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Abstract

Empirical criteria have been used successfully to design filters of most embankment large dam
projects throughout the world. However, these empirical rules are only applicable to a particular
range of soils tested in laboratory and do not take into account the variability of the base material
and filter particle sizes. In addition, it is widely accepted that the safety of fill dams is mainly
dependent on the reliability of their filter performance. The work herein presented consists in a
new general method for assessing the probability of fulfilling any empirical filter design criteria
accounting for base and filter heterogeneity by means of first order reliability methods (FORM),
so that reliability indexes and probabilities of fulfilling any particular criteria are obtained. This
method will allow engineers to estimate the safety of existing filters in terms of probability of
fulfilling their design criteria and might also be used as a decision tool on sampling needs and
material size tolerances during construction. In addition, sensitivity analysis makes possible to
analyze how reliabilities are influenced by different sources of input data. Finally, in case of
a portfolio risk assessment, this method will allow engineers to compare the safety of several
existing dams in order to prioritize safety investments and it is expected to be a very useful tool
to evaluate probabilities of failure due to internal erosion.

CE Database Subject Headings: Embankment dams; Erosion; Filtration; Granular filters;
Level II (FORM) methods; Risk assessment; System reliability.

1 Introduction and Motivation

It is now well known that cracks can develop within a well constructed dam core, leading to
concentrated seepage and high erosion rates, which can compromise the safety of the embankment
dam. As a matter of fact, internal erosion is one of the most important causes of failure in
embankment dams. The annual probability of failure due to internal erosion of a large modern dam
during operation is estimated (based on historical data) in 10−5, slightly less than the probability
of failure due to overtopping, but well ahead of failure due to sliding (see Fry et al. (1997)).

The sequence of events leading to the failure of a dam by internal erosion with a concentrated
leak is described in Figure 1. The best way to prevent internal erosion is using adequate granular
filters (or geotextiles) in the transition areas where important hydraulic gradients can appear. In
case of cracking and erosion, if the filter is capable of retaining the eroded particles, then the
crack will seal and the dam safety will be ensured. Hence, granular filters are one of the most
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important elements in embankment dams. The trust in these filters is such that Sherard and
Dunningan (1985) affirmed: “By providing a conservative downstream filter, we can quit worrying
about possible concentrated leaks through the core.”

Filters are mainly designed using simply to apply empirical criteria. These criteria have been
proposed by researches as the result of a correlation between different base soil (“Base soil” refers
to any material of the dam or foundation that is able to suffer internal erosion and must be
protected, for example, the clay core of an embankment dam) and filter variables that produce a
satisfactory behavior if they are tested in laboratory under extreme conditions. These empirical
criteria indirectly take into account all the factors affecting filtration but are only applicable to the
range of soils tested and depend on testing methods, definitions of failure, etc.

Although no dam designed in accordance with modern filter requirements has ever suffered
incidents related to internal erosion (see Fry et al. (1997)), if we attempt to design a new dam or
to evaluate the safety of a existing dam, it is very difficult to analyze the reliability of the filter
because the empirical criteria do not take into account the variability of the base and filter particle
size along the filter and the core of the dam, so that it is not possible to establish the real safety
level or the probability of failure of the filter. Note that in this paper, the failure of the system
filter-base is related to the no satisfaction of the empirical criteria.

In spite of the simplicity and good behavior of dams designed using these empirical criteria,
this traditional design procedure presents the following shortcomings:

1. Statistical variability of filter and base size is not taken into account.

2. It is not possible to determine the safety level of the filter. Either it holds the empirical
criteria or it does not, but not intermediate situations are possible.

3. It is very difficult to compare the levels of risk between different dams, for example, in order
to prioritize the rehabilitation investments.

4. It is very difficult to carry out a sensitivity analysis, which would allow identifying the most
important variables to be controlled strictly.

The reliability assessment method proposed in this paper is based on considering ‘failure’ of the
filter-base system the non-fulfillment of the empirical design criteria. For illustration purposes we
have selected the most common widely accepted criteria but it is very important to highlight that
the method is very flexible and allows an easy modification of the different criteria.

In addition to the reliability assessment, some interest is shown by people in knowing how
sensitive are the reliabilities to data values. A sensitivity analysis provides excellent information on
the extent to which a small change in the parameters or assumptions (data) modifies the resulting
reliabilities.

The aims of this paper are: (a) to present a method for evaluating the safety level related to
the different empirical design criteria, and (b) to provide tools to perform a sensitivity analysis.

The paper is structured as follows. In Section 2 the proposed method for reliability assessment
is presented. In Section 4 a technique for performing a sensitivity analysis is explained. Section 3
shows the analytical solution for certain kind of problems using the proposed method. Section 5
presents the numerical results for some specific base-filter systems. And finally, in Section 6 some
conclusions are given.
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2 Proposed Method for Reliability Assessment

The reliability analysis applied to different engineering works (such as dams, breakwaters, slope
stabilizations, etc.), assumes that there are some random variables (X1, . . . , Xn) involved. However,
in the methodology herein proposed, no distinction is made between random and deterministic
variables. In consequence, it is assumed that all variables are random, and deterministic variables
are only particular cases of them. Upper-case letters are used to refer to random variables, and
the corresponding lowercase letters are used to refer to particular instantiations of these variables.
They belong to an n-dimensional space, which, for each mode of failure, can be divided into two
zones: the so called safe and the failure regions:

Safe Region: S ≡ {(x1, x2, . . . , xn)}|gm(x1, x2, . . . , xn) > 0}
Failure Region: F ≡ {(x1, x2, . . . , xn)}|gm(x1, x2, . . . , xn) ≤ 0}

}
; m ∈ M, (1)

where M is the set of all modes of failure.
In this paper, the set of basic variables (X1, . . . , Xn) will be partitioned in two sets:

1. Random variables η: Their mean or characteristic values are fixed by the engineer or
the code guidelines as input data, or they come from existing data samples. They include
base and filter particle size variables (DiF , diB) and the stability rules Fm derived from the
experiments, where DiF and diB are the diameter of filter and base particles, respectively, for
which (i)% of the entire mass is finer. The corresponding mean of η is denoted η̃.

2. Random model parameters κ: Set of parameters defining the random variability and
dependence structure of the random variables involved (standard deviations, variation coef-
ficients, correlations, covariance matrices, etc.). In this article the coefficients of variation of
the base and filter particle size variables vD5F

, vD10F
, . . . , vd75B

, and the correlation coefficients
ρ between filter particle size variables are considered.

The probability of failure Pm under mode m can be calculated using the joint probability density
function of all variables involved by means of the integral:

Pm(θ) =
∫

gm(x1,x2,...,xn)≤0

fX1,X2,...,Xn(x1, x2, . . . , xn; θ)dx1dx2 . . . dxn, (2)

where θ = (η̃, κ) is a parametric vector containing the mean values η̃, and the vector of random
model parameters κ.

2.1 Modes of failure or Practical Design Criteria

Before performing the reliability assessment, limit state equations associated with the different
practical criteria (modes of failure) must be defined. In this study a total of 11 modes of failure have
been considered: retention criteria (r), which is composed by two different limit state equations
(ra) and (rb), permeability criteria (p), filter uniformity criteria (u), six auto-stability criteria
(a5, a15, a30, a50, a70, a85), and non-cohesive criteria (c). All modes of failure are ascribed to non
desirable situations.

These criteria have been defined by many different researchers as reviewed by Indraratna and
Locke (1999), and some specific design criteria have been even recently developed (Delgado (2000)),
but only those most generally accepted are considered in this paper.
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Retention criterion. ‘Filters must be fine enough so that the pore spaces between the filter
particles can hold some of the larger particles of the base soil’. The most generally accepted
retention criteria was proposed by Sherard and Dunningan (1985) who classified base soils in 4
groups. In this paper group 1 (more than 85% passing 0.075 mm sieve) and group 2 (between 40%
and 85% passing 0.075 mm sieve) base soils are considered.

Retention criterion can be verified by the following limit state equation:

Group 1: gr = 9− D15F

d85B
, if D15F ≥ 0.2 mm, (3)

Group 2: gr = D15F − 0.7, (4)

where D15F and d85B are the diameters of filter and base particles for which 15% and 85% of the
entire mass is finer, respectively. Note that for group 1 soils no failure occurs if D15F < 0.2 mm,
and this fact will affect the evaluation of the reliability associated with this criterion, where system
reliability concepts are required. Thus, this failure mode can be considered as a parallel system
composed by two components:

gra = 9− D15F

d85B
(5)

grb
= 0.2−D15F , (6)

where the failure of the system requires the failure of both components simultaneously. In the case
of group 2 soils, a unique limit state equation, which is not dependent on the variability of the base
soil, is required.

Permeability criterion. ‘Filter must be coarse enough to allow seepage flow to pass through
the filter, preventing build up of high pressures and hydraulic gradients”. Filter and soil base
permeabilities must be considered directly or by means of correlations with their particle size
distributions.

Permeability criterion can be verified by the following limit state equation:

gp =
D15F

d15B
− 4, (7)

where D15F and d15B are the diameters of filter and base particles for which 15% of the entire mass
is finer, respectively.

Filter uniformity criterion. Filter uniformity criterion can be verified by the following limit
state equation:

gu = 20− D60F

D10F
, (8)

where D60F and D10F are the diameters of filter particles for which 60% and 10% of the entire
mass is finer, respectively.

Auto-stability criteria. When water flows through the filter, its fine particles should not move
within the skeleton of the coarse ones leading to erosion. Auto-stability criteria can be verified by
the following limit state equations proposed by Kenney and Lao (1985):

gai = 5− D(15+i)F

DiF
; i ∈ {5, 15, 30, 50, 70, 85}, (9)
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where D(15+i)F and DiF are the diameters of filter particles for which (15 + i)% and i% of the
entire mass is finer, respectively.

Non-cohesive criterion. If a filter has cohesion it may sustain a crack where base particles can
pass through. To ensure that the filter has no cohesion, it should contain no more than 5% fines
passing 0.075 mm sieve and such fines should be non-plastic. Non-cohesive criterion can be verified
by the following limit state equation:

gc = D5F − 0.075, (10)

where D5F is the diameter of filter particle for which 5% of the entire mass is finer.
Note that failure for each individual criterion is considered when the corresponding limit state

equations (5)-(10) are lower than zero, respectively.

2.2 Evaluation of the failure mode probabilities

In this work the probabilities associated with each failure mode are evaluated using “First Order
Reliability Methods” (FORM) (Freudenthal (1956); Hasofer and Lind (1974); Rackwitz and Fiessler
(1978); Hohenbichler and Rackwitz (1981); Ditlevsen (1981) ). This methodology gives precise
results (Madsen et al. (1986), Ditlevsen and Madsen (1996), or Melchers (1999)) and is much more
efficient than Monte Carlo simulation techniques for estimating extreme percentiles (Wirsching
and Wu (1987), or Haskin et al. (1996)). More precisely, Pm(θ) for m = 1, 2, . . . , M is obtained by
means of the reliability index using:

βm(θ) = Minimum
η

√
zT z , (11)

i.e., minimizing with respect to η, subject to

z = T (η, θ) (12)
gm(η) = 0, (13)

where βm is the reliability index for failure mode m ∈ M , T (η,θ) is the transformation (Rosenblatt
(1952), Nataf (1962)) leading to the standard unit normal z variables used in FORM and gm(η) = 0
is the boundary of the failure region for failure mode m defined by the practical criterion m.

Note that the problem in (11)–(13) can give the wrong answer, that is, a positive value of β
when the correct answer is a negative β. This is due to the fact that two square roots are possible
in (11). To get the right sign we add the following constraints:

0 = T (η1,θ) (14)
gm(η1)um > 1, (15)

where the auxiliary variable um and the two constraints (14) and (15) ensure that the sign of βm

is the desired one and η1 is the random variable values corresponding to the point z1 = 0 in the
standard normal random space. Therefore, the final reliability index will be βm = sign(um)βm.

The probability of failure Pm is related to the reliability indices by the approximate relation
Pm = Φ(−βm), where Φ(·) is the cumulative distribution function of the standard normal random
variable. If the failure region is linear in the standard normal random space the probability becomes
exact.
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As it was mentioned before, the probability of failure obtained using this method is the prob-
ability of non-fulfillment of the empirical criteria based on experiments developed under extreme
conditions (high hydraulic gradients). If we want to extend the result to the probability of non-
fulfillment inside the dam, Bayes theorem should be used Pfm = PmPec, where Pfm is the probability
of non-fulfillment of the empirical criteria m in the dam, Pm is the probability of non-fulfillment of
the empirical criteria conditioned to extreme conditions occur (the one calculated in this paper),
and Pec is the probability of reaching, within the dam, the same extreme conditions (related to
cracking, hydraulic gradients, etc.) as in the experiments. Note that actually there is no method
available for calculating exactly this probability.

2.3 System reliability assessment

In the previous section the evaluation of the probability of failure associated with the different failure
modes was dealt with, but considering the probability of fulfilling several criteria at the same time
‘structural system’ reliability assessment methods are required. The following ‘structural systems’
are going to be considered in this paper:

1. The retention criterion gr (3) composed by two failure modes gra and grb
((5) and (6)) (group

1 soils).

2. Filter system where only the failure of the filter is considered. It is composed by the following
failure modes: MF ∈ {gu, gai ; i ∈ {5, 15, 30, 50, 70, 85} and gc}.

3. Global filter-base system where we consider all the practical criteria MF+B.

The first system is a parallel system because it fails if all the components (criteria) fail simul-
taneously. The probability of failure of a parallel system is the intersection of the probabilities of
failure for m modes:

Pfp = Pr[∩M
k=1{Xk ≤ −βk}] = Φm(−β,R), (16)

where β is the vector of reliability indexes for all the failure modes considered, R is the correlation
matrix between any two failure modes and Φm is the multivariate normal distribution function.

The filter system is a series system because it fails if any of the components (criteria) fails. The
probability of failure of a series system is the union of the probabilities of failure for m modes:

Pfs = Pr[∪m
k=1{Xk ≤ −βk}] = 1− Pr[∩m

k=1{−Xk ≤ βk}] = 1− Φm(β, R). (17)

The global filter-base system composed by all the practical criteria. For group1 soils is a
series-parallel system fails if any of the following modes fails: MF+B ∈ {gr, gp, gu, gai ; i ∈
{5, 15, 30, 50, 70, 85} and gc}, where gr fails if all its components gra and grb

fail simultaneously. In
the case of group 2 soils, is a series system.

Using first order system reliability theory, each non-linear limit state function gm is approxi-
mated by linear functions in the normal random space:

g∗m = aT
mz + βm; m = 1, . . . , M, (18)

where z is the vector of uncorrelated standard normal random variables, and am = (−zm1/βm,
. . . ,−zmn/βm)T is the vector of normalized influence coefficients for the mth mode with aT

mam = 1.
The correlation matrix elements Rij are evaluated using Rij = aT

i aj .
Clearly, the computation of the multinormal integrals is a necessary step for estimating the

probability of failure of structural systems. There are several approaches (see Melchers (1999)) but
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in this paper the product of conditional marginals (PCM) method (see Pandey (1998)) that shows
high accuracy and simplicity of computation is used.

Whereas the evaluation of the probability of failure for systems using expressions (16) and (17)
and first order reliability concepts is approachable with a sufficient accuracy for most practical
applications, the evaluation of the probability of failure of a series-parallel system (for group 1
soils) is a very difficult task, and Monte Carlo simulation methods will be used.

2.4 Statistical Assumptions

To perform a probabilistic study in the filter-base system, the joint probability density function of
all variables is required. As the size of the particles in the base and filter can not have negative
values, the particle sizes are modeled as log-normal random variables.

Filter and base particle sizes are considered independent one form each other, this hypothesis
is reasonable because filter and base materials usually come from different sources. However, as
filter material comes from the same source, their particle sizes are not independent and the values
of the correlation coefficients (ρ) are required.

In this paper, for the sake of simplicity, no other sources of uncertainty are considered, but other
random variables could be added easily for considering model uncertainty, for instance, variables
Fm could be considered random. Obviously, this assumption would require the calibration using
laboratory test results in order to establish an adequate distribution.

3 Analytical solution of the reliability problems

One advantage of using FORM (“First Order Reliability Methods”) and considering that, (i) the
limit state equations given in (5)-(10) are linear, and (ii) the statistical assumptions given in
subsection 2.4, is that problem (11)-(13) can be solved analytically. The reliability problems related
to the different failure modes can be expressed as follows:

β = Minimum
x, y

√
z2
1 + z2

2 , (19)

subject to

z1 =
ln x + ln

√
1 + v2

x√
ln (1 + v2

x)
, (20)

z2 =
ln y − ln

√
1 + v2

y − ρz1

√
ln (1 + v2

y)√
ln (1 + v2

y)
√

1− ρ2
, (21)

g = a− 1
t

y

x
= 0. (22)

The optimal solution of problem (19)-(22) is:

x∗ =
1
at

exp

(
(ln at− lx)ly + ρ

√
lxly(0.5(lx + ly)− ln (at))

lx − 2ρ
√

lxly + ly

)
, (23)

y∗ = exp

(
(ln at− lx)ly + ρ

√
lxly(0.5(lx + ly)− ln (at))

lx − 2ρ
√

lxly + ly

)
, (24)
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where lx = ln (1 + v2
x) and ly = ln (1 + v2

y). Using (19)-(21) the corresponding reliability index β∗ is

obtained. With regards to (12)-(13), the point η1 = (x(1), y(1))T = (1/
√

(1 + v2
x), 1/

√
(1 + v2

y))
T is

obtained substituting in (20)-(21), z1 and z2 by 0. Using the verification equation (22) particularized
for η1, the sign of the reliability index will be obtained as follows:

g1 = a− 1
t

y(1)

x(1)
= a− 1

t

√
(1 + v2

x)√
(1 + v2

y)

{
if g1 > 0 then β∗ = β∗

if g1 ≤ 0 then β∗ = −β∗. (25)

Note that when g1 > 0, the point z1 is in the safe region and the sign obtained from solving
(19)-(22) is right. Otherwise, the point z1 is in the failure region and the sign changes (probability
of failure bigger than 0.5).

For example, for the filter uniformity criteria, and comparing to problem (19)-(22), it can be
concluded that x = D10F /µD10F

, y = D60F /µD60F
, t = µD10F

/µD60F
, and a = 20. Substituting in

(23)-(25) the solution the uniformity reliability problem is obtained.
The solution of problem (11)-(13) associated with verification equations that involve only one

particle size distribution variable (rb, c) is straightforward.

3.1 Retention failure

As the most important failure mode from the safety point of view is, usually, the retention criteria
(r), which in the case of group 1 soils involve two verification equations (ra and rb), we will solve
and analyze the solution for different values of the variables involved.

Considering first the retention criteria (ra), and comparing to problem (19)-(22), it is shown
that x = d85B/µd85B

, y = D15F /µD615F
, t = µd85B

/µD15F
, and a = 9. Substituting in (23)-(25) the

solution the uniformity reliability problem is obtained.
The problem associated with the second retention constraint (rb) is:

βrb
(θ) = Minimum

D15F

√
z2
2,rb

,

subject to

z2,rb
=

ln D15F − µln D15F

σln D15F

=
lnD15F − ln

(
µD15F

/
√

1 + v2
D15F

)

√
ln (1 + v2

D15F
)

,

grb
= 0.2−D15F = 0,

whose optimal solution is:

D∗
15F = 0.2; z∗2,rb

=
ln 0.2− ln

(
µD15F

/
√

1 + v2
D15F

)

√
ln (1 + v2

D15F
)

; β∗rb
= z∗2,rb

. (26)

Note that the sign of the reliability index βrb
coincides with the z2,rb

sign.
Once the reliability related to the failure modes ra and rb has been obtained, the parallel system

reliability has to be calculated as it is shown in Section 2.3:

Pfr = Φm(−βr, Rr), (27)
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where

ara =

(
−z∗1,ra

βra

,−z∗2,ra

βra

)T

, (28)

arb
=

(
−z∗1,rb

βrb

,−z∗2,rb

βrb

)T

= (0,−1)T , (29)

Rr =

(
1 z∗2,ra

/βra

z∗2,ra
/βra 1

)
, (30)

βr = (βra
, βrb

)T . (31)

Expression (27) can be solved using the product of conditional marginals (PCM) method (see
Pandey (1998)) as follows:

Pfr = Φm(−βr, Rr) = Φ(−βra)Φ

(−βrb
− µrb|ra

σrb|ra

)
, (32)

where µrb|ra
and σrb|ra

are the conditional mean and standard deviation, respectively, given by:

µrb|ra
= −z∗2,ra

βra

φ(−βra)
Φ(−βra)

, (33)

σrb|ra
=

√√√√1−
(

z∗2,ra

βra

)2
φ(−βra)
Φ(−βra)

(
−βra +

φ(−βra)
Φ(−βra)

)
. (34)

Therefore, the system reliability index associated with the retention criterion is βr = −Φ−1(Pfr).
Figure 2 shows the contours plots of the retention criteria reliability index βra for different values

of the ratio µD15F
/µd85B

corresponding to group 1 soils, and the coefficients of variation vD15F
and

vd85B
, respectively. Owing to the exponential nature of the solution (23)-(24), the absolute value of

the reliability index βra tends to infinity when the coefficients of variation vD15F
and vd85B

tend to
cero except when µD15F

/µd85B
= 9, which tends to cero. The reliability indexes corresponding to

vD15F
= 0.01 and vd85B

= 0.01 are shown in all the graphs. Note that the reliability index is positive
when µD15F

/µd85B
< 0, which means that the probability of failure is lower than 50% because the

point of maximum likelihood
(
µd85B

/
√

(1 + v2
d85B

), µD15F
/
√

(1 + v2
D15F

)
)

is inside the safe region,
and negative when µD15F

/µd85B
< 0, which means that the probability of failure is greater than

50% (point of maximum likelihood inside the failure region)

4 Sensitivity analysis

The problem of sensitivity analysis in reliability based problems has been discussed by several
authors, see, for example, Frangopol (1985); Enevoldsen (1994); Sorensen and Enevoldsen (1992);
Mı́nguez (2003); Mı́nguez et al. (2005, 2004). In this section it is shown how duality methods can
be applied to sensitivity analysis in a straightforward manner. The method to be presented in this
section is of general validity. The basic idea is simple. Assume that the sensitivity of the objective
function to changes in some data values is looked for. Converting the data into artificial variables
and locking them, by means of constraints, to their actual values, a problem that is equivalent to
the initial optimization problem but has a constraint such that the values of the dual variables
associated with them give the desired sensitivities is obtained.
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To this aim, in problem (11)-(15), variable θ is replaced by the artificial variable θ∗ and the
following constraint is added:

θ∗ = θ : λm. (35)

Converting the data θ = (η̃,κ) into artificial variables θ∗ and setting them, by means of
constraint (35), to their actual values θ, the values of the dual variables λm, associated with
constraint (35) multiplied by sign(um) give the sensitivities of the reliability indexes for mode m
with respect to θ = (η̃, κ). These sensitivities allow determining for example how the reliability of
an engineering design changes when its design values and the statistical parameters of the random
variables involved are modified.

If the sensitivities (µm) of the probability of failure (using FORM) with respect the data
parameters are looked for the following formula should be used:

µm = sign(um)
exp(−β2

m/2)√
2π

λm. (36)

Note that this method requires the use of optimization techniques for solving the reliability
problems related to the different failure modes (11)-(13), alternative methods for sensitivity analysis
that would allow the use of the analytical expressions given in Section 3 are shown in Castillo et al.
(2006, 2005).

5 Practical Examples

In this Section, the proposed reliability assessment method is carried out on two different examples:
case study A, which uses a group 1 base soil, and case study B, which uses the Balderhead Dam
data (group 2 base soil).

5.1 Case Study A: (Group 1 Base Soil)

In this example, both the filter and the base soil grain size distributions have been obtained from
a real dam but their values have been intentionally modified to best represent the performance of
the method.

5.2 Statistical data

To perform the probabilistic study in the filter-base systems, the joint probability density function
of all variables is required. Considering the statistical assumptions stated in Section 4, the values of
the statistical parameters for the filter and the base are shown in Table 1, respectively. Note that it
contains the mean value and the coefficient of variation of the different filter and base particle sizes
involved in the reliability assessment. The grain curves are shown in Figure 3, where the mean filter
and base gradations are shown with thicker black lines. The values of the correlation coefficients of
the filter (ρ) are shown in Table 2. Note that the natural logarithms of the different particle sizes
involved in some of the practical design criteria show an important correlation. The correlations
between particle sizes that are not directly related by the design criteria are not considered in the
calculations.

Note that d85B is less than 0.074 mm, therefore, retention criteria for soil group 1 must be used.
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5.3 Reliability assessment results

First of all, reliability indexes and probabilities of failure are evaluated solving problem (11)-(15) for
each failure mode. The solution could be obtained using both numerical methods or the analytical
solution presented in Section 3. We have used numerical methods in order to obtain the sensitivity
analysis at the same time.

The proposed method has been implemented in GAMS (General Algebraic Modelling System)
(see Castillo et al. (2001)) using the generalized reduced gradient method (for more details, see
Vanderplaats (1984) or Bazaraa et al. (1990)) that has shown good convergence properties when
the variables are constrained.

The results of the proposed method are given in Table 3, where βm is the reliability index for
mode m, η is the design point, failure point or point of maximum likelihood in the original random
space, which is the point whose density function value under the statistical assumptions made is
the biggest. It represents the most likely values of the random values where failure occurs. z is the
design point in the standard normal random space. Note that both are related by means of the
Rosenblatt transformation (12), and Pm is the probability of failure for each practical criteria using
either FORM methods, Monte Carlo simulation or both. With respect the Monte Carlo simulation
it is worth mentioning that 106 sample points were used.

One advantage of the practical criteria is the simplicity of the limit state equations, which
considering the random variables as in Section 2.4, allows making the graph of the bi-variate
standard normal random variable in 2-D and 3-D. In Figure 4 the probability density function
contours, the limit state equations ra and rb (linear), the design points and the reliability indexes
βra and βrb

in the standard normal random space are shown. Note that the FORM method is exact
for linear limit state equations.

Table 3 also shows the system reliability evaluations using the PCM method, which has been
implemented in Matlab. The βm-values and the correlation matrix elements Rij are used. Note
that the correlation elements are obtained using Rij = aT

i aj , where aT
i = (−zi1/βi, −zi2/βi).

Note that the term ‘correlation’ used in the statement refers to correlation between failure modes,
different from the correlation between filter particle sizes.

From Table 3 the following conclusions can be withdrawn:

1. The most important failure mode is the retention criteria with a system probability of failure
of ≈ 22.07%.

2. The failure of the filter itself is less probable, but the probability of the percentage of fines
passing 0.075 mm sieve being greater than 5% is significant (≈ 7%). Additional test should
be perform to verify if they are plastic.

3. The probability of failure associated with the filter uniformity criteria and autostability be-
tween diameter filters are negligible.

4. The global probability of non-fulfilling the practical criteria is ≈ 27.43%.

The method also gives the sensitivities associated with the β-values. Only the sensitivities of
the retention criteria reliability index is shown in Table 4. The term ∂βra

∂x represents the change in
the reliability index βra when the data x increases one unit, whereas the term ∂βra

∂x |x| is the relative
sensitivity, which allows comparing sensitivities between parameters with different magnitudes, the
bigger the value the more sensitive the parameter is. It is useful to know how much the β-values
change due to a small change in a single data value (e.g., the means or the coefficients of variation).
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Note, for example, that a unit increase in the coefficients of variation vDF15
and vdB15

(uncertainty
increase) leads to a −0.105 and −2.248 decrease of the retention reliability index (βra) (see the
corresponding entrance ∂βra

∂x in Table 4), respectively.
As it is expected, for example, increasing the uncertainty in the the retention criterion ra

(coefficient of variation) decreases the reliability index increasing the probability of failure.

5.4 Case study B: Balderhead dam (Group 2 base soil)

In this Section, in order to add comparisons with experimental data form the literature, the pro-
posed reliability assessment method is performed using data from a real dam. In this case Balder-
head dam data (group 2 base soil) has been selected.

Balderhead Dam is located in Northern England. Designed in 1959 and completed in 1965,
the clay core cracked by hydraulic fracture just before the reservoir reached top water level in
February 1966. Internal erosion followed and, fourteen months later, two sink holes developed at
the crest over the upstream boundary of the clay core. The failure and subsequent investigation of
Balderhead Dam is described in detail by (Vaughan and Soares, 1982). A crack erosion model and
the reduced Particle Size Distribution method were used by (Locke, 2001) to predict why the dam
failed.

5.5 Statistical data

Considering the statistical assumptions stated in Section 4, the values of the statistical parameters
for the filter and the base are shown in Table 5, respectively. Note that it contains the mean
value and the coefficient of variation of the different filter and base particle sizes involved in the
reliability assessment. This data are obtained considering that the logarithm of the maximum value
corresponds to the 98% quantile. According to them, Balderhead Dam core soil has between 70%
and 40 % passing 0.075 mm sieve, thus, soil group 2 retention criteria has to be used.

5.6 Reliability assessment results

The results of the proposed method are given in Table 6, from this table the following conclusions
can be withdrawn:

1. The most important failure mode is the retention criteria with a probability of failure of
≈ 79.3%.

2. The failure of the filter itself is very high ≈ 80%.

3. The global probability of non-fulfilling the practical criteria is ≈ 99%.

Note that the method shows that the probability of failure for this particular case is very high,
confirming the risk associated with its filter design.

6 Conclusions

The method presented in this paper is specially suitable for assessing the probability of fulfilling
the empirical criteria considering the statistical behavior of the filter and base soil particle size,
respectively. This method allows practical engineers establish the safety level of existing filters to
know how far the filter is from fulfilling the established practical criteria. In addition, sensitivity
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analysis can be easily performed by transforming the input parameters into artificial variables,
which are constrained to take their associated constant values.

Additional advantages of the proposed method include:

1. The method is simple and allows and easy connection with optimization frameworks.

2. Statistical variability of filter and base size is taken into account allowing to determine the
safety level of the filter by means of the probability of nonfulfillment of individual criteria or
the total system.

3. It is very flexible allowing easy substitution of the limit state equations associated with the
different failure modes.

4. This method allows comparison between filters in different dams in order to prioritize the
rehabilitation investments.

5. Sensitivity values with respect to the target reliability indexes (or probabilities of failure) are
given, without additional effort, by the values of the dual variables. This allows to identify the
most important variables to be controlled, which might be very useful during construction.

6. It allows obtaining sensitivity values with respect the data samples. This provides a useful
tool for outlier or erroneous data detection.

Finally, the methodology it is expected to be a very useful tool in order to approach probabilities
of failure in the context of risk assessment of embankment dams. With that purpose, future
research should be focused on estimating load (hydraulic gradients) probabilities and transforming
the existing empirical criteria in real limit state equations.
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Table 1: Filter DxF and Base dxB values (mm) for the practical example (group 1 soil).

ref. D5F D10F D15F D20F D30F D45F D50F D60F D65F D70F D85F D100F d15B d85B

µX 0.093 0.163 0.210 0.267 0.395 0.690 0.890 1.419 1.709 2.056 3.319 10.000 0.001 0.0314
vX 0.136 0.093 0.074 0.088 0.075 0.124 0.143 0.097 0.084 0.076 0.035 0.000 0.497 0.392

µln X -2.388 -1.818 -1.565 -1.325 -0.932 -0.379 -0.127 0.345 0.532 0.718 1.199 2.303 -7.001 -3.531
σln X 0.136 0.093 0.074 0.088 0.075 0.123 0.142 0.097 0.084 0.076 0.035 0.000 0.470 0.378
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Table 2: Correlations between the involved filter particle sizes DxF (group 1 soil).

D5F D10F D15F D20F D30F D45F D50F D60F D65F D70F D85F D100F

D5F 1.000 – – 0.337 – – – – – – – –
D10F – 1.000 – – – – – 0.145 – – – –
D15F – – 1.000 – 0.869 0.521 – – – – – –
D20F 0.337 – – 1.000 – – – – – – – –
D30F – – 0.869 – 1.000 0.865 – – – – – –
D45F – – 0.521 – 0.865 1.000 – – – – – –
D50F – – – – – – 1.000 – 0.968 – – –
D60F – 0.145 – – – – – 1.000 – – – –
D65F – – – – – – 0.968 – 1.000 – – –
D70F – – – – – – – – – 1.000 0.965 –
D85F – – – – – – – – – 0.965 1.000 –
D100F – – – – – – – – – – – 1.000
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Table 3: Independent failure criteria reliability assessment for the practical example (group 1 soil).

m βm z1 z2 η Pm (FORM) Pm (Monte Carlo)
ra 0.598 -0.586 0.115 0.023 0.211 0.27506 0.27512
rb -0.603 – -0.603 – 0.200 0.72690 0.72686
p 8.518 8.414 -1.331 0.047 0.189 0.00000 0.00000
u 6.706 -4.239 5.197 0.110 2.193 0.00000 0.00000
a5 4.059 -3.206 2.489 0.059 0.297 0.00002 0.00002
a15 25.547 -5.928 24.849 0.135 0.673 0.00000 0.00000
a30 15.206 6.887 13.557 0.661 3.307 0.00000 0.00000
a50 14.637 -13.835 4.776 0.123 0.614 0.00000 0.00000
a70 26.105 -25.515 5.520 0.294 1.472 0.00000 0.00000
a85 14.440 -14.440 0.000 2.000 10.000 0.00000 0.00000
c 1.486 -1.486 – 0.075 – 0.06865 0.06899

System reliability
r – – – – – 0.22068 0.22063

MF – – – – – 0.06865 0.06901
MF+B – – – – – – 0.27429
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Table 4: Reliability index sensitivity with respect the parameters for the retention criteria (group
1 soil).

x µdB85 µDF15 vdB85 vDF15 −− Fra

∂βra
∂x

82.478 -12.362 -2.248 -0.105 −− 0.288
∂βra

∂x
|x| 2.593 -2.593 -0.882 -0.008 −− 2.593
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Table 5: Filter DxF values (mm) for the Balderhead dam filter (group 2 soil).

Filter ref. D5F D10F D15F D20F D30F D45F D50F D60F D65F D70F D85F D100F

µX 0.82 1.19 2.01 2.72 5.13 8.55 9.84 13.55 15.59 20.29 35.62 50.68
vX 0.92 1.10 1.03 0.92 0.80 0.70 0.72 0.52 0.49 0.37 0.19 0.16

µln X -0.51 -0.22 0.34 0.69 1.39 1.95 2.08 2.48 2.64 2.94 3.56 3.91
σln X 0.78 0.89 0.85 0.78 0.70 0.63 0.64 0.49 0.46 0.36 0.19 0.16
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Table 6: Independent failure criteria reliability assessment for the Balderhead dam example (group
2 soil).

m βm z1 z2 η Pm (FORM) Pm (Monte Carlo)
rb -0.817 – -0.817 – 0.700 0.79296 0.79317
u 0.282 -0.247 0.136 0.642 12.834 0.38887 0.38896
a5 0.366 -0.259 0.259 0.490 2.449 0.35724 0.35782
a15 0.507 -0.390 0.324 1.005 5.026 0.30595 0.30579
a30 1.108 -0.824 0.741 2.238 11.189 0.13385 0.13331
a50 1.323 -1.073 0.774 4.011 20.055 0.09294 0.09276
a70 2.448 -2.176 1.122 8.634 43.169 0.00718 0.00720
a85 5.040 -3.790 3.322 17.233 86.164 0.00000 0.00000
c 2.654 -2.654 – 0.075 – 0.00398 0.00398

System reliability
MF – – – – – 0.797653 0.798369

MF+B – – – – – 0.989798 0.989922
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Figure 1: Failure path diagram for failure by pipping through the embankment (see Foster and
Fell (1999)).
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example (group 1 soil).
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Figure 4: 2-D and 3-D graphical illustration of the reliability problem associated with the retention
criteria r for the practical example (group 1 soil).
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