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Abstract

Engineering design of structural elements entails the satisfaction of different
requirements during each of the phases that the structure undergoes: con-
struction, service life and dismantling. Those requirements are settled in
form of limit states, each of them with an associated probability of failure.
Depending on the consequences of each failure, the acceptable probability
varies and also the denomination of the limit state: ultimate, damage, ser-
viceability, or operating stop. This distinction between limit states forces
engineers to: i) characterize both the point-in-time and extreme probability
distributions of the random variables involved (agents), which are charac-
terized independently, and ii) use the appropriate distribution for each limit
state depending on the failure consequences. This paper proposes a Monte
Carlo simulation technique, which allows the generation of possible outcomes
for agents holding the following conditions: i) both the point-in-time and the
extreme value distributions are appropriately reproduced within the simu-
lation procedure, and ii) it maintains the temporal dependence structure of
the stochastic process. In addition, a graphical representation of both distri-
butions on a compatible scale is given, this graph clarifies the link between
point-in-time and extreme regimes and helps quantifying the degree of accu-
racy of the simulation results. In addition, new insights for the development
of First-Order-Reliability methods (FORM) combining point-in-time and ex-
treme distributions simultaneously are provided. The method is illustrated
through several simulation examples from well-known distributions, whereas
its skill over real data is shown using the significant wave height data record
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from a buoy located on the Northern Spanish coast.

Keywords: Extreme-value distribution, Mixture distribution, Monte Carlo
simulation, Level III method, Point-in-time distribution, Temporal
autocorrelation

1. Introduction

Engineering structures undergo different phases during their lifetime: con-
struction, service life and dismantling. During each of these phases, the
structure must satisfy different requirements, which from the engineering de-
sign point of view, are defined as limit states. The objective of the design is
to verify that the structure satisfies those project requirements in terms of
acceptable failure rates and costs (see [1] and [2]).

Acceptable failure rates are established by codes and expert committees
[3, 4, 5, 2] on the basis of the consequences of failure for each limit state,
and trying to counter-balance safety and costs (direct, societal and environ-
mental). Since the consequences of failure might be very different depending
on the limit state considered, these limit conditions are classified in different
categories: ultimate, damage, serviceability, or operating stop. The accept-
able probabilities of failure for each category depends on the type of structure
and environmental conditions, but in all cases it increases from the minimum
acceptable probability of failure related to the ultimate limite state, up to
the maximum acceptable probability associated with the operating stop limit
state.

From the design perspective, these different probability thresholds en-
compass the consideration of different probability distributions for agents.
Serviceability or operating stop limit conditions depend on regular, central
or mean values of those agents, whereas damage and ultimate limit states
require extreme conditions, i.e. to pay attention to singular values. The
statistical theory for dealing with mean values (point-in-time distribution) is
different from the theory for extreme values [6, 7, 8, 9]. Traditionally, both
problems are treated independently, which makes difficult to understand the
link between point-in-time and extreme distributions and their implications
from the practical point of view.

There are several attempts in the literature to incorporate both the point-
in-time (central) and extreme information in the same probability distribu-
tion model (mixture models), see for instance, [10, 11, 12, 13, 14, 15, 16].
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The common characteristic of these works is that all are applied to specific
distributions, and the parameter estimation is fuzzy, not providing a general
framework to deal with the problem. This work is intended to fill this niche.

As previously mentioned, safety of structures is the fundamental criterion
for design, and once limit states and required probabilities are defined, engi-
neering design must ensure satisfaction of the safety constraints. There are
several methods to check the satisfaction of the safety requirements which
can be classified in two main groups: (a) the classical safety factor approach,
and (b) the probability based approach. The latter deals with probabili-
ties of failure, which are difficult to deal with because (a) it requires the
definition of the joint probability of all variables involved, and (b) the eval-
uation of the failure probability is not an easy task. The problem becomes
even more difficult if several failure modes are analyzed, because the fail-
ure region is the union of the different failure mode regions, and regions
defined as unions are difficult to work with because of their irregular and
non-differentiable boundaries [17]. A method widely used by engineers to
overcome these difficulties is Monte Carlo simulation technique. Once the
probability distributions are defined, long records of the random variables
involved may be sampled [18, 19, 20] and used to check whether the safety
constraints are satisfied in terms of probabilities of failure. The simplicity
on its implementation has increased the development of different methods
for structural reliability analysis [21, 22, 23], such as directional simulation
techniques [24, 19], importance sampling [25, 26, 27], or techniques which
allows reproducing on multidimensional settings, not only the marginal dis-
tributions but the temporal dependence of the stochastic processes involved
as well [28, 29, 30].

The aim of this paper is threefold: i) to develop a Monte Carlo simulation
method for reproducing both the point-in-time (mean values) and extreme
value distributions of random variables, while keeping the temporal depen-
dence structure of the stochastic process involved, and valid for any kind of
probability distribution function, ii) to present a graphical interpretation of
simulation results to merge both distributions on a compatible scale, and iii)
to provide new insights for the use of the point-in-time and extreme regimes
simultaneously within First-Order-Reliability methods (FORM). The theo-
retical and practical material developed in this paper is intended to support
engineers on the design process and help understanding the relationship be-
tween both distributions, freeing engineers of deciding which conditions, aver-
age or extreme, must be used for each failure mode, because both conditions
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are considered into the proposed distribution.
The rest of the paper is structured as follows. Section 2 introduces the

concept of order statistics and extremes. In Section 3, the graphical inter-
pretation to show the behavior of both distributions in a compatible scale is
provided. The Monte Carlo simulation method reproducing both distribu-
tions is developed in Section 4. Section 5 introduces the autocorrelation into
the simulation method and different examples of the simulation performance
are shown. Section 6 discusses some implications of the method proposed in
this paper with respect to FORM methods. Finally, some conclusions are
duly drawn in Section 7.

2. Order Statistics and Extremes

Let consider the point-in-time probability density and distribution func-
tions of a random variable X, i.e. fX(x) and FX(x). If we draw from this
distribution a sample x1, x2, . . . , xn of size n, and arrange it in increasing
order x1:n, x2:n, . . . , xn, we could obtain the probability distribution of the
rth element of this sequence, Xr:n, so-called the rth order statistic of a sam-
ple of size n. The first and last order statistics are the minimum X1:n and
maximum Xn:n respectively, and are called extremes [31, 8].

This maximum and minimum are very important for the design consid-
ering ultimate and damage limit states, and assuming that the point-in-time
distribution of the variable of interest FX(x) (loads, significant wave height,
strength, etc.) is known, the cumulative distribution functions of the maxi-
mum and minimum order statistics of a sample of size n are, respectively:

Fmax
X (x) = [FX(x)n] , (1)

and
Fmin

X (x) = 1− [1− FX(x)]n . (2)

When n tends to infinity, distributions (1) and (2) are degenerate, only
taking values equal to 0 or 1. For these cases linear transformations of x,
consisting on location and scale changes, are looked for to avoid degeneracy.
Note that when this is possible, FX(x) is considered to belong to the domain
of attraction of the limit distribution.

[32] proved that there is only one parametric family for each of the limit
distributions of maxima and minima, which correspond to the Generalized
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Extreme Value Distributions for maxima (GEV) and minima (GEVm), re-
spectively. For instance, the cumulative distribution function (CDF) for
maxima is given by:

Fmax
X (x; µ, ψ, ξ) =





exp




−

[
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)]−1

ξ

+
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where µ, ψ, and ξ are the location, scale and shape parameter, [a]+ =
max(0, a), and the support is x ≤ µ − ψ/ξ, if ξ < 0, or x ≥ µ − ψ/ξ, if
ξ > 0. The GEV family includes three distributions corresponding to the
different types of tail behavior: Gumbel (ξ = 0) with a light tail decay-
ing exponentially; Fréchet distribution (ξ > 0) with a heavy tail decaying
polinomially; and Weibull (ξ < 0) with a bounded tail.

Note that this result has two very important practical implications:

1. The complexity to characterize the point-in-time regime FX(x) of a
given random variable X, which allows using multiple distributions as
possible candidates, contrasts with respect to the apparent simplicity to
characterize the probability distributions for maxima and/or minima,
which only requires the estimation of the three parameters µ, ψ, and ξ
from the corresponding limit distribution family.

2. Since different point-in-time distributions may have the same domain
of attraction, the best way to characterize the tail (upper/lower) of the
distribution is using data belonging to the corresponding tail (max-
ima/minima) and estimate the parameters of the corresponding limit
distribution.

From the practical point of view, the use of the GEV distribution for
maxima is not appropriate in many cases because it uses small samples for
the fitting process. For those cases, it is preferable to use the Pareto-Poisson
model, which is valid for independent and identically distributed processes,
or the Peaks Over Threshold (POT) method, suitable for dependent and
identically distributed processes. The method presented in this paper is
valid for those distributions or any other distribution for maxima.

5



Traditionally, engineers treat both point-in-time and extreme value dis-
tributions independently depending on the kind of limit state under consid-
eration. The method proposed in this paper facilitates the engineering task
as follows:

1. By presenting a graphical interpretation which makes easier to check if
the right-tail of the distribution is appropriately reproduced or fitted by
the point-in-time distribution, and then decide if an additional analysis
of those extremes is required.

2. For those cases where both analysis are relevant and required, we
present the methodology to link both distributions and use them si-
multaneously. Thus avoiding the decision to choose one or the other
depending on the limit state considered.

3. Relationship between point-in-time and extreme value distribu-
tions: Graphical representation

From the practical point of view, it would be very useful for engineers to
establish the relationship between the point-in-time and the extreme value
distributions for random agents, or even to have a graphical visualization of
this relationship, which would allow them to quantify the skill of any Monte
Carlo simulation technique to deal with both central and extreme conditions
at the same time.

The aim of this section is to present a graphical representation to ac-
complish the aforementioned task. Let assume an stochastic process Xt with
associated sampling or occurrence frequency f = 1/Tx (Tx is the sampling
period, for instance 1 hour, 2 hours, etc.) and whose point-in-time distribu-
tion is FPT(x). If we simulate samples of size n from the stochastic process
Xt and calculate their maximum values, this maximum is a random variable
XM with probability distribution function FEV(x). Both distributions may
be plotted on the same return period graph as follows:

1. Calculate the “equivalent return period” from the point-in-time distri-

bution, i.e. TPT =
1

1− FPT(x)
.

2. Plot TPT versus x.

3. Calculate the “return period” from the extreme value distribution, i.e.

TEV =
1

1− FEV(x)
.
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4. Plot the re-scaled return period using the sample size n, i.e. TEV
r =

n · TEV versus x.

Figure 1 (a) shows the proposed graphical interpretation associated with
an hourly stochastic process (Tx = 1 hour) without temporal correlation,
and whose marginal (point-in-time) distribution corresponds to the standard
normal (Xt ∼ N(0, 12)). Dark gray line corresponds to (TPT, x). We sam-
ple ny = 1000 years of data and look for the annual maximum xmax. Black
dots correspond to (TEV

r , xmax). The re-scaled return period is calculated
as TEV

r = n

1−F̂EV(x)
, where F̂EV(xi) = i

ny+1
; ∀i = 1, . . . , ny is the empiri-

cal annual maxima probability distribution for the sample, and n = 8766.
Finally, the light gray line represents (TEV

r , xmax), where TEVr has been cal-
culated using the GEV fitted distribution to annual maxima. Note that both
the point-in-time and the extreme regimes converge on the tail of interest,
however, there are slight differences between the point-in-time and the max-
ima fitted distribution due to the simulation and fitting process uncertainty.
These differences tend to zero as the sample size tends to infinity. Note that
the true abscissas axis units in Figure 1 are hours, however, we have re-scaled
the ticks to years to facilitate the interpretation.

Analogous results are shown in Figure 1 (b) for a gamma distributed
stochastic process with scale and shape parameters θ = 5 and κ = 10, re-
spectively. Note that as in the previous case, both the point-in-time and
extreme-value probability distributions converge on the tail of interest.

These results are not surprising, since we are sampling from given point-
in-time distributions, and thus the sampled data reproduce appropriately
the tail of interest, especially if large samples are used. However, when
dealing with real data sets, the point-in-time distribution does not usually
fit appropriately the tail of interest. This is the case for the significant
wave height instrumental record (gray line) associated with Bilbao buoy,
shown in Figure 2. Their corresponding annual maxima (triangle dots) and
peaks over the threshold u = 4.2 m (circle dots) are also shown. Note that
the latter correspond to maximum values during independent storms. The
independence assumption is considered assuming that the minimum distance
in time between peaks must be 3 days. This data set consists of an hourly
time series of significant wave height in meters from February 21, 1985 to
July 13, 2009.

Significant wave height is a very important parameter for harbor design.
Average conditions of significant wave height are relevant to analyze operat-
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Figure 1: Graphical representation of the point-in-time and extreme regimes for: a) an
standard normal and b) a gamma distributed stochastic processes.
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Figure 2: Hourly significant wave height record at Bilbao buoy from February 21, 1985 to
July 13, 2009, annual maxima and peaks over the threshold u = 4.2.

ing conditions for ships, whereas extreme significant wave heights are used
for the stability design of protection structures, such as, vertical breakwaters,
dikes, etc.. Thus the importance of characterizing both distributions.

We fit both the significant wave height record and the corresponding peaks
over the selected threshold to different parametric distributions: i) a Gaussian
Mixture with 4 components for the point-in-time distribution, and ii) a POT
model for the annual maxima (extreme-value) distribution, it is possible to
plot i) the histograms, ii) the fitted densities, iii) the empirical cumulative
and iv) fitted cumulative distributions (see Figure 3). Note that they all
present very good fitting diagnostic plots. However, it is difficult to establish
whether the fitted point-in-time distribution is capable of reproducing the
tail of interest.

If data and fits from Bilbao buoy are plotted using the proposed graphical
representation, results shown in Figure 4 are obtained. Note that this repre-
sentation allows establishing the range of validity of the fitted point-in-time
distribution, which starts distorting results above 4.8 meters of significant
wave height approximately. The hourly probability of not exceeding this
value within the year is 0.996. Above these quantile and probability thresh-
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Figure 3: Graphical representation of the point-in-time and extreme (annual maxima)
distributions for the significant wave height record at Bilbao buoy.

olds, the point-in-time distribution is no longer valid. It can be observed
that the extreme value fit allows reproducing appropriately the tail of the
distribution, especially for long equivalent return periods.

These results confirm the appropriateness of using the graphical represen-
tation to help understanding the relationship between both the point-in-time
and extreme regimes, posing a new challenge for LEVEL III reliability meth-
ods based on Monte Carlo simulation techniques: is it possible to simulate,
from given point-in-time and extreme-value fitted distributions, samples re-
producing both regimes simultaneously? The answer to this question is given
in the next section.

4. Point-in-time and extreme-value simultaneous Monte Carlo sim-
ulation technique

Consider the stochastic process Xt, whose point-in-time and extreme-
value probability distributions are FPT(x) and FEV(x), respectively. In Fig-
ure 5 the PDFs and CDFs of both distributions in case of maxima are plotted.
The first important issue in order to reproduce both distributions is to select
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Figure 4: Graphical representation of the point-in-time and extreme distributions for the
significant wave height record at Bilbao buoy using the proposed method.
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the threshold xlim, this limit corresponds to the maximum value which is
governed by the point-in-time distribution. From the practical point of view,
it is established based on the proposed graphical representation, as shown in
panel left-below from Figure 5, being the x-value whose associated return pe-
riods TPT and TEV

r are closer. This condition can be mathematically defined
as:

Minimize
x

(
TPT − TEV

r

)2
, (4)

which in case of dealing with maxima becomes:

Minimize
x

(
1

1− FPT(x)
− n

1− FEV(x)

)2

. (5)

Note that in case both regimes intersect, as it is shown in left-bottom
panel from Figure 5, the optimal solution from problem (4) corresponds to
zero, i.e. xlim is the solution of the implicit equation TPT = TEV

r . Never-
theless, we advocate this approach to overcome the difficulties of solving the
implicit equation for those cases where there is no solution (no intersection
of regimes). In case of multiple solutions, we take the minimum solution if
we are dealing with maxima.

The probability of not exceeding the maximum value xlim within the
point-in-time distribution is equal to pPT

lim = FPT(xlim), thus the simulation
technique uses FPT(x) for probabilities lower than or equal to pPT

lim (which
is equivalent to x lower than xlim), and FEV(x) otherwise. However, for the
extreme regime the probability must be re-scaled considering:

1. The extreme distribution is related to the maximum of n elements from
the point-in-time distribution.

2. There is a probability pEV
lim = FEV(xlim) of not exceeding the xlim-value

within the extreme distribution, which is usually different from zero.
This is the case shown in Figure 5. Thus, those values are not sam-
pled again because they are already considered within the point-in-time
distribution.

Finally, when dealing with maxima, and for given uniformly distributed
random number uPT representing a probability, the corresponding simulated
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value is obtained as follows:

x =

{
FPT−1 (

uPT
)

if uPT ≤ pPT
lim (x ≤ xlim)

FEV−1 (
uEV

)
if uPT > pPT

lim (x > xlim),
(6)

x =

{
FPT−1 (

pPT
)

if pPT ≤ pPT
lim (x ≤ xlim)

FEV−1 (
pEV

)
if pPT > pPT

lim (x > xlim),
(7)

where the re-scaled probability, is equal to:

uEV = pEV
lim +

uPT − pPT
lim

1− pPT
lim

(1− pEV
lim). (8)

pEV = pEV
lim +

pPT − pPT
lim

1− pPT
lim

(1− pEV
lim). (9)

The bottom-right panel of Figure 5 shows the graphical interpretation of
the probability re-scaling, which constitutes a distorted zoom of the panel
above. Note that expression (6) allows reproducing both the point-in-time
and extreme-value distributions simultaneously.

To shown the functioning of the proposed simulation technique, 1000
years of hourly significant wave height data has been sampled using (6) and
the fitted distributions at Bilbao buoy location. For this particular case
n = 8766 corresponds to the mean number of hours per year used to evaluate
the annual maxima.

For the significant wave record, the solution of equation (5) is xlim =
6.404, and the associated probabilities are pPT

lim = 0.99996 and pEV
lim = 0.66.

These values correspond to return periods Tlim ≈ 25817 hours and Tlim = 2.94
years, respectively, which are equivalent.

Results from the simulation process are shown in Figure 6. Note that the
sample fits appropriately the point-in-time distribution up to the probability
related to Tlim = 2.94 years return period, and finally the data fits to the
extreme distribution for larger return periods. In addition, results related to
the annual maxima are also shown. Note also the good fitting shown with
respect to the theoretical extreme value distribution above Tlim = 2.94 years
return period.

These results confirm the validity and good performance of the proposed
procedure.
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5. Autocorrelation

The Monte Carlo simulation method provided in the previous section
focusses on the marginal distribution associated with an stochastic process.
However, it has been recognized by different authors the importance of the
temporal correlation of any stochastic process, or even the cross correlation
between different stochastic processes (see, for instance, [33, 14, 29]).

An appropriate description of any stochastic process requires recognizing
its time dependent nature. For this particular case, the proposed method
given in (6) is combined with results from [28, 29]. Basically, the method
encompasses the following sequential procedure:

1. Using the point-in-time marginal distribution function, transform the
time series of historical values xt into a normalized Gaussian time series
using the following transformation [34]:

Φ(zt) = FPT(xt). (10)

Transformation (10) allows preserving the marginal distribution of the
random variables involved.

2. Fitting of a time series model (e.g., an ARMA process) to the trans-
formed historical values obtained in step 1 above. The obtained model
allows taking into account temporal correlations.

The time series theory based on autoregressive moving average (ARMA)
models allows incorporating the temporal structure. An ARMA(p, q) process
Z is mathematically expressed as

zt =

p∑
j=1

φjzt−j + εt −
q∑

j=1

θjεt−j, (11)

where φi; i = 1, . . . , p are the autoregressive parameters, and θj; j = 1, . . . , q
are the moving average parameters. The term εt stands for an uncorrelated
normal stochastic process with mean zero and variance σ2

ε , and it is also
uncorrelated with zt−1, zt−2, . . . , zt−p. This process is so-called white noise,
innovation term, or error term.

Observe in (11) that zt boils down to a linear combination of white noises,
and as such, the marginal distribution associated with the stochastic process
Z is necessarily normal, which is in accordance with the first assumption
(10).
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Note that a stationary process is assumed. In case of dealing with sea-
sonal behaviors, which could wreck the stationarity, non-stationary proba-
bility distributions could be used instead [35, 36, 37, 38] to easily overcome
this difficulty.

It is important to point out that only the data belonging to the point-
in-time distribution is used to characterize the autocorrelation structure of
the stochastic process, because the extreme data is by definition indepen-
dent, and has no information about autocorrelations. Note also that using
ARMA models, only second-moment properties are preserved by the auto-
correlation, and this might not provide a complete description in the case of
a non-Gaussian process. That is the reason why non-gaussian processes are
transformed into gaussian processes using (10). References [28, 29] proved
that this approach reproduces autocorrelations in the original domain with
a high degree of accuracy.

5.1. The algorithm

Once the parameters of the ARMA model are estimated from the trans-
formed time series, it is very simple to incorporate the autocorrelation struc-
ture to the final series. The overall method consists of the following sequential
procedure:

• Step 1: Estimate the parameters of the probability distributions that
best fits both the point-in-time and the extreme-value regimes. This is
done using the available historical data.

• Step 2: Apply transformation (10) to the historical time series using
the point-in-time marginal cumulative distribution function. This way,
a transformed series is obtained with an associated standard normal
marginal distribution.

• Step 3: Adjust a univariate ARMA model to the corresponding trans-
formed series (obtained in Step 2 above). The fitting process to be
performed in this step is well known (see, e.g., [39]) and yields uncorre-
lated normal residuals (historical errors) with zero mean and constant
variance σ2

ε .

• Step 4: Simulate independent normal errors with zero mean and vari-
ance σ2

ε , i.e. εsim
t .
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• Step 5: Introduce the simulated error series εsim
t into the ARMA model

fitted in Step 3, obtaining zsim
t .

• Step 6: Calculate the time series usim
t = Φ(zsim

t ), which is uniformly
distributed.

• Step 7: In this step, the inverse transformation (6) is applied to this
serie in order to enforce the actual marginal distribution that has been
estimated in Step 1.

Note that the method proposed in this paper has the following advantages
with respect to existing Monte Carlo simulation methods:

1. It reproduces the autocorrelation function as in [21] or [22].

2. It preserves the statistical properties of the stochastic process in terms
of the marginal distribution, reproducing appropriately not only the
central part of the distribution (point-in-time) but also the right-tail
(extremes).

In addition, as proposed in [29], the method could be easily extended
to simulate different stochastic processes at the same time. This would al-
low replicating the main cross-correlations coefficients characterizing those
stochastic processes, and not just the contemporaneous. However, since it is
not clear how the cross correlation in the point-in-time and extreme distri-
butions behaves, this is a subject for further research.

5.2. Illustrative example

To show the functioning of the proposed algorithm, the following ARMA
process (1, 1) with parameters φ1 = −0.8, θ1 = 0.3, and variance σ2

ε =
1 is considered. According to [40], the variance of the process is σ2

Z =
1 + θ2

1 − 2φ1θ1

1− φ2
1

σ2
ε ≈ 4.3611 (σZ ≈ 2.0883). One hundred years of hourly

data xsim (n = 100× 24× 365.25 = 876600) is sampled from this stochastic
process. This sample is considered as our initial data set. The idea is to
use this sample and the algorithm presented in the previous subsection to
generate one thousand years (ny = 1000) of hourly data ysim considering
the autocorrelation, the fitted point-in-time and extreme-value distributions,
and compare results with the reference values from the original stochastic
process and the initial sample data xsim.

The results of the application of the algorithm are the following:

18



• Step 1: The point-in-time distribution of xsim is normal, and its esti-
mated parameters and 95% confidence bands are:

µ̂ = 2.7840× 10−4 (−0.0041, 0.0047)
σ̂ = 2.0910 (2.0879, 2.0941),

(12)

which both contain the true values 0 and 2.0883, respectively. For the
extreme value distribution, the annual maxima from the sample xsim,
i.e. xmax

sim , follows a GEV distribution with estimated parameters and
95% confidence bounds:

µ̂e = 7.7050 (7.7007, 7.7093)

ψ̂ = 0.6020 (0.5989, 0.6051)

ξ̂ = −0.0178 (−0.0227,−0.0129).

(13)

• Step 2: Apply transformation (10) to the historical time series (xsim)
using the normally distributed point-in-time marginal distribution.

• Step 3: Adjust an univariate ARMA model to the corresponding trans-
formed series zsim, obtaining the following parameter estimates: φ̂ =
−0.8011 and θ̂ = 0.2984. The residuals standard deviation is σ̂ε =
0.4781.

Figure 7 shows the proposed graphical interpretation applied to the sam-
ple data xsim and xmax

sim . Dark gray line corresponds to (TPT, x) for the point-
in-time fitted distribution. Light gray line corresponds to (TEV

r , x) associated
with the GEV fitted distribution for annual maxima. Note that both fitted
distributions differ at the right tail of the distribution (see the corresponding
zoom in the figure, where data has been remove to ease visualization), which
is usually the case when fitting real data. Light gray circle dots correspond to
the sample data values, and black dots are related to sample annual maxima.

• Step 4: In order to obtain ny = 1000 years of hourly data, n =
1000×365.25×24 independent normal errors are sampled with standard
deviation σ̂ε = 0.4781, i.e. εsim

y .

• Step 5: Introduce the sampled error time series into the ARMA model
fitted in Step 3, obtaining zsim

y .

• Step 6: Calculate the uniformly distributed time series of probabilities
usim.
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Figure 7: Graphical representation of the point-in-time and extreme regimes for the illus-
trative autocorrelated normal stochastic process.

• Step 7: In this step, the inverse transformation (6) is applied to get ysim.
Note that for this particular example, the solution of equation (5) is
xlim = 8.3396, and the associated probabilities are pPT

lim = 0.9999667
and pEV

lim = 0.7082156. These values correspond to return periods
Tlim = 30042.7 hours and Tlim = 3.427 years, respectively, which are
equivalent.

The graphical illustration of the 1000 years simulated sample is given in
Figure 8. Note that it shows the same results as Figure 7 but replacing the
sample data xsim and xmax

sim used to fit the distributions, by the 1000 years
simulated samples ysim and ymax

sim using the proposed procedure. Note the
accuracy of the method to reproduce both the point-in-time distribution up
to xlim = 8.3396, where the simulated sample starts following the extreme-
value distribution. In addition, several tests have been performed to check
simulation results :

1. For the point-in-time distribution, a two-sample Kolmogorov-Smirnov
test with 0.05 significance level is performed to compare the distribu-
tions of the initial sample data (xsim) and the simulation results (ysim).
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Figure 8: Graphical representation of the point-in-time and extreme regimes for the illus-
trative autocorrelated normal stochastic process.

Note that the p-value obtained is 0.5966, which is higher than the sig-
nificance level, i.e. the null hypothesis that both samples come from
the same continuous distribution is accepted.

2. Analogously, the two-sample Kolmogorov-Smirnov test is applied to
compare the samples related to annual maxima, i.e. xmax

sim versus ymax
sim .

Note that the p-value obtained is 0.1183, so that the null hypothe-
sis that both samples come from the same extreme-value continuous
distribution is accepted.

3. Finally, an ARMA model is fitted to the simulated sample, obtain-
ing the following parameter estimates: φ̂ = −0.8002 and θ̂ = 0.2998.
The corresponding residuals standard deviation is σ̂ε = 1.00015, which
almost coincide with the one from the initial ARMA process.

These results confirm the appropriate performance of the proposed pro-
cedure to reproduce i) the point-in-time and extreme-value distributions and
ii) the temporal dependence structure of any stochastic process.
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6. New insights into structural reliability methods

Besides providing a new Monte Carlo simulation method for dealing with
point-in-time and extreme-value distributions, new insights about how to
incorporate this methodology within alternative reliability analysis methods,
such as First Order Reliability Methods (FORM), are also given. Note that
we assume that the reader is familiar with LEVEL III methods ([41, 42, 43,
44, 45] ) for evaluating the reliability index associated with any mode of
failure:

β = Minimum
z

√∑
∀i

z2
i (14)

subject to

g(x,η) = 0, (15)

T(x,η) = z, (16)

where g(x, η) = 0 is the failure condition, and T(x,η) is the transformation
([46]) giving the values of the standard and independent normal variables z
as a function of the values of the random x and design η variables. The
probability of failure pf is related to the reliability index by the approximate
relation pf = Φ(−β), where Φ(·) is the cumulative distribution function of
the standard normal random variable.

The key issue when dealing with structural risk problems where the point-
in-time and extreme-value distributions may coexist, is to decide which one
is more relevant for the corresponding limit state. The Monte Carlo method
proposed in this paper deals with the simulation process giving more impor-
tance to the point-in-time probability distribution, and it uses the re-scaled
extreme-value regime to improve accuracy in the right tail of the distribution.
According to (6)-(8) and considering u = Φ(zPT), the Rosenblatt transfor-
mation (16) becomes:

Φ(zPT) = FPT (x) if x ≤ xlim or zPT ≤ zlim

pEV
lim +

Φ(zPT)− pPT
lim

1− pPT
lim

(1− pEV
lim) = FEV (x) if x > xlim or zPT > zlim,

(17)
where zlim = Φ−1

(
pPT

lim

)
. It is important to point out that transformation (17)

takes into account the point-in-time distribution, but improving accuracy on
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the upper tail by using the re-scaled extreme-value distribution. Probabil-
ities of failure obtained from this approach are related to the point-in-time
frequency sampling, i.e. hours.

Alternatively, if only the extreme-value distribution is considered, trans-
formation (16) becomes:

Φ(zEV) = FEV (x) . (18)

In this case, probabilities of failure are associated with the extreme-value
frequency sampling, i.e. years.

From the practical point of view, we advocate the use of transformation
(17) and consider probabilities related to the point-in-time frequency sam-
pling, because it allows the consideration of any kind of limit state equation.
However, it is important to define the maximum probabilities of failure for
each failure mode in terms of the point-in-time frequency sampling. For in-
stance, if an inner harbor must be designed so that ships might not maneuver
during no more than 1000 hours per year, then the acceptable probability
of failure must be equal to pf = 1000/(365.25 × 24). Besides, if the off-
shore breakwater of the same harbor must be designed to fail on average
once every 25 years, the acceptable probability of failure must be equal to
pf = 1/(25×365.25×24). Considering those probability values, transforma-
tion (17) may be used for both operating and ultimate limit states without
any further consideration.

7. Conclusions

The method proposed in this paper provides new insights on the relation-
ship between the point-in-time and extreme-value distributions associated
with any stochastic process, and a possible way to deal with both distribu-
tions at the same time. The advances with respect to the state-of-the-art
can be summarized as follows:

1. A new graphical representation to help understanding the relationship
between both distributions is proposed.

2. A new Monte Carlo simulation technique holding the following require-
ments is provided:

• It is able to reproduce both the point-in-time and extreme-value
regimes.
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• It maintains the temporal dependence structure of the stochastic
process through ARMA models.

3. In addition, some hints about extending the method into FORM tech-
niques are given. In this case, the method frees the engineer to decide
about what regime should be used within the design process.

All the methods have been tested using different synthetically generated
samples and an example based on real data. Results confirm the good be-
havior of the proposed methods, and their suitability to i) support engineers
on the design process and ii) help understanding the relationship between
both point-in-time and extreme-value regime.

Further research must be done on cross-correlations between different
stochastic processes, however, this paper constitute a clear advance on the
knowledge of point-in-time and extreme-value distributions.

Note that although all the material developed in this paper is related to
the upper tail of the point-in-time distribution (maxima), alternative formu-
lations can be straightforwardly obtained for dealing with minima.

Acknowledgements

This work was partly funded by projects “AMVAR” (CTM2010-15009)
from Spanish Ministry MICINN, and by project MARUCA (E17/08) from
the Spanish Ministry MF. Y. Guanche is indebted to the Spanish Ministry
of Science and Innovation, FPI Program (BES-2009-027228). R. Mı́nguez
is also indebted to the Spanish Ministry MICINN for the funding provided
within the “Ramon y Cajal” program. The authors thank Puertos del Estado
(Spanish State Port) for providing the buoy data information.

References

[1] M. A. Losada, Recent development in the design of mound breakwaters,
in: J. Herbich (Ed.), Chapter 21 in Handbook of Coastal and Ocean
Engineering, Vol. I, Gulf Publishing, 1990.

[2] ROM 0.0, Procedimiento general y bases de cálculo en el proyecto de
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