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Abstract

This paper presents a correction of the RAS method (CRAS) at the cell level of
its solution. It incorporates data on the temporal or spatial variation in the cells of
the known matrix that has to be updated or regionalized. Cell variation distribu-
tions are calculated from past input-output tables using simple formulas. After the
solution of the regular RAS method is obtained, an additional optimization problem
based on first order reliability methods (FORM) is solved, producing the most likely
cell-corrections to the regular RAS solution. The advantage of the proposed formu-
lation is its simplicity, which allows to solve the optimization problem by means of
an efficient iterative scheme. To test the behavior CRAS several simulations with
a consistent time series of input-output tables for The Netherlands for 1968-1986
are made. They show that - in situations of structural change - applying CRAS
improves the regular RAS estimate.
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1 Introduction

The RAS method was designed by Stone (1961), Stone and Brown (1962) to solve the

problem of updating a given old input-output (IO) matrix to a new required matrix for

which only the row and column totals are given. Hewings (1969) showed that RAS could

also be applied to the problem of regionalizing a known national matrix. Oosterhaven

et al. (1986) combined both ideas to solve the problem of updating an interregional IO

matrix such that it also satisfies the cell restrictions derived from a new national matrix.

This is just a more systematic example of many other applications in which all kind of

additional ad hoc data are available for the new matrix. All of these applications, however,

stick to the principle of adding minimum information to the structure of one single known

matrix. The variation only relates to adding different restrictions to the new unknown

matrix, it does not relate to situations in which multiple old matrices are available, e.g.
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for many different years or for many different regions or countries. In this paper, we

exclusively consider the situation of having multiple old IO matrices.

The somewhat related problem of having a single old matrix with a series of row and

column totals for later years is studied by Omar (1967), who confirms the value of addi-

tional data for more future years. Tilanus (1966) treated a comparable problem using data

from The Netherlands deriving the statistical correction method (SCM) for input-output

predictions based on the observed structure of the predictions errors and the supplemen-

tary statistical hypotheses, which gave almost the same results as RAS. Johansen (1968),

and Evans and Lindley (1973) argue in more general terms that individual elements con-

tain more information than the row and column sums, and should therefore be taken into

account for updating:

log

(
zij

zo
ij

)
= log(ri) + log(sj) + log(eij), (1)

where eij is an stochastic term, and r and s are chosen to minimize
∑

ij (log eij)
2. Note

that an advantage of this formulation is that it may readily be generalized to take account

of complete matrices for a series of years.

The aim of this paper is to present an integrated approach that takes the historical

behavior of the cells of the matrix that has to be updated into account, and that is easy

to implement.

This paper is structured as follows. In Section 2 the proposed Cell-Corrected RAS

(CRAS) method is presented. In 2.1 the problem is stated as a programming problem.

Its solution is shown in 2.2, and the CRAS iterative algorithm to reach this solution

is given in 2.3. In Section 3 a numerical comparison between CRAS and RAS using

input-output tables for the Netherlands for 1969-1986 is made. Subsection 3.1 introduces

the comparison measures and Subsection 3.2 compares 1-year, 3-year and 5-year forecasts

using varying amounts of historical cell changes of comparable length. Section 4 concludes

that CRAS performs better in cases of structural change.

2 The Cell-Corrected RAS Method

The goal of the conventional updating methods consists on obtaining an interindustry

transactions matrix z̃ of dimension m by n as close as possible to the original zo of the

same dimension, knowing only the margins (the row and column sums) of the target

matrix. The idea of minimizing the distance between a known matrix and the target,

is logical as no further information is assumed to be available (see Miller (1998)). The
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solution of the old biproportional RAS algorithm of Stone is shown to be equivalent to

minimizing Theil’s well known information gain measure (Macgill (1977); Batten (1983),

pp. 112-16). Other objective functions, which could be extended with a comparable cell-

correction method, are possible, but are not considered here (see Jackson and Murray

(2004), for a recent overview and comparison).

2.1 The Programming Model

The RAS method can be stated as follows (see Miller and Blair (1985)):

Minimize
z

∑
∀(i,j)/∈Ω0

zij ln

(
zij

zo
ij

)
, (2)

subject to

n∑
j=1

zij = ui; i = 1, . . . ,m (3)

m∑
i=1

zij = vj; j = 1, . . . , n (4)

m∑
i=1

ui =
n∑

j=1

vj (5)

zij ≥ 0; i = 1, . . . ,m; j = 1, . . . , n, (6)

where u and v contain the row sums and the column sums of the target IO matrix, and

Ω0 contains the pairs of indexes of the zero-elements of the IO matrix zo. The use of this

set is needed as the objective function is not defined for those specific values. Constraint

(5) ensures the equality of sum total of the row sums and the column sums, and constraint

(6) ensures positiveness of the cell values.

We add to this problem definition the availability of a set of T consecutive IO matrices

zθ; θ = 1, . . . , T , all using the same classification of rows and columns. Under these

conditions the RAS method can be applied between different consecutive years in order

to obtain a series of biproportional relations between IO cell values:

log

(
z̃θ

ij

zθ−t
ij

)
= log(rθ

i ) + log(sθ
j); i = 1, . . . ,m; j = 1, . . . , n; θ = 1 + t, . . . , T, (7)

where t < θ is the length of the projection period and z̃θ is the updated RAS matrix,

i.e. the solution to problem (2)-(6). Thus, it is possible to calculate T − t observations
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of individual cell deviations for projection periods with length t that make equation (1)

hold as follows:

eθ
ij =

zθ
ij

z̃θ
ij

; i = 1, . . . ,m; j = 1, . . . , n; θ = 1 + t, . . . , T. (8)

Using these data, the first two distribution moment vectors µe (mean) and σe (stan-

dard deviation) of the stochastic deviations e can be calculated and used to improve the

projection into the future.

The Cell-Correction method proposes a modification of the RAS solution z̃ by means

of solving the following optimization method:

Minimize
e

m∑
i=1

n∑
j=1

(
eij − µe

ij

σe
ij

)2

, (9)

subject to

n∑
j=1

eij z̃ij = ui; i = 1, . . . ,m (10)

m∑
i=1

eij z̃ij = vj; j = 1, . . . , n (11)

eij ≥ 0; i = 1, . . . ,m; j = 1, . . . , n (12)

where the objective function (9) minimizes the sum of the squared differences between the

deviations and their mean value from the historical observations, weighted by the inverse

of the standard deviation. Constraints (10)-(11) ensure that the row and column sums of

the corrected matrix are equal to the given row and column sums, and (12) ensures that

the IO cell values remain semi-positive. Note that this last constraint will be inoperational

because all the e values are around 1.

Observe also that, from a mathematical point of view, problem (9)-(12) consists of

the minimization of a positive sum of continuously derivable convex functions defined

on a compact set. Note that the solution of (10)-(12) is a linear space of dimension

(m−1)×(n−1) (an arbitrary linear combination of (m−1)×(n−1) linearly independent

vectors, see Castillo et al. (1999)). Hence, there exists only one unique solution provided

that constraints (10)-(11) are mutually consistent, i.e.

n∑
j=1

z̃ij = ui; i = 1, . . . ,m;
m∑

i=1

z̃ij = vj; j = 1, . . . , n, (13)
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which is always the case as z̃ is the solution of problem (2)-(6). In fact, (13) directly

follows from (10)-(11) if eij = 1; i = 1, . . . ,m; j = 1, . . . , n, which is the solution to the

RAS problem.

Note that problem (9)-(11) has been widely used in structural reliability analysis (First

Order Reliability Methods, FORM, see Stewart and Melchers (1997)) as an invariant

quantitative measure of risk. In fact, the square root of the optimal objective function

value is known as the “reliability index” (see Hasofer and Lind (1974)) and the optimal

solution e∗ is known as “point of maximum likelihood”, which in this particular case

corresponds to the values of the unexplained deviations that satisfy constraints (10)-(12)

and whose value of the joint probability density function is maximum (minimum distance

from the expected value, i.e., the most likely value).

The most general expression of the objective function in order to get the reliability

index is
√

(e− µ)T V −1(e− µ)T (see Ditlevsen (1981), Veneciano (1974) and Low and

Tang (1994)), where V is the covariance matrix, which becomes (9) if e variables are

independent (diagonal covariance matrix). Hence, the proposed approach assumes the

statistical independence between deviations.

2.2 Solution to the Programming Model

To derive the solution to the programming model consider the Lagrange function associ-

ated with problem (9)-(12):

L(e, λ, µ) =
m∑

i=1

n∑
j=1

(
eij − µe

ij

σe
ij

)2

+
m∑

i=1

λi

(
n∑

j=1

eij z̃ij − ui

)
+

n∑
j=1

µj

(
m∑

i=1

eij z̃ij − vj

)
,

(14)

where λ and µ are the Lagrange multipliers.

The derivatives of the Lagrange function with respect to e, λ and µ are:

∂L
∂eij

= 2
eij − µe

ij

σe2

ij

+ z̃ij(λi + µj) = 0; i = 1, . . . ,m; j = 1, . . . , n (15)

n∑
j=1

eij z̃ij − ui = 0; i = 1, . . . ,m (16)

m∑
i=1

eij z̃ij − vj = 0; j = 1, . . . , n. (17)

From (15) deviations are written in terms of the dual variables as:

eij = µe
ij − z̃ij(λi + µj)σ

e2

ij /2, (18)
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Substituting (18) in (16) and (17) gives the following relationships between the Lagrange

multipliers:

λ
(ν+1)
i =

−ui +
∑

j z̃ij(µ
e
ij − µ

(ν)
j z̃ijσ

e2

ij /2)∑
j(σ

e
ij z̃ij)2/2

; i = 1, . . . ,m (19)

µ
(ν+1)
j =

−vj +
∑

i z̃ij(µ
e
ij − λ

(ν)
i z̃ijσ

e2

ij /2)∑
i(σ

e
ij z̃ij)2/2

; j = 1, . . . , n, (20)

where ν is the iteration counter.

Equations (19) and (20) can be solve iteratively until the norms ||λ(ν+1) − λ(ν)|| and

||µ(ν+1) − µ(ν)|| are lower than a pre-specified tolerance ε. Once the values of the dual

variables are given, the most likely deviation e∗ is calculated using (18), and the optimal

values of CRAS (ẑ) are obtained as:

ẑij = e∗ij z̃ij; i = 1, . . . ,m; j = 1, . . . , n, (21)

where (∗) refers to optimal values.

2.3 The CRAS-Algorithm

The programming problem (9)-(12) can, of course, be solved by any non-linear optimiza-

tion routine implemented in frameworks such as, GAMS (Brooke et al., 1998), AIMMS

(Bisschop and Roelofs, 1999), AMPL (Fourer et al., 1993), LINDO and What’s Best

(Schrage, 1991). It is, however, instructive and handy to derive an efficient iterative so-

lution that is comparable to the RAS-algorithm. For that reason, we present the CRAS-

algorithm for correcting a given RAS solution matrix:

Algorithm 1 (Cell-Corrected RAS method).

Input: An updated RAS solution matrix (z̃) , the mean (µe) and standard deviation (σe)

from historical observations, and an pre-specified tolerance ε.

Output: The corrected RAS matrix (ẑ) within tolerance ε.

• Step 1: Initialize the iteration counter ν = 1, and start from given Lagrange mul-

tipliers vectors λ(ν) = 0 and µ(ν) = 0.

• Step 2: Update the λ(ν+1) vector using (19) and the µ(ν)-values.

• Step 3: Update the µ(ν+1) vector using (20) and the λ(ν+1)-values.

6



• Step 4: Check for convergence, if ||λ(ν+1) − λ(ν)|| ≤ ε and ||µ(ν+1) − µ(ν)|| ≤ ε the

optimal values of the Lagrange multipliers have been found, go to Step 5, otherwise,

update the iteration counter ν → ν + 1 and continue with Step 2.

• Step 5: Calculate the optimal values of the deviations e∗ using (18) and the values

of the final Cell-Corrected matrix ẑ using (21).

3 Numerical Comparison of CRAS with RAS

To test the performance of CRAS relative to RAS we use a consistent series of Dutch

national IO tables in current prices with 24 sectors (which excludes the ’sector‘ non-

classified) for the period 1969-1986, compiled by the Netherlands Central Bureau of

Statistics (CBS)4. First, we discuss the performance indicators used. Then, we present

the results of a series of comparisons of 1-year, 3-year and 5-year projections of the inter-

mediate 24x24 part of these tables.

3.1 Performance Indicators

The comparison of CRAS with RAS approach is made by inspecting the distance between

the corresponding solutions z̃ and ẑ from (21) and the true value ztrue, using different

matrix distance measures (deMesnard and Miller (2006)), which hereafter will be called

norms. The use of different norms is motivated by the fact that they can lead to different

results. We focus on additive norms ||z̃ − ztrue|| and ||ẑ − ztrue||, as using multiplica-

tive norms || log (z̃) − log (ztrue) || and || log (ẑ) − log (ztrue) || does not change the basic

properties of the norms (deMesnard (2004)).

The norms used for the matrix M = Z − Ztrue, with the differences between the

forecasted and true elements, are the following:

• Mean Absolute Percentage Error (Butterfield and Mules (1980)):

MAPE =
1

n2

∑
i

∑
j

|mij|
|ztrue

ij |
× 100%. (22)

4Other available, internally consistent series of Dutch IO tables relate to 87 sectors for the period 1987-
1995 and to 104 sectors for the period 1995-2003. For our purpose of comparing CRAS with RAS using
the longest series is the most suited. This 1969-1986 series also has a consistent 91 sector classification,
which may be used for further testing.
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• Weighted Average Percentage Error, given by:

WAPE =
∑

i

∑
j

(
ztrue

ij∑
k

∑
l z

true
kl

)
|mij|
ztrue

ij

× 100%. (23)

• Normalized Square Error (Deming and Stephan (1940)):

NSE =
∑

i

∑
j

(zij − ztrue
ij )2

ztrue
ij

. (24)

• Weighted Normalized Square Error, given by:

WSE =
∑

i

∑
j

(
ztrue

ij∑
k

∑
l z

true
kl

)
(zij − ztrue

ij )2

ztrue
ij

. (25)

• Minimum Information Gain (Tilanus and Theil (1965)):

IG =
∑

i

∑
j

∣∣∣∣ztrue
ij log

(
zij

ztrue
ij

)∣∣∣∣ . (26)

Once the norms are calculated for both methods, the comparison between them is made

with the following formula:

cp =
ñ− n̂

n̂
× 100%, (27)

where n̂ and ñ are the norms (22)-(26) obtained when using the CRAS and RAS method,

respectively, and cp is the performance comparison parameter that gives the percentage

difference between the CRAS and the RAS method. Positive values of cp imply a better

performance of CRAS.

3.2 Comparisons for 1-, 3-, and 5-Year Projections

The 5-year projections of Figure 1 represent the most interesting and most relevant results.

In Figure 1 (and in Figures 3 and 4), the CRAS method corrects the RAS projection for

the same year using the maximal information provided by all possible, historic 1-year

projections. The 1976-values in Figure 1 thus compare the CRAS projection for the

period 1971-76 with the comparable RAS projection, where CRAS uses the additional

information on the historic projections for the periods 1969-70 and 1970-71, while the

1981-86 CRAS projection also uses the information all other 1-year projections up till

1980-81. Note that 1-year projections provide the maximum amount of information and

we assume that the deviations follow an ergodic process which does not depend on the
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Figure 1: Performance ratio (%) of CRAS to RAS for 5-year projections.

Figure 2: Oil price development from 1969 to 1986 (in dollars, Forbes (2007)).

prediction year, i.e., each new data point adds the same amount of new information (see

Walters (1982)). Other statistical assumptions will of course require different type of

comparisons.

Figure 1 shows that CRAS systematically outperforms RAS for 5-year projections,

independent of the norm used, except for the last projection for 1986. Looking for an

explanation for the exception, the oil price rises of 1973-74 and 1978-79, and the subse-

quent oil price fall of 1985-86 come to mind (see Figure 2). The CRAS projection for 1986

uses information on all 1-year projections of 1969-70 up to 1980-81, which includes the

information on the two oil price rises. This information is used to improve the projection

for 1981-86 that had to predict the IO consequences of the oil price fall of 1985-86. Natu-

rally, the added information pointed into an entirely different direction than was needed

to predict 1986. Considering this, the partially better performance of RAS over CRAS

for this particular year is disappointingly small.

Comparing the outcomes for the different norms, the largest out-performance of CRAS

is found for the squared errors (WSE and NSE). When the weighted errors (WSE and

WAPE) are compared with their unweighted equivalents (NSE and MAPE), in almost

all cases, the out-performance is larger for the weighted errors. Both results indicate

that CRAS especially outperforms RAS in projecting the larger IO cells with the larger

changes, which are the more important ones from an economic point of view.

The weighted squared errors, furthermore, indicate that the out-performance of CRAS

is smallest for 1981 and 1982. Again the oil price shocks provide part of the explanation.

Note that all previous projections had to predict 5-year changes with oil price rises, but

the projections for 1981 and 1982 were the first that had to cover oil price declines.

This underscores the conclusion that may be derived from the explanation of the 1986

exception, namely that CRAS outperforms RAS in situations of systematic structural

change, but that RAS may outperform CRAS when unprecedented asymmetric (price)

shocks have to be projected.5

5The oil price explanation of the exceptions, where RAS does partially better than CRAS, is confirmed
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5-year forecasts
t 76 77 78 79 80 81 82 83 84 85 86

2 8.8 5.5 -3.7 -7.9 -11.4 6.5 -2.7 -3.2 2.1 -9.2 -6.9
3 8.9 1.6 -2.8 -1.5 2.4 3.0 1.4 3.5 -2.2 -8.4
4 4.3 3.1 2.6 6.2 3.1 4.6 4.9 1.2 -2.1
5 5.0 5.7 5.7 5.4 4.4 9.3 1.3 0.6
6 5.4 8.2 4.6 5.9 7.6 8.5 -0.2
7 7.5 6.8 5.5 8.9 6.9 2.4
8 6.9 7.3 7.3 4.7 0.4
9 8.0 9.3 4.4 -0.2
10 9.8 6.9 -0.5
11 7.5 -0.1
12 0.3

Table 1: WAPE ratio (%) for 5-year forecasts with information of t previous IO tables.

The above conclusion suggests that CRAS will perform better when more historic

information is available. To investigate this hypothesis, Table 1 compares the 5-year

projection performance ratios of CRAS for all possible 1-year projections that CRAS

could use. To minimize the amount of outcomes, we only show the results for our favorite

norm, the weighted absolute percentage error (WAPE). Thus, the diagonal of Table 1

shows the same information as the WAPE-line in Figure 1. Note that the WAPE norm

takes a middle position in Figure 1 and runs almost parallel to the minimum information

gain (MIG), which is the second reason to select WAPE as the most representative norm.

The first row of Table 1 shows all 5-year CRAS projections that only use the two

most recent 1-year projections to calculate µe and σe. When using this minimal amount

of extra information, CRAS outperforms RAS in only 4 of the 11 cases on the first row.

Going down the columns of Table 1, i.e. adding information on older and older projections

to calculate µe and σe, we see that the CRAS projection improves in 38 of the 55 cases

of adding one more observation. Thus, it may indeed be concluded the CRAS performs

better the more historic IO data is used.

Figure 3 and Table 2 provide the same information as Figure 1 and Table 1, but for

3-year projections. In Figure 3, CRAS again outperforms RAS, but with this shorter

by an inspection of the cells with the largest differences between the two projections and the real 5-year
development of the 24x24 IO cell values for the 11 target years. In the case of RAS these are found in
the construction to construction cells (4x), in crude oil and natural gas exploitation to public utilities
(2x), in petroleum industry to chemicals, in utilities to utilities, and in three more cells. In the case of
CRAS these are found in petroleum industry to chemicals (5x), in construction to construction (2x), in
transport equipment production to construction, and in the same three more cells. When the CRAS and
RAS projections are directly compared which each other, the largest differences are almost exclusively
found in the crude oil and natural gas exploitation to public utilities (8x).
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Figure 3: Performance ratio (%) of CRAS to RAS for 3-year projections.

3-year forecasts
t 74 75 76 77 78 79 80 81 82 83 84 85 86

2 -0.5 2.5 -5.2 -16.4 -22.0 -10.3 -3.8 -7.3 2.0 -2.8 -11.9 -15.2 -11.0
3 7.5 0.9 -9.5 -10.0 -11.6 -0.9 0.0 2.7 0.9 -11.0 -12.0 -11.1
4 4.9 -2.9 -3.3 -4.6 -3.1 4.8 3.1 1.1 -4.1 -15.3 -9.3
5 0.3 0.4 -2.6 -0.8 4.4 9.2 4.1 -1.2 -12.1 -10.1
6 0.9 -0.0 0.2 6.4 5.8 3.2 0.7 -7.1 -7.2
7 -0.9 1.8 5.2 7.2 3.0 -3.0 -7.0 -4.5
8 1.0 6.8 5.2 5.2 -1.7 -7.4 -5.1
9 6.8 7.3 5.5 -0.4 -6.7 -3.0
10 7.6 7.1 0.4 -7.7 -4.5
11 7.6 1.4 -6.9 -4.7
12 2.3 -6.7 -4.2
13 -6.8 -3.8
14 -3.4

Table 2: WAPE ratio (%) for 3-year forecasts with information of t previous IO tables.

projection period there are more exceptions. The 1971-74 projection is worse than that

for later years. Most likely because this CRAS projection only uses the 1-year projections

of 1969-70 and 1970-71, during which oil price remained almost constant (see Figure 2),

whereas it had to predict the IO consequences of the oil price rise of 1973-74. Also, the

CRAS projections for 1979 and 1980 are worse or only little better than RAS, again most

likely because the IO consequences of the oil price increases of those two years had to

be projected. For the, even worse CRAS-projections of 1985 and 1986, again oil price

changes provide for at least part of the answer. For the 1982-85 and 1983-86 projections

CRAS needed to project the IO consequences of oil price declines with only information

on years with either rising or more or less constant oil prices, which sent CRAS in the

wrong direction.

The above results confirm that CRAS performs well under conditions of systematic

structural change, and that RAS may do better when unprecedented price shocks have to

be covered. This conclusion is further substantiated by the worst 3-year WAPE-ratio of

-22.0% for the 1978 projection in Table 2. That specific CRAS-projection only uses the

projections of 1973-74 and 1974-75, with the IO consequences of the first price oil hike,

whereas it had to make a projection for a new period without further price increases.

Under such conditions the CRAS method more or less assumes that the oil price will
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Figure 4: Performance ratio (%) of CRAS to RAS for 1-year projections.

continue to grow, which gives a wrong projection.

Table 2 also confirms the conclusion of Table 1 that adding more IO projections

improves the performance of CRAS relative to RAS. Inspecting the columns of Table 2

shows that adding one more historic IO projection improves the CRAS projection in 58

out of the 78 cases. A comparable conclusion holds for 1-year projections that improve

the CRAS projection in 70 out of 105 cases in Table 3. However, especially the last two

columns of Table 2 also show that adding more information does not work when it is more

information on the same old trend. In case of projecting the IO consequences of something

entirely new, like the sudden oil price decline of 1985-86, adding more information on

periods in which the oil price rises or remains constant, does not help.

Table 2 also shows that CRAS outperforms RAS for the shorter 3-year projections

in only 37 of the total of 91 simulations, whereas it outperformed RAS in 51 of the 66

simulations with 5-year projections. The 3-year score becomes even worse if we move to

1-year projections in Table 3. There, CRAS only outperforms RAS in 10 of the 120 cases.

This bad performance for shorter periods not only holds for the WAPEs of Table 3, but

also for the other norms as is shown in Figure 4, which reproduces the WAPEs from the

diagonal of Table 3.

So, our final conclusion is that CRAS only outperforms RAS in longer term projections.

The most likely explanation is that shorter term changes in the values of IO cell are

far more stochastic than the 5-year changes. This qualifies the earlier conclusion that

CRAS outperforms RAS when systematic structural changes need to be covered. To

this we should add “for longer term projections”. For practical situations, however, this

restriction is not a very strong one. As most national statistical offices produce IO tables

with delays of four and more years, being able to project them better for 1-year periods is

not a very interesting proposition. Hence, the significantly better performance of CRAS

over RAS for 5-year projections is most relevant and most promising.

4 Conclusions

This paper presents a new method that adds cell-specific corrections to the well known

biproportional RAS method, which only takes into account the row and column totals of

the unknown target matrix. The cell corrections of CRAS are determined by minimizing
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1-year forecasts
t 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

2 -31.8 -8.0 -10.1 -23.6 -36.7 -27.9 -18.0 -25.0 -5.0 -22.0 -15.5 -23.1 -25.8 -16.4 -14.6
3 0.0 -5.3 -16.7 -16.3 -31.7 -10.1 -12.1 2.3 -15.0 -14.4 -18.9 -15.8 -11.7 -7.4
4 -3.2 -8.6 -0.8 -26.7 -12.8 -16.5 -0.1 -12.1 -5.2 -16.3 -17.7 -11.9 -5.0
5 -4.8 0.5 -22.6 -15.5 -6.4 -0.3 -5.9 -1.6 -16.3 -17.8 -9.4 -5.4
6 0.5 -22.7 -13.6 -2.4 -4.9 1.0 -3.9 -12.1 -16.5 -13.0 -4.2
7 -21.7 -11.9 0.9 -3.1 1.2 -5.5 -9.0 -15.0 -11.2 -3.2
8 -12.5 -0.7 -4.1 0.8 -12.0 -15.3 -12.5 -6.8 -2.9
9 -2.3 -4.5 3.2 -10.6 -14.2 -11.9 -8.1 -1.9
10 -5.7 4.9 -7.9 -10.4 -5.4 -5.7 -3.3
11 3.9 -7.6 -9.5 -6.0 -8.7 -1.0
12 -7.7 -11.2 -5.6 -9.8 -1.9
13 -10.5 -6.1 -8.4 -1.9
14 -5.8 -8.7 -2.6
15 -9.1 -2.4
16 -1.2

Table 3: WAPE ratio (%) for 1-year forecasts with information of t previous IO tables.

the sum of the squared mean deviations of RAS projections from known IO tables, in

time or space, weighted by the inverse of their standard deviation.

An advantage of CRAS is that it can as easily be solved as RAS itself, namely by

means of an iterative algorithm with good convergence properties.6 The most important

advantage is that it clearly outperforms RAS when making longer term projections of

five and more years, which are the most relevant projection periods in practical statistical

work. This conclusion, however, has to be qualified in the sense that CRAS does not

outperform RAS when historically or spatially unprecedented structural change or spatial

differences have to be simulated.

In the empirical tests for the Netherlands for the period 1969-86 this proved to be

the case when one of the two oil price hikes of 1973-74 or 1979-80 had to be covered,

or the sharp oil price decline of 1985-86. Further empirical testing with constant price

IO tables will have to prove whether CRAS outperforms RAS in longer term constant

price projections without any qualification, as we expect those IO tables to only reflect

systematic structural change without unprecedented shocks.7

6These follow from the empirical simulations for the Netherlands and are available upon request with
the first author.

7Further testing may also be useful to see whether using longer term historic projections, instead of
the 1-year historic projections of this paper, further improves the out-performance of CRAS over RAS in
longer term projections.
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