 – – – – -0.067 3.748 -0.048 3.457 – –
αco

2 – – – – 0.132 3.317 0.108 4.073 – – – –
αco

3 – – – – -0.036 3.551 -0.097 3.725 – – – –
αco

4 – – 0.094 3.625 – – 0.096 3.668 – – 0.080 2.939
αco

5 – – – – – – – – – – – –
αco

6 -0.066 3.365 – – -0.118 3.713 -0.096 3.578 -0.078 3.328 – –
αco

7 – – 0.088 3.765 0.049 3.762 – – – – – –
αco

8 – – – – – – – – – – – –
αco

9 – – – – – – – – – – – –
αco

10 – – -0.057 3.356 – – – – – – – –
np 15 – 21 – 22 – 25 – 22 – 17 –
` -1092.992 – -795.797 – -931.254 – -907.180 – -839.768 – -772.777 –
AIC 2215.984 – 1633.594 – 1906.507 – 1864.359 – 1723.538 – 1579.555 –
(1) Standard deviations σ are multiplied by 10−2.

Table B.1
Pseudo-optimal automatic parameter selection for the studied locations. Units are
in meters for αi and βi, and γ is dimensionless.
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θ θSFB θ θSFB θ θSFB θ θSFB θ θSFB θ θSFB

β0 7.740 7.739 4.410 4.424 5.666 5.674 4.431 4.476 4.994 4.984 4.694 4.676
β1 3.232 3.235 1.970 1.991 2.497 2.506 2.022 2.028 2.266 2.282 1.642 1.653
β2 0.402 0.406 0.526 0.531 0.378 0.374 0.350 0.340 0.561 0.562 0.537 0.518
β3 – – -0.251 -0.222 – – – – – – – –
β4 – – -0.208 -0.193 – – – – – – – –
α0 0.489 0.490 -0.099 -0.087 0.349 0.353 0.085 0.122 0.014 0.126 -0.082 -0.099
α1 0.241 0.239 0.636 0.626 0.365 0.352 0.407 0.396 0.474 0.466 0.698 0.626
α2 0.050 0.051 0.125 0.123 0.052 0.043 0.115 0.107 0.065 0.048 0.046 0.066
α3 -0.086 – -0.153 -0.137 -0.107 -0.106 -0.111 -0.116 -0.147 -0.138 -0.026 –
α4 0.033 – -0.123 -0.112 0.018 0.023 -0.029 -0.013 -0.055 -0.054 -0.090 –
α5 – – 0.070 – – – 0.035 – 0.043 – -0.035 –
α6 – – 0.063 – – – 0.110 – 0.057 – 0.120 –
α7 – – – – – – -0.005 – – – – –
α8 – – – – – – -0.059 – – – – –
γ0 -0.009 0.005 0.012 0.007 0.089 -0.036 0.063 0.036 -0.041 0.012 -0.087 -0.096
γ1 – – – – -0.020 – – – 0.034 – – –
γ2 – – – – -0.018 – – – -0.018 – – –
βLT – – – – 0.012 0.012 0.007 -0.049 – – – –
βco
1 0.654 0.656 -0.311 -0.306 – – -0.101 -0.100 -0.115 -0.104 – –

βco
2 0.490 0.499 – 0.061 0.606 0.620 0.496 0.500 0.508 0.529 0.222 0.246

βco
3 -0.378 -0.376 – – -0.529 -0.521 -0.446 -0.454 -0.225 -0.235 -0.168 -0.172

βco
4 – – 0.063 0.077 – – 0.130 0.131 0.148 0.147 – 0.074

βco
5 – – 0.234 0.240 -0.114 -0.116 -0.205 -0.227 – – -0.088 -0.085

βco
6 – – – – – – – – 0.112 0.108 0.085 0.068

βco
7 0.177 0.166 – – – – – – -0.078 -0.073 – –

βco
8 – – 0.079 0.089 -0.163 -0.164 -0.111 -0.118 – – -0.070 -0.050

βco
9 – – – – -0.121 -0.125 – – – – – 0.048

βco
10 – – 0.064 0.062 – – – – – – – –

αLT – – – – -0.008 -0.008 – – -0.005 – – –
αco

1 0.076 0.078 – – -– – -0.067 -0.080 -0.048 -0.063 – –
αco

2 – – – – 0.132 0.130 0.108 0.109 – – – –
αco

3 – – – – -0.036 – -0.097 -0.099 – – – –
αco

4 – – 0.094 0.093 – – 0.096 0.084 – – 0.080 0.072
αco

5 – – – – – – – – – – – –
αco

6 -0.066 -0.069 – – -0.118 -0.100 -0.096 – -0.078 -0.050 – –
αco

7 – – 0.088 0.091 0.049 0.053 – – – – – –
αco

8 – – – – – – – – – -0.005 – –
αco

9 – – – – – – – – – – – –
αco

10 – – -0.057 – – – – – – – – –
np 15 13 21 19 22 19 25 20 22 18 17 15
` -1092.992-1094.980 -795.797 -797.684 -931.254 -932.084 -907.180 -910.991 -839.768 -841.803 -772.777 -778.429
AIC 2215.984 2215.960 1633.5941633.3681906.507 1902.2 1864.3591865.9821723.5381719.6051579.5551586.857
nm 14 240 18 348 19 375 21 456 19 348 15 294

Time(1) 5.6 537.5 11.5 1120.1 10.9 1221.8 15.3 1676.9 14.5 1116.3 7.0 781.0
(1) Time in seconds.

Table B.3
Comparison between the proposed method (parameters θ) and the Stepwise For-
ward selection and Backward elimination (SFB) procedure (parameters θSFB).
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