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ABSTRACT

Wave reanalysis data bases (WRDB) offer important advantages for the statistical char-

acterization of wave climate (continuous time series, good spatial coverage, constant time

span, homogeneous forcing, more than 40 year-long time series) and for this reason, they

have become a powerful tool for the design of offshore and coastal structures. However,

WRDB are not quantitatively perfect and corrections using instrumental observations must

be addressed before it is used, this process is called calibration. The calibration is specially

relevant near the coast and in areas where the orography is complex, since in these places the

inaccuracy of WRDB is evident due to the bad description of the wind fields, i.e. insufficient

forcing resolution. The quantitative differences between numerical and instrumental data

suggests that different corrections should be applied depending on the mean direction of the

sea state. This paper proposes a calibration method based on a nonlinear regression prob-

lem where the corresponding correction parameters vary smoothly along the possible wave

directions by means of cubic splines. The correction of significant wave height is performed

using instrumental data: i) buoy records and/or ii) satellite data. The performance of the

method is illustrated considering data from different locations around Spain.

1



1. Introduction

In the last years, the development of wave reanalysis models allow a detailed description of

wave climate in locations where long-term buoy records are not available. For this reason they

have become a powerful tool used for the design of offshore and coastal structures, since they

provide long continuous time series records with good spatial coverage. However, reanalysis

models are simplifications of reality which also use discrete forcing fields consisting of surface

winds at different times, and quantitative results present differences when comparing with

recent instrumental data (buoys and/or satellite) (see Caires and Sterl (2005) and Cavaleri

and Sclavo (2006)). Cavaleri and Bertotti (2004) pointed out that when the orography is

complex, the reanalysis inaccuracy becomes more evident due to the bad description of wind

fields, which does not have the appropriate spatial and temporal resolution.

The definition of the wave climate is crucial for coastal management and design, and

there has been an increased interest in collecting information through instrumental devices,

mainly using buoys and satellite altimetry. Buoys provide time series records of different

ocean climate variables such as significant wave height, wave direction, wave period, currents,

wind direction, etc. depending on the type of device. This information is very valuable for

coastal design, however it is only valid for the buoy location and in most cases the time

series have interruptions due to disruptions on the normal use caused by buoy failure. From

the seventies, several satellite missions (Skylab, Geos-3, Seasat, Geosat, Topex/Poseidon,

Ers-1, Ers-2, Gfo, Jason-1, Envisat, and Jason-2) incorporate altimetry sensors which allows

the evaluation of different ocean climate variables, such as significant wave height with a

high level of precision (±3 cm, Krogstad and Barstow (1999)). Altimetry data consist of
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information about significant wave height, among others variables, at different locations and

time frames. However, with these two sources of information: buoys and altimetry, we do not

have a temporal and spatial homogeneous record of ocean wave climate variables for design

purposes. This reason has motivated an increased interest in the development of different

wave generation models such as WAM (see Hasselman et al. (1988)), which using wind

fields as input data, try to reproduce the evolution of wave generation and propagation on

an homogeneous framework, both in time and space. These wind wave numerical databases

provide continuous records of significant wave height, mean period and mean direction, which

are the key parameters for wave climate characterization, on a regular time basis (hourly

or 3-hourly) over a defined grid. This information set has the advantages of both buoy and

altimetry data, i.e. homogeneous spatial and temporal characteristics, however, as it has

been pointed out by several authors, results are subject to bias with respect to instrumental

data. Cavaleri and Sclavo (2006) summarized the main characteristics of these sources of

information as follows:

Buoys: accurate, frequent (typically at 3-h intervals), but limited in number, very sparse

and mostly close to coasts,

Satellites: good accuracy, except for very low and high values, continuous, but very inter-

mittent at a given location, difficulties in working close to coast,

Numerical models continuous in space and time, full information (wave spectrum), but

often underestimated in the enclosed basins.

Note that wave hindcasting usually refers to a numerical model integration over a histor-

ical period without assimilating observations, since oceanographic observations such as the
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significant wave height are much scarcer than meteorological observations, and it has been

considered adequate for generating a reasonable representation of wave climate with little

need for a full reanalysis. On the other hand, reanalysis models incorporate observational

information within the process. Note that the term “wave reanalysis” is usually adopted in

the wave climate scientific community to indicate that it is forced by a wind atmospheric

reanalysis which assimilates observations. For this reason we prefer to use the term “reanal-

ysis ” instead of “hindcast” Thus, data for the case studies presented, properly speaking,

come from hindcast models without assimilating instrumental observations.

Since the three sources of information have advantages and drawbacks, several attempts

to combine this information have been presented in the literature. Caires and Sterl (2005)

proposed a nonparametric method to correct model data. At any given point in space and

time the correction is determined from analogs in a learning dataset. This dataset contains

model data and simultaneous observations and it is applied to the significant wave height

dataset of the 45-yr European Centre for Medium-Range Weather Forecasts Re-Analysis

(ERA-40). Cavaleri and Sclavo (2006) made use of the overall information on models, buoys

and satellite to obtain calibrated decadal time series at a large number of points, distributed

at 0.5◦ intervals in the Mediterranean Sea. These two approaches are applied on a point-to-

point basis without considering either the spatial correlation between neighbor nodes or the

wave direction. In an attempt to include spatial correlation in the calibration procedure,

Tomás et al. (2008) proposed a spatial calibration procedure based on empirical orthogonal

functions and a non-linear transformation of the spatial-time modes. However, the method

proposed by Tomás et al. (2008) assumes a prior distribution function of the data all around

the study area which may not be valid for certain cases, and it is suitable for global hindcast
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datasets.

Due to the characteristics of reanalysis models, which are primarily fed using wind data,

it is known that inaccuracies of WRDB are mostly dependent on the bad description of the

wind fields (see Feng et al. (2006)), i.e. insufficient forcing resolution. In coastal areas, there

are additional factors that contribute to poor model performance, such as, inappropriate

shallow water physics in wave models, unresolved island blocking, imperfect bathymetry, etc.

(see Cavaleri et al. (2007) for a summary). The quantitative differences between numerical

and instrumental data suggests that different corrections should be applied depending on the

mean direction of the sea state, i.e. for directions where the wind resolution is not enough

to capture the local wind wave generation, but not for swell waves generated in areas where

the wind resolution is sufficient to reproduce the wave dynamics. Tomás (2009) proposes

a calibration method where the parameters depend on the wave direction using harmonic

functions. Mackay et al. (2010a,b) also point out the necessity of hindcast calibration in the

context of wind energy resource assessment.

The aim of this paper is to present a new parametric calibration method based on a

nonlinear regression problem with the following characteristics:

i. It manages to combine buoy, satellite and model data.

ii. The correction parameters vary smoothly along the possible mean wave directions by

means of cubic splines, allowing different corrections depending on the wave direction.

iii. Corrections are made on empirical quantile information on a Gumbel probability paper

scale. This allows to give more weight on the calibration procedure to the maximum

data, which is more important from the design point of view.
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iv. Classical regression theory is applied to the calculation of the confidence intervals for

parameters estimates and corrected values, giving an idea of the uncertainty associated

with the calibration process.

The paper is organized as follows. In Section 2, we present the nonlinear regression

problem to be used for calibration purposes, analyzing in detail how the parameters are

modeled via spline functions and it describes the complete calibration methodology including

the diagnostic analysis and uncertainty characterization. Section 3 illustrates the functioning

of the method through several examples on different locations around Spain, and in Section 4

the effect of directional uncertainty on those locations is analyzed. Finally, in Section 5

relevant conclusions are duly drawn.

2. Nonlinear regression model

The intrinsically (nonlinearizable) nonlinear regression model can be written as

yi = f(xi; β) + εi, i = 1, 2. . . . , nd, (1)

where yi is the ith value of the response variable, xi is a k × 1 vector of predictor variables

corresponding to the ith observation, and εi is a random error. The function f is known

and nonlinear in the parameter vector β. The most popular method for estimating the

regression parameters β is the least squares (LS) method, where we minimize the sum of

squared distances between observed and predicted values, that is,

Minimize
β

ZLS = εT ε =

nd∑
i=1

(yi − f(xi; β))2 , (2)
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where ε are the residuals, which are assumed to be uncorrelated and identically distributed

normal random variables with zero mean and unknown constant variance, and nd is the

number of observations.

For the calibration process, we consider that response and predictor variables correspond

to instrumental significant wave heights (buoy and satellite, HI
s ) and reanalysis significant

wave heights (HR
s ), respectively. The nonlinear function f is equal to:

f(x; β) = f(aR, bR; HR
s , θ) = aR(θ)

[
HR

s

]bR(θ)
= HC

s , (3)

where HR
s is the reanalysis significant wave height, HC

s is the calibrated or corrected signifi-

cant wave height, and aR(θ) and bR(θ) are the parameters dependent on the wave direction

θ. Note that although we particularize equations for significant wave height variables, the

method is also valid for other reanalysis variables such as wind velocity or mean wave periods.

The model relies on the assumption that parameters aR and bR vary smoothly with the

propagation direction (θ). These variations are introduced in the model throughout cubic

splines, so that only a given number np of values of the parameters at different given directions

aj, bj; j = 1, . . . , np are known (see the circle points in Figure 1 (a)). The parameter values

for all possible directions are obtained interpolating through smoothing cubic spline functions

as follows:

aR
i (θi) = aj + xa

j (θi − θj) + ya
j (θi − θj)

2 + za
j (θi − θj)

3, (4)

bR
i (θi) = bj + xb

j(θi − θj) + yb
j(θi − θj)

2 + zb
j(θi − θj)

3, (5)

where aR
i and bR

i are the interpolated model correction parameters for a given direction

θi, aj, bj; j = 1, . . . , np are the parameters to be estimated, i.e. the parameter values
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associated with directions θj; j = 1, . . . , nd, and xa
j , ya

j , za
j , xb

j, yb
j , zb

j ; j = 1, . . . , nd are the

corresponding cubic spline parameters, which are obtained using zero, first and second order

continuity conditions along the circumference (0 ≤ θ ≤ 2π). Note in Figure 1 that distances

hj between direction locations do not need to be equally spaced. Additionally, from the

practical point of view θ1 = 0 and θnp+1 = 2π, which corresponds with the same direction

(angle) value, and for this reason, the following conditions must be fulfilled:

a1 = anp+1

b1 = bnp+1,

(6)

this is the reason why only np parameters have to be considered for the spline definition.

Under these considerations and using equation (2) the spline parameters aj, bj; j =

1, . . . , np estimation consist of determining the optimal values by solving the following opti-

mization problem:

Minimize

a, b

nd∑
i=1

(
HI

si
−HC

si

)2
=

nd∑
i=1

(
HI

si
− aR

i (θi)
[
HR

si

]bR
i (θi)

)2

(7)

subject to

aR
i = aj + xa

j (θi − θj) + ya
j (θi − θj)

2 + za
j (θi − θj)

3

bR
i = bj + xb

j(θi − θj) + yb
j(θi − θj)

2 + zb
j(θi − θj)

3





i = 1, . . . , nd, (8)

aj > 0; j = 1, . . . , np (9)

g(a, b) = 0 (10)

where nd is the number of data pairs (HI
s , HR

s ) available for parameter estimation. Note

also that each data pair uses a different cubic polynomial depending on the direction values

according to the following condition θj ≤ θi < θj+1. This does not represent a problem from
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the practical point of view because both the values θj; j = 1, . . . , np and θi; i = 1, . . . , nd

are data for the estimation procedure. Constraint (9) ensures positiveness of parameters a,

since significant wave height must remain positive. Constraint (10) represents all required

equations for the definition of the cubic spline parameters xa
j , ya

j , za
j , xb

j, yb
j , zb

j ; j = 1, . . . , np.

A detailed definition of these equations is given in an Appendix.

Observe that, from a mathematical point of view, the problem defined in Equations (7)-

(10) consists of the minimization of a positive sum of continuously derivable convex functions

defined on a compact set, i.e. a convex function with linear constraints. Hence, there exists

one and only one solution provided that constraints are feasible, which it is the case for the

cubic spline definition. The minimization problem can be solved using any of the available

solvers for nonlinear programming subject to linear constraints, such as MINOS (Murtagh

and Saunders 1998) under GAMS (Brooke et al. 1998), which also allows including bounds

on parameters to be estimated. The method uses a reduced-gradient algorithm (Wolfe 1963)

combined with the quasi-Newton algorithm described in Murtagh and Saunders (1978) where

the gradient vector information is obtained using numerical differentiation. Alternatively,

the optimization procedure can be solved using the sequential quadratic programming (SQP)

method, where the estimate of the Hessian of the Lagrangian at each iteration is computed

using the BFGS formula (see Powell (1978)).

In the previous section the nonlinear model proposed for parameter estimation of the

calibration method was presented. However, the calibration procedure as a whole, i.e the

obtention of the final calibrated time series in a particular location, involves several additional

steps:
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i. Data and quantile selection. The calibration procedure is intended to correct the prob-

ability distribution function of the reanalysis variable in order to be as close as possible

to the instrumental variable probability distribution. For this task, it is required to use

both reanalysis and instrumental data coincident in time and space, and the selection

of the appropriate quantiles to be compared.

ii. Smooth quantile calculation. Since the calibration procedure assumes an smooth vari-

ation of the calibration parameters, the selected quantiles for different directions must

be calculated.

iii. Parameter estimation. Using the reanalysis and instrumental quantiles, the parameters

are estimated solving the problem (7)-(10).

iv. Diagnostic analysis. Confidence intervals of the parameters to measure the quality of

the calibration procedure are estimated using classical regression techniques.

v. Time series calibration. Once the optimal calibration parameters are available, it is

possible to correct the reanalysis time series related to a given location.

vi. Diagnostic time series analysis calibration. Using also standard regression techniques,

confidence intervals for the calibrated times series are calculated. This diagnostic

allows quantifying the uncertainty associated with the calibration procedure. Several

diagnostic plots are also listed.

All the aforementioned steps are explained in detail in the following subsections.
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a. Data and quantile selection

The target of the calibration procedure is to correct the significant wave height reanal-

ysis time series record at a particular location (see the objective point in Figure 2) using

instrumental data. For this purpose, the first step of the method is to select nd data pairs

(HI
s , HR

s ) in an area close to the objective point where the wave climate is similar. The

definition of an automatic criterion to select the data to be incorporated for the posterior

parameter estimation procedure is difficult, however we propose a procedure based on vec-

torial correlation (Crosby et al. 2003), sensitivity tests (Tomás 2009) and designer criterion.

The guidelines for data selection are summarized as follows:

i. Select a circular area around the objective point of radius r (neighborhood criterion).

The length of the radius depends on the ocean climate homogeneity and the number

of available data. There must be a compromise between the data record length and

its homogeneity, since the longer the radius the higher the length of the record but

it is more likely to use data with different wave climate. In our experience and after

several sensitivity tests using different parameter configurations around the Spanish

coast, we derived the following rule of thumb: i) r = 0.5◦ for complex areas such as

Mediterranean sea; ii) r = 1◦ for Atlantic ocean coastlines, and iii) r = 2◦ for open

areas.

ii. The homogeneity criterion is further supported using the concept of vector correla-

tion (Crosby et al. 2003), which is a generalization of the standard scalar correlation

coefficient including both directional and magnitude information. Vector correlation

is equal to zero when the vectors are independent and obtains its maximum value (2
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for the two dimensional case) if and only if they are linearly dependent. Thus, from

different tests performed, data within the neighborhood criterion circle whose vector

correlation is higher than 1.5 are taken for calibration purposes, otherwise they are

removed.

iii. In shallow water areas and depending on the spatial resolution of wave reanalysis, it

might be necessary to consider data pairs with relative water depth h/L similar to or

larger than that at the objective location, where h and L are water depth and wave

length, respectively. This aspect is very important in order to avoid possible bias

in the direction of the wave reanalysis, which may not be adequately reproduced by

the wave propagation model if the spatial resolution is coarse, i.e. more than 25 km.

Nevertheless, the proposed procedure is robust with respect to directional calibration

bias, as shown in Section 4.

iv. When the orography is complex and dealing with significant wave height, as the case

shown in Figure 2 (b), in order to avoid using diffracted or sheltered wave data whose

wave climate may be very different from the one in the objective location, a ray criterion

is used, i.e. only data within the circle so that, if the line joining its location with the

objective point does not intercept land, is taken into consideration, as shown in Figure 2

(b). Note that diffracted data may present a high vector correlation if directions and

magnitudes are affected by a constant, but we rather not to consider them.

v. Once the locations of the data to be considered are defined and for comparisons to be

meaningful, both reanalysis and instrumental data pairs coincident in location and time

must be obtained. This process is performed interpolating spatially and temporally
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the reanalysis data. The final result is a set of nd data pairs (HI
s , HR

s ) which are used

afterwards for quantile calculations.

Note that the selection criteria are based on previous results, heuristic guidelines from

sensitivity tests and under certain assumptions. Computational performance tests have

shown that the methodology provides satisfactory results for the locations studied (Mediter-

ranean Sea and Atlantic Ocean). Nevertheless, further research must be done about the data

selection criteria considering that this data should have homogeneous calibration parameters

for other locations around the world.

The selected nd pairs (HI
s , HR

s ) would allow us to get calibration parameter estimates

solving the problem (7)-(10). However, since most of the data are in the medium and lower

parts of the distribution, this would produce a masking effect for the highest significant wave

heights, which would not receive the appropriate correction. To avoid this shortcoming a

quantile calibration is proposed, instead of using nd data pairs, quantiles associated with a

given number nq of probabilities on a Gumbel scale are chosen as follows:

qlo = − log(− log(1/nd)) (11)

qup = − log(− log(1− 5/nd)) (12)

xqi
= qlo + (i− 1)

qup − qlo

nq

; i = 1, . . . , nq, (13)

qi = exp (− exp(−xqi
)) ; i = 1, . . . , nq, (14)

where qlo and qup are the Gumbel scale values associated with the lower (1/nd) and higher (1−

5/nd) probabilities, respectively, xqi
; i = 1, . . . , nq are equally space values on the Gumbel

scale, and qi; i = 1, . . . , nq are the corresponding quantile probabilities. For instance, if nd =

1000 and nq = 5, then the quantiles result in q = {0.0010, 0.3218, 0.8302, 0.9699, 0.9950},
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where three of them belong to the higher tail of the distribution.

b. Smooth quantile calculation

In the previous step, a set of nd data pairs (HI
s , HR

s ) and different quantile probabilities q

where determined. Next step encompasses the evaluation of the selected quantiles associated

with the probabilities q from the HI
s and HR

s empirical distribution functions, respectively,

so that the calibration parameter estimation is performed using quantile pairs (qI
Hs

, qR
Hs

)

instead of data pairs. Since the proposed calibration technique introduces smooth variations

depending on wave direction, the quantile calculation requires to embed somehow the wave

direction information θ. The process works as follows:

i. First of all a sector with amplitude ∆θ must be defined. For practical cases we use

∆θ = π
8

= 22.5◦, this sector would be a moving sector which will rotate all around

the circumference one degree at a time, as shown in Figure 3 (a). At every position

of this sector defined by its mean direction θi, all data whose direction is within this

sector, i.e. ∀k|θi − ∆θ/2 ≤ θk ≤ θi + ∆θ/2, are chosen as sector data. The selection

of ∆θ = 22.5◦ is based on numerical tests, this value provides an smoothing effect

which minimizes possible directional bias. Note that defining these corrections based

on mean direction θi may be a problem for those cases where there are multiple swell

and sea components, and although the mean direction is an appropriate representative

of the most energetic waves, further research should be done on this particular issue.

ii. For each sector i = 1, . . . , 360, the nq quantiles (qI
Hs,i, q

R
Hs,i) are obtained using the

empirical distribution function of the sector data as shown in Figure 3 (b). For this
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task, those quantiles are computed as follows:

(a) The sorted values in HI
s,i are taken as the (0.5/nI

i , 1.5/n
I
i , . . . , [n

I
i −0.5]/nI

i ) quan-

tiles, where nI
i corresponds to the number of instrumental data within sector i.

(b) Quantiles associated with probabilities between (0.5/nI
i ) and ([nI

i − 0.5]/nI
i ) are

computed using linear interpolation.

(c) The minimum or maximum values in HI
s,i are assigned to quantiles for probabilities

outside that range.

The process is analogous for quantiles related to HR
s,i.

Note that at the end of the process there are ndq = 360× nq quantile pairs which can be

used for parameter estimation.

There are several computational issues which are important from the practical point of

view:

i. For each sector, there is a minimum number of points in order to calculate empirical

quantiles, for instance, the minimum between 5 times the number of quantiles (5nq)

and 10% of the number of data pairs (0.1nd). If the number of points within any sector

is lower than this quantity, no quantiles are calculated.

ii. Once the procedure concludes there could exist sectors where no quantiles are available.

This may cause computational convergence problems on the parameter estimation

procedure. For this reason, auxiliary quantiles are synthetically generated using linear

interpolation between quantiles from adjacent sectors. Note that this result does not
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affect the calibration procedure because no data or very low number of points have

wave directions within those empty sectors.

iii. The proposed method relies on wave reanalysis derived directional data. It is already

known that in nearshore areas, directional bias between reanalysis and directional buoy

data is commonly about 10 degrees and can be as much as 40 degrees (e.g., Hemer

et al. (2010)). However, we overlook these biases completely for several reasons:

(a) In some cases, instrumental data do not contain directional information.

(b) The selection of the window ∆θ attenuates possible biases on directional informa-

tion providing a smoothing effect. Numerical tests have demonstrated that the

selection ∆θ = π
8

= 22.5◦ minimizes the directional biases influence.

For the cases where reanalysis and instrumental directional information is available, it is more

efficient to calibrate this information, and use calibrated directional information within the

proposed methodology. Including the directional uncertainty in the proposed model is a

subject for further research.

c. Parameter estimation

Using the ndq quantile pairs related to reanalysis and instrumental data (qI
Hs

, qR
Hs

), the

solution of problem (7)–(10) provides the optimal estimation parameters â, b̂ of both spline

functions.

The minimization of the least squares objective function can be done using nonlinear

optimization routines. Nevertheless, from previous experiences, the following comments and
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recommendations are pertinent:

i. Although the parameter estimation problem is an unconstrained minimization problem

with respect the parameter estimation variables, we rather use a constrained optimiza-

tion solver to including parameter bounds, which makes the estimation more robust.

These bounds help avoiding parameters a taking negative values, i.e. aj > 0; j =

1, . . . , np, which corresponds to physically infeasible corrections on the calibration pro-

cedure.

ii. All Newton-type routines require the user to supply starting values, but the importance

of good starting values can be overemphasized. Thus, for the first iteration, initial

guesses are taken as:

aj = 1; bj = 1; j = 1, . . . , np, (15)

which corresponds to no correction for reanalysis data in the calibration process.

d. Diagnostic analysis

The solution of problem (7)–(10) provides the mean values of the estimated parameters

β̂, and assuming that observational errors are normally distributed, the estimated parameter

vector is distributed as follows:

β ∼ N
(
β̂, Σβ

)
, (16)

where N denotes the multivariate normal distribution, and Σβ is the variance-covariance

matrix of the parameter estimates.

One advantage of using least squares method for parameter estimation is that the solution
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corresponds to the maximum likelihood estimate. Note that the log-likelihood function for

the ε independent and normally distributed errors is:

`(β, σ2) = −ndp

2
log

(
2πσ2

)− 1

2σ2

[
ndp∑
i=1

(yi − f(xi; β))2

]
. (17)

Once the parameters of the regression model are estimated it is also of interest the error

mean square or residual variance σ̂2, whose unbiased estimator is:

σ̂2 =

ndp∑
i=1

(yi − f (xi; β))2

ndp − np − 1
. (18)

Using the method of maximum likelihood, if `(β, σ2) is twice differentiable with respect

to estimated parameters, and under certain regularity conditions which are often satisfied in

practice (Lehmann and Casella (1998)). The parameters covariance matrix is equal to the

inverse of the Fisher information matrix (Iβ), which is equal to the Hessian matrix of the

log-likelihood function with the sign changed:

Iβ = −∂2`(β, σ2)

∂2β
. (19)

Considering (2) and (17) the Fisher information matrix in (19) can be rewritten as:

Iβ =
1

2σ̂2

∂2
(
εT ε

)

∂2β
=

Hβ

2σ̂2
, (20)

where Hβ is the hessian of the least square objective function, which can be obtained

numerically by finite differences or, depending on the optimization algorithm used, can be

a subproduct of the optimization procedure. The corresponding inverse is the variance-

covariance matrix:

Σβ = I−1

β
. (21)
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The (1− α) confidence interval for each parameter is equal to:

βup
j = β̂j + t(1−α/2,ndp−np−1)σ̂j, j = 0, 1, . . . , np

βlo
j = β̂j − t(1−α/2,ndp−np−1)σ̂j, j = 0, 1, . . . , np,

(22)

where t(1−α/2,ndp−np−1) is the Student’s t-distribution (1 − α/2) quantile with ndp − np − 1

degrees of freedom and σ̂j is the estimated standard deviation for parameter j (square root

of the corresponding diagonal term in Σβ).

e. Time series calibration

Once the optimal calibration parameters â and b̂ are available, it is possible to correct

the reanalysis time series related to a given location given the pairs (θi, H
R
si

);∀i. The process

has two steps:

i. Obtain the corresponding spline interpolated values aR and bR using the wave direction

information θ and the estimated spline parameters â and b̂.

ii. The application of the correction (3) for each data:

HC
si

= aR
i (θi)

[
HR

si

]bR
i (θi)

; ∀i, (23)

where HC
si

;∀i is the calibrated data.

Note that this step is also affected by the effect of directional bias. However, it has been

numerically tested that the relative sensitivity of the calibrated data HC
si

with respect to θi

is considerably lower than w.r.t HR
si

. This justifies the good performance of the proposed

method. The inclusion of this bias could enhance results and is a subject for further research.
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f. Diagnostic time series analysis calibration

Analogously to the parameter estimation process, and considering that spline calibration

parameters β = (a; b)T follow a multinormal distribution with parameters β̂ and Σβ. Then

for a large sample size ndp, the corrected significant wave height HC
si

is asymptotically normal,

that is,

HC
si
∼ N(ĤC

si
,∇T

βHC
si
Σβ∇βHC

si
); i = 1, . . . , nd, (24)

where ∇βHC
si

is the n vector of partial derivatives of HC
si

with respect to β, which is given

by

∇βHC
si

=

[
∂HC

si

∂a1

· · · ∂HC
si

∂an

∂HC
si

∂b1

· · · ∂HC
si

∂bn

]T

. (25)

Note that equation (24) allows obtaining the variance σ2
HC

si

of the corrected significant

wave height due to the regression model. If the uncertainty not explained by the regression

model wants to be included, the corrected significant wave height intervals are:

HC
si
± t(1−α/2,n−p−1)

√
σ̂2 + σ2

HC
si

; i = 1, . . . , nd. (26)

Besides confidence intervals, it is also interesting the use of different diagnostic statistics

for comparing the similarity on the distributions of both reanalysis and calibrated data (y)

with respect to instrumental data (x), which is taken as a benchmark:

• The systematic deviation between two random variables (BIAS):

BIAS = x̄− ȳ. (27)

• The root mean square error (RMS):

RMS =

√√√√ 1

nd

nd∑
i=1

(xi − yi)
2. (28)
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• Residual Scatter Index (RSI), which measures dispersion with respect the line x = y:

RSI =
RMS

x̄
. (29)

• The Pearson’s correlation coefficient (ρ).

• Sample distribution moments: mean (µ), standard deviation (σ), skewness (γ), and

kurtosis (ξ).

Note that for the first three statistics the lower the value is, the better the agreement

between instrumental and reanalysis or calibrated data is. However, it is the opposite for

the Pearson’s correlation coefficient. These statistics are used to measure the quality of the

calibration process comparing the statistics obtained using instrumental-reanalysis versus

instrumental-calibrated data.

There are also diagnostic plots such as quantile scatter plots, data scatter plots, empirical

distribution function plots for instrumental, reanalysis and calibrated data, which can be

used to have a qualitative idea of the goodness of the calibration process.

3. Case study

In this work, we use the reanalysis data base SIMAR-44 generated by Puertos del Es-

tado. For this purpose they used the 44-year (1958-2001) dynamic downscaling REMO

(Jacob et al. (2001)) from the global atmospheric re-analysis carried out by the National

Centre for Environmental Prediction, Washington, USA (NCEP) and the National Centre

for Atmospheric Research, Boulder, Colorado, USA (NCAR) and the wave model WAM
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(Hasselman et al. (1988))). This SIMAR-44 reanalysis consist on hourly time series over

a 44-year period (1958-2001) of significant wave height (Hs), mean period (T̄ ) and mean

direction (θ) over different regular grids around Spain.

We have selected two different locations to apply the calibration methodology: i) Cabo

de Gata, and ii) Estaca de Bares, as shown in Figure 4. We have selected reanalysis nodes on

these locations because there are available instrumental data consisting of buoy records from

Puertos del Estado network and altimeter information from five different satellite missions:

TOPEX, TOPEX 2, Jason, Envisat, and Geosat Follow-On (GFO). These data are given

over different time frames.

Wave climate at “Cabo de Gata” location has two predominant wave directions, E-ENE

and W-WSW corresponding to waves coming from the Mediterranean sea (levantes) and

Atlantic Ocean (ponientes), respectively, as shown in Figure 5 (a). Note that in this location

the effect of wave directionality is very important. Wave climate at “Estaca de Bares”

location is more homogeneous in direction (see Figure 5 (b)), where swell waves from the

North West are predominant. In Figure 6 it is shown a comparison between the significant

wave height (SWH) at the Cabo the Gata buoy and the reanalysis for year 2000. Note

that the agreement is satisfactory reinforcing the hypothesis of using WRDB to define wave

climate at any specific location at the coast, however there are still discrepancies which may

be important for design purposes.

We have applied the calibration methodology for both locations following the steps in

Section 2:

i. Data and quantile selection. We take as data both buoy and satellite records around
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the specific locations in a ratio of 1◦ for Estaca de Bares and 0.5◦ for Cabo de Gata,

as shown in Figure 4. Note that all data within those circles have a vector correlation

higher than 1.5.

ii. Smooth quantile calculation. The number of quantiles and sector width is nq = 20

and ∆θ = π
8

= 22.5◦, respectively. In Figure 7, the selected quantiles for different

directions are shown. Each quantile is plotted on a different gray scale color to facilitate

quantile recognition all over the circumference. Note that upper graphs correspond to

reanalysis quantiles, and below graphs are the corresponding instrumental (buoy and

satellite) quantiles. These will be used in the parameter estimation procedure. In both

cases there are directions where no data exist, for this reason, there are synthetically

generated smooth quantiles using linear interpolation.

iii. Parameter estimation. Using the reanalysis and instrumental quantiles, the parameters

are estimated solving the problem (7)-(10). The optimal values are provided in Table 1.

Their evolution is also shown in Figure 8. Note from these results that reanalysis for

Estaca de Bares location, where wave climate is the response to the wind fields in the

entire NE Atlantic, provides satisfactory results, being the calibration parameters on

the main directions very close to one. This corresponds to no correction. However, the

reanalysis of Cabo de Gata is deficient due to the low wind spatial resolution on the

Mediterranean sea.

iv. Diagnostic analysis. Confidence intervals of the parameters are estimated using clas-

sical regression techniques, which are provided in Table 1 and shown in Figure 8. In

Figure 9 it is also shown the cumulative distribution function of instrumental, reanaly-
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sis and calibrated quantiles. Note that the calibrated quantile probability distribution

presents good agreement with instrumental data, better than reanalysis. The effect is

clearer in Cabo de Gata due to the directionality effect.

v. Time series calibration. Once the optimal calibration parameters are available, it is

possible to correct the reanalysis time series related to a given location, i.e. using all

data pairs. In Figure 10 the quantile-quantile plots instrumental versus reanalysis and

calibrated data are shown. Note that the calibrated data shows very good diagnostics

with points close to the diagonal. It is worth mentioning how the different calibra-

tion procedure works for Cabo the Gata location, where quantiles proceeding from

E-ENE and W-WSW need a completely different correction, which is achieved using

the proposed methodology. Note the calibrated time series presents better agreement

with instrumental data, which is in most cases within the 95% confidence bands (see

Figure 11).

Note that in order to gauge the added benefit of the directional correction approach,

in Figure 10 it is also shown the quantile-quantile plot (green dots) associated with

a nondirectional simple regression model of the form f(x; β) = f(aR, bR; HR
s ) =

aR
[
HR

s

]bR

= HC
s , where aR and bR are the corresponding regression parameters. In

both locations the model including directional information provides results which are

closer to instrumental data. This effect is stronger for Cabo de Gata, where there are

two clear different wave families (“levantes” and “ponientes”) which require a different

correction. Table 6 provides the relative errors of directional calibrated and nondirec-

tional calibrated data with respect to instrumental data, respectively. Note that errors
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related to the directional approach are comparatively lower for all sample moments.

These results demonstrate the improvement achieved including directional information.

vi. Diagnostic time series analysis calibration. Using also standard regression techniques

confidence intervals for the calibrated times series are calculated. This diagnostic allows

quantifying the uncertainty associated with the calibration procedure. In Figure 11

the time series evolution of instrumental, reanalysis, and calibrated data is shown.

Note that the calibrated time series is closer to the instrumental data improving wave

climate characterization.

Finally, in Table 3 the sample distribution moments: mean (µ), standard deviation (σ),

skewness (γ), and kurtosis (ξ) for reanalysis, calibrated and instrumental data are given.

Note that the relative errors with respect to instrumental data for the calibrated time series

are considerably lower than those for the reanalysis case. This occurs for all sample moments,

which shows the good performance of the proposed procedure.

4. Analysis of Directional Uncertainty

In order to further investigate the influence of directional bias, we have performed addi-

tional tests using the instrumental directional information from both locations. Note that

the calibration results shown previously in the paper contain both buoy and satellite in-

formation, we have 10404 and 12938 data pairs for Cabo de Gata and Estaca de Bares,

respectively. From those data pairs, 8555 and 11737, respectively, correspond to buoy data
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where instrumental directional information is available. Using these two new sets, we per-

formed the following tests:

i. For both locations, we perform the calibration procedure using both reanalysis and

instrumental directional information, and compare the different diagnostic statistics

and sample distribution moments.

ii. In order to obtain statistically sound conclusions, and due to the linear relationship

between reanalysis and instrumental directional information at Estaca de Bares loca-

tion, we perform a simulation test with 1000 samples where directional information

were simulated from the regression equation between reanalysis and instrumental di-

rectional data.

In Table 4 the sample distribution moments: mean (µ), standard deviation (σ), skewness

(γ), and kurtosis (ξ) for reanalysis, calibrated and instrumental data considering both re-

analysis (θR) and instrumental (θI) directional information are given. Note that the relative

errors with respect to instrumental data for the calibrated time series are considerably lower

than those for the reanalysis case. This occurs for all sample moments and using both re-

analysis and instrumental directional information, which shows the good performance of the

proposed procedure and its robustness with respect to posible bias in directional reanalysis

data. This conclusion is further reinforced by the results shown in Table 5, where different

diagnostic statistics are provided. Note that calibrated diagnostics using both directional

data presents better results with respect to reanalysis data without any correction. How-

ever, no clear conclusion can be withdrawn about whether it is better to use reanalysis or

instrumental directional data.
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In an attempt to obtain statistically sound conclusions, we perform a simulation exper-

iment consisting on the calibration at Estaca de Bares location using simulated directional

data. A linear regression model between instrumental and reanalysis directional data is

fitted, where original pairs (θR, θI) are transformed to (θ̂R, θ̂I) to fit a unique model θ̂I =

p1θ̂
R +p2 + ε. Parameter estimates and 95% confidence intervals p1 = 0.9433(0.9331, 0.9535)

and p2 = 25.82◦(22.58◦, 29.06◦) are obtained using least squares method. The residuals

standard deviation is σ = 24.43◦. This model is used to generate 1000 random samples of

“calibrated” reanalysis directional information, which are used within the calibration pro-

cess.

In Figure 12 the sample distribution moments: (a) mean (µ), (b) standard deviation (σ),

(c) skewness (γ), and (d) kurtosis (ξ) obtained during the simulation process are shown.

The histogram represents the statistical distribution of each calibration sample, the light

gray line corresponds to the normal fit, and the different dots represent the statistics for: (i)

the calibration using reanalysis directional data (black circle dot), (ii) the calibration using

instrumental directional data (square black dot), (iii) reanalysis data without calibration

(asterisk black dot), (iv) instrumental data (diamond black dot), and finally (v) the mean

value from simulated samples (circle light gray dot). In addition, the mean and standard

deviation from simulated samples for each sample moment are shown, including also the

probability of obtaining a simulated sample moment worst than the reanalysis data with

respect to the instrumental data. Note that in all simulated cases the moments obtained

from calibrated data are closer to instrumental moments than reanalysis data, and the

probabilities of obtaining worst results with respect to reanalysis data is almost negligible.

This proves the robustness of the calibration procedure with respect to uncertainty in the
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directional information.

Analogous results than those in Figure 12 are given in Figure 13 for the (a) bias, (b)

Pearson’s correlation coefficient (ρ), (c) residual scatter index (RSI), and (d) root mean

square error (RMS). Note that for all statistics but for Pearson’s correlation coefficient

results are always better with respect to reanalysis data, confirming the robustness of the

proposed procedure. However, there is a 14.11% probability that calibration provide worst

results in Pearson’s correlation coefficient with respect to reanalysis.

Finally, in Figure 14 the empirical long-term distribution function of (i) calibrated data

using reanalysis directional data (dashed line), (ii) calibrated data using instrumental di-

rectional data (dash-dot line), (iii) reanalysis data without calibration (dark gray line), (iv)

instrumental data (black line), and finally (v) calibrated data from simulated samples (light

gray lines) are shown. They are plotted in Gumbel scale. These representations allow to

better check the behavior in the right tail of the distributions, which is more relevant from

the engineering point of view. Note that in all cases the calibrated distributions are closer to

the instrumental distribution than the reanalysis one. This reinforce the good performance

of the proposed methodology.

5. Conclusions

This paper presents a calibration procedure for wave hindcast and reanalysis, which allows

to make corrections based on instrumental information and considering the significant wave

height direction of propagation. From the analysis reported in this paper, the following

conclusions are in order:

28



i. The parameter estimates for the proposed nonlinear correction model are obtained

solving a mathematical programming problem, for which computationally efficient al-

gorithms exist.

ii. The parameters of the model vary smoothly for different directions using spline curbs.

iii. The method transforms the reanalysis database empirical distribution function to get

closer to the empirical distribution function of the instrumental data. Since data be-

longing to the upper tail of the distribution are more relevant for design, the parameter

estimates are obtained through quantiles on a Gumbel scale.

iv. Confidence intervals for diagnostic analysis are also provided.

v. Despite of the additional complexity inherent in the proposed calibration method with

respect to traditional regression techniques, the improvement achieved makes the effort

worthy.

The calibration process has been tested on different locations around Spain, correcting

significant wave heights using satellite and buoy data records. Diagnostic analysis and the

study of directional uncertainty show the good performance and robustness of the calibration

procedure. Note that although the calibration method has only been applied to significant

wave height hindcasts, the methodology seems promising to be extended and used with

any other geophysical variable which includes directional information, for instance, wind

velocities.

Note also that though the calibration procedure improves results, there are still dis-

crepancies between calibrated and instrumental data, which can not be filtered with the

29



directional calibration. Numerical reanalysis data present less variability in the hourly scale

than buoy data records, this is clearly shown in Figure 6. The main reasons are i) the spatial

and temporal smoothing that all numerical wave prediction results are being through, and

ii) that the spatial resolution is not enough to model the physical processes affecting high

frequency waves, which may be important specially for extreme value analysis. An additional

correction trying to account for high frequency waves is a subject for further research.

Another subject for further research is the applicability of the proposed methodology on

a global scale. This will probably restrict the analysis to satellite information and it would

require an automatic and easy to use criterion for preliminary data selection. However, we

expect that this will also enhance the quality of global reanalysis databases in a near future.
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APPENDIX

Constrains for cubic spline definition

For the correct definition of problem (7)-(10) constraints for the evaluation of the cubic

spline parameters xa
j , ya

j , za
j , xb

j, yb
j , zb

j ; j = 1, . . . , np are required. These equations are

defined using continuity conditions on the union between consecutive cubic polynomials: i)

zero order (no gap exists), ii) first order derivatives, and iii) second order derivatives.
Using these conditions and once the parameter values aj, bj; j = 1, . . . , n are known,

parameters ya are obtained solving the following tridiagonal linear system of equations:




2h1 h1 0 0 · · · 0

h1 2(h1 + h2) h2 0 · · · 0

0 h2 2(h2 + h3) h3 · · · 0

.

.

.

.

.

.
. . .

. . .
.
.
.

.

.

.

0 · · · 0 hn−12(hn−1 + hn) hn

0 · · · 0 0 hn 2hn







ya
1

ya
2

ya
3

.

.

.

ya
n

ya
n+1




= 3




(
a2−a1

2h1
− an+1−an

2hn

)

(
a3−a2

h2
− a2−a1

h1

)

(
a4−a3

h3
− a3−a2

h2

)

.

.

.
(

an+1−an
hn

− an−an−1
hn−1

)

(
a2−a1

2h1
− an+1−an

2hn

)




, (A1)

which implicitly considers that the first and second derivatives at the beginning (θ1 = 0) and

at the end (θn+1 = 2π) of the spline are equal. Analogously, parameters yb can be obtained

replacing index a by b in (A1).

Once ya parameters are known, parameters xa
j and za

j can be calculated straightforwardly

using the following expressions:

xa
j=

1

hj

(aj+1 − aj)− hj

3
(2ya

j + ya
j+1); j = 1, . . . , n

za
j =

ya
j+1 − ya

j

3hj

; j = 1, . . . , n.

(A2)

Analogously, parameters xb
j and zb

j can be obtained replacing index a by b in expression (A2).
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Table 1. Optimal estimated parameters for both locations and 95% confidence intervals.

Cabo de Gata Estaca de Bares

θ(◦) j aj alo
j aup

j bj bloj bup
j aj alo

j aup
j bj bloj bup

j

0 1 1.756 1.736 1.776 0.864 0.844 0.884 1.016 1.001 1.032 1.008 0.998 1.019
22.5 2 1.734 1.713 1.756 0.847 0.827 0.867 0.809 0.791 0.827 1.214 1.197 1.230
45 3 1.413 1.396 1.431 0.741 0.728 0.754 0.943 0.925 0.962 1.068 1.053 1.084
67.5 4 1.312 1.293 1.330 0.824 0.812 0.835 1.019 1.001 1.038 0.929 0.915 0.943
90 5 1.294 1.276 1.312 0.840 0.824 0.855 0.805 0.786 0.823 1.178 1.157 1.200
112.5 6 2.304 2.253 2.355 1.047 1.016 1.078 0.748 0.727 0.769 1.199 1.175 1.222
135 7 2.811 2.728 2.894 1.467 1.416 1.518 0.738 0.718 0.759 1.166 1.144 1.189
157.5 8 2.213 2.154 2.271 1.220 1.175 1.265 0.720 0.701 0.739 1.153 1.133 1.173
180 9 1.990 1.945 2.036 1.162 1.118 1.206 0.702 0.684 0.720 1.137 1.119 1.156
202.5 10 1.854 1.819 1.889 1.173 1.132 1.213 0.693 0.674 0.712 1.129 1.109 1.148
225 11 1.852 1.834 1.871 1.048 1.029 1.067 0.665 0.646 0.683 1.123 1.105 1.141
247.5 12 1.895 1.876 1.913 0.856 0.844 0.869 0.787 0.773 0.800 1.075 1.065 1.085
270 13 1.951 1.934 1.968 0.893 0.879 0.906 0.950 0.934 0.967 0.974 0.965 0.982
292.5 14 1.930 1.912 1.948 0.946 0.928 0.965 1.039 1.023 1.054 0.950 0.943 0.958
315 15 1.880 1.862 1.898 0.907 0.888 0.925 1.018 1.003 1.033 0.964 0.957 0.971
337.5 16 1.840 1.821 1.859 0.899 0.880 0.918 1.064 1.047 1.080 0.930 0.922 0.939
360 17 1.756 1.736 1.776 0.864 0.844 0.884 1.016 1.001 1.032 1.008 0.998 1.019
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Table 2. Comparison of the diagnostic statistics between reanalysis-instrumental and
calibrated-instrumental for both locations.

Cabo de Gata Estaca de Bares
HR

s –HI
s HC

s –HI
s HR

s –HI
s HC

s –HI
s

BIAS 0.3383 −0.0587 −0.0885 −0.0014
ρ 0.7165 0.7941 0.9157 0.9157

RSI 0.5835 0.4295 0.2381 0.2215
RMS 0.5922 0.4359 0.5860 0.5452

37



Table 3. Sample distribution moments (mean, standard deviation, skewness and kurto-
sis) and comparison between reanalysis-instrumental and calibrated-instrumental for both
locations.

Cabo de Gata Estaca de Bares
HR

s HC
s HI

s HR
s HC

s HI
s

Mean (µ) 0.67676 1.07376 1.01503 2.5502 2.46314 2.46170
Std. dev. (σ) 0.46948 0.64082 0.69564 1.43663 1.33066 1.36370
Skewness (γ) 2.38413 1.51797 1.51995 1.73580 1.68376 1.53668
Kurtosis (ξ) 14.69745 6.86462 6.02667 7.00561 6.79972 6.126178
ε (µ) -0.33325 0.05786 – 0.03595 0.00058 –
ε (σ) -0.32511 -0.07880 – 0.05349 -0.02422 –
ε (γ) 0.56855 -0.00130 – 0.12957 0.09571 –
ε (ξ) 1.43873 0.13904 – 0.14355 0.10994 –
ε: Relative error w.r.t. instrumental data.
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Table 4. Sample distribution moments (mean, standard deviation, skewness and kurto-
sis) and comparison between reanalysis-instrumental and calibrated-instrumental for both
locations using instrumental and reanalysis directional information.

Cabo de Gata Estaca de Bares
HR

s HC
s HI

s HR
s HC

s HI
s

R
ea

n
al

y
si

s
θR

Mean (µ) 0.6476 1.0388 0.9715 2.5244 2.4438 2.4381
Std. dev. (σ) 0.4303 0.6176 0.6663 1.3996 1.2975 1.3327
Skewness (γ) 1.8488 1.3536 1.4750 1.5625 1.5363 1.4058
Kurtosis (ξ) 9.5881 5.9380 5.6953 5.9127 5.8262 5.3145
ε (µ) -0.3334 0.0693 – 0.0354 0.0024 –
ε (σ) -0.3543 -0.0730 – 0.0502 -0.0264 –
ε (γ) 0.2534 -0.0823 – 0.1114 0.0928 –
ε (ξ) 0.6835 0.0426 – 0.1126 0.0963 –

In
st

ru
m

en
ta

l
θI

Mean (µ) 0.6476 1.0412 0.9715 2.5244 2.4568 2.4381
Std. dev. (σ) 0.4303 0.6180 0.6663 1.3996 1.2922 1.3327
Skewness (γ) 1.8488 1.5395 1.4750 1.5625 1.5245 1.4058
Kurtosis (ξ) 9.5881 6.7512 5.6953 5.9127 5.7381 5.3145
ε (µ) -0.3334 0.0717 – 0.0354 0.0077 –
ε (σ) -0.3543 -0.0726 – 0.0502 -0.0304 –
ε (γ) 0.2534 0.0437 – 0.1114 0.0844 –
ε (ξ) 0.6835 0.1854 – 0.1126 0.0797 –
ε: Relative error w.r.t. instrumental data.
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Table 5. Comparison of the diagnostic statistics between reanalysis-instrumental and
calibrated-instrumental for both locations using instrumental and reanalysis directional in-
formation.

Cabo de Gata Estaca de Bares
HR

s –HI
s HC

s –HI
s (θR) HC

s –HI
s (θI) HR

s –HI
s HC

s –HI
s (θR) HC

s –HI
s (θI)

BIAS 0.3239 −0.0673 −0.0697 −0.0863 −0.0057 −0.0187
ρ 0.7070 0.7871 0.7856 0.9145 0.9167 0.9182

RSI 0.5900 0.4393 0.4412 0.2359 0.2206 0.2184
RMS 0.5732 0.4267 0.4286 0.5752 0.5379 0.5326
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Table 6. Comparison of the sample distribution moment errors between directional cali-
brated and nondirectional calibrated data with respect to instrumental data, respectively,
at both locations.

Cabo de Gata Estaca de Bares
Directional Nondirectional Directional Nondirectional

ε (µ) 0.05786 0.195910 0.00058 -0.056081
ε (σ) -0.07880 -0.135119 -0.02422 -0.021503
ε (γ) -0.00130 -0.025939 0.09571 0.148193
ε (ξ) 0.13904 0.284560 0.10994 0.166611
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Fig. 1. Smooth variations of parameters aR(θ) and bR(θ) depending on the wave direction:
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Fig. 5. Diagram showing the long-term distribution of wave height and direction for the
selected locations: Buoy and satellite data.
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Fig. 12. Sample distribution moments: (a) mean (µ), (b) standard deviation (σ), (c)
skewness (γ), and (d) kurtosis (ξ) from the simulation process.
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Fig. 13. Sample distribution statistics: (a) bias, (b) Pearson’s correlation coefficient (ρ),
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Fig. 14. Empirical long-term distribution of selected quantiles using different directional
data for calibration at Cabo de Gata and Estaca de Bares locations.

57


