
Solving the Inverse Reliability Problem
Using Decomposition Techniques

Roberto Mı́nguez1, Enrique Castillo2, and Ali S. Hadi3

1 Department of Statistics,

Cornell University, Ithaca, New York 14853-3901, USA

rm333@cornell.edu

2 Department of Applied Mathematics and Computational Sciences,

University of Cantabria, 39005 Santander, Spain

castie@unican.es

3 Department of Mathematics,

The American University in Cairo, Cairo, Egypt

ahadi@aucegypt.edu

Abstract

The paper introduces a new general method for solving the inverse reliability problem

with multiple design variables and constraints that are specially suitable for practi-

tioner engineers. We seek to determine the unknown parameters such that prescribed

first-order reliability indices are obtained. The method uses standard optimization

frameworks to obtain the reliability indices and a decomposition iterative scheme to

solve the global problem. The sensitivities with respect to the parameters are also ob-

tained by means of the dual variables, so that the method not only attains the solution

parameters of the problem, but also shows how sensitive they are with respect to the

reliability indices. In addition, the proposed algorithm detects the no-solution case

and the existence of infinite solutions. In this case, it also gives the local increments of

each design variable to obtain new solutions. Next, the inverse reliability problem is

extended to include reliability bounds and other constraints. The proposed methods

are illustrated by applications to several cases described in the literature and to the

problem of bridge crane design.

Key Words: Bridge crane, Generalized inverse reliability problem; Level II (FORM) meth-
ods; Optimization; Reliability-based design; Sensitivity analysis; Structural reliability.

1 Introduction and Motivation

Engineering design of structural elements is a complicated and highly iterative process that
usually requires an extensive experience. Iterations consist of a trial-and-error selection of
the design variables or parameters, together with a check of the safety and functionality
constraints, until reasonable structures, in terms of cost and safety, are obtained.

Safety of engineering structures is a fundamental criterion for design (see Blockley [1],
Ditlevsen and Madsen [2], ROM [3], Freudenthal [4], Madsen, Krenk and Lind [5], Melchers
[6], Stewart and Melchers [7], Wirsching and Wu [8], Wu, Burnside and Cruse [9]). To
this end, and using a probability based approach, engineers first identify all failure modes
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and statistical parameters (e.g., the means and standard deviations of the random variables
involved) of the structure being designed, and then specify the safety constraints that have
to be satisfied.

In this paper we assume that the reader is familiar with level II methods (FORM) ([4,
10, 11, 12, 13] ) for evaluating the reliability index associated with any mode of failure:

β = Minimum
z

√

s
∑

r=1
z2

r (1)

subject to

g(x,η,ψ) = 0, (2)

T(x,η,κ) = z, (3)

q(x,η) = ψ, (4)

where g(x,η,ψ) = 0 is the failure condition, T(x,η,κ) is the transformation (Rosenblatt
[14], Nataf [15]) giving the values of the standard and independent normal variables z as a
function of the values of the random variables x, the random parameters (means, charac-
teristic or experimental values) of the design variables η, and the variability parameters of
other variables κ of their joint probability distribution of the random variables, q(x,η) = ψ

are the equations that allow obtaining the values of the intermediate variables ψ (they sim-
plify the statement of the problem) and s is the number of random variables involved in the
problem.

For example, η may be the set of means or characteristic values that are fixed by the
engineer or by the code (e.g., material properties such as unit weights, strength, Young
modula, etc.), geometric dimensions of the work being designed, or might represent unknown
thresholds in limit-state functions. The parameters κ may be the set of parameters defining
the random variability and dependence structure of the variables involved (e.g., standard
deviations, correlation coefficients, etc.).

The probability of failure pf is related to the reliability indices by the approximate
relation pf = Φ(−β), where Φ(·) is the cumulative distribution function of the standard
normal random variable.

We point out the reader that the problem in (1)–(4) can give the wrong answer, that is,
a negative value of β when the correct answer is a positive β. This is due to the fact that
two square roots are possible in (1). A method to avoid this problem is explained in Section
2 (see the problem defined by (10)–(15)).

Definition 1 (Inverse reliability problem.) The inverse reliability problem consists of
finding the values of given subsets of η and κ such that the associated reliability indices
βi; i = 1, 2, . . . , n (the target values) attain desired reliability levels β∗

i ; i = 1, 2, . . . , n.

From Definition 1, the inverse reliability problem involves finding some/all of the pa-
rameters η and κ that give the desired reliability levels β∗ = (β∗

1 , . . . , β
∗

n)T , where n is the
number of failure modes, and

β∗

i ≤ Minimum
zi

√

s
∑

r=1
z2

ir , i = 1, . . . , n, (5)
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subject to

gi(xi,η,ψi) = 0, (6)

T(xi,η,κ) = zi, (7)

q(xi,η) = ψi, (8)

where the constraint in (6) is the limit state equation corresponding to the failure mode i.
Additional constraints corresponding to geometric or code constraints, lower and upper

bounds, fixed values, etc., can be included

hj(η,κ) ≤ 0; j = 1, 2, . . . ,m. (9)

The inverse reliability problem stated above is more general than the inverse reliability
problem normally stated in the existing literature, in the sense that (a) it includes constraints
as those in (9), and (b) there is an inequality (≤) in (5) to fix minimum safety requirements
instead of the usual equality.

The standard and simpler reliability problem has strong constraints that can not always
be satisfied, even though the number of design variables is smaller or equal to the number of
constraints in the problem. However, the engineer is not interested in having fixed reliability
indices, but reliability indices above some given lower bounds. This, apart from leading to a
more reasonable engineering problem, releases the problem from unnecessary mathematical
difficulties, and makes the existence of solutions possible in many cases. The complexity
of solving the inverse reliability problem, however, is due to the constraints in (5) that are
themselves optimization problems.

The inverse reliability problem for one parameter can be solved by “trial and error”;
solving repeatedly (1)–(4) and interpolating the design parameters at the desired reliability.
This method is obviously tedious and more efficient solutions have been proposed. For
example, Winterstein, Ude, and Cornell [16] describe a reliability contour method applied to
problems in offshore environmental loads in the context of limit-state functions of the form
g(x, θ) = θ − h(x), where θ is a given threshold treated as a deterministic design variable.

To extend the method to general limit states, Der Kiureghian, Zhang and Li [17] propose
an extension algorithm of the well-known Hasofer-Lind-Rackwitz-Fiessler algorithm used in
reliability analysis, where the search space of the random variables is extended to include the
unknown parameters. A search direction and a penalty function are introduced to guide the
sequence of iterations to the design point and the parameter solution in a balanced manner.
Li and Foschi [18, 19] present a direct algorithm for the single-parameter inverse problem
and use a Newton-Raphson iterative algorithm for finding multiple design parameters. Thus,
this general method solves inverse reliability problems with multiple design points and con-
straints. The design parameters can also be treated as random variables, so that in these
cases they could be the means and/or the standard deviations of the design variables (the
η variables). Alternatively, Sadovský [20] proposes some modifications of the algorithm pre-
sented by Li and Foschi [18, 19] that may improve convergence of the design parameter, and
suggests an alternative algorithm including curvature information that shows a more robust
behavior, but it may require additional computational effort.

The solutions proposed by these authors are valid and have good properties but they do
have some shortcomings for practitioner engineers. Examples of these difficulties are:
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1. The user has to be acquainted with optimization algorithms in-depth, and it could be
difficult to include additional bounds for variables or constraints.

2. In some cases, to achieve convergence, the selection of the constant step size is crucial.
Thus, these algorithms may fail to converge if the step size is not assessed properly.

3. Sometimes sophisticated line searches complicate the method, though improve its per-
formance.

4. No sensitivities of the reliability coefficients with respect to the design variables are
given.

5. No information is given in cases where either there is no solution or there are multiple
solutions.

In this paper we propose a method that uses standard optimization frameworks to obtain
the reliability indices and a very simple decomposition iterative scheme to solve the global
problem, that by means of the dual variables also gives the sensitivities, i.e., the partial
derivatives of the β-values with respect to the parameters. In addition it detects the existence
of a unique, multiple or no-solution cases. In this way, practitioner engineers can use the
widely available, powerful optimization algorithms that avoid the selection of step sizes by
the designer. Moreover, in practice the size of a design problem can be very large and one
can encounter problems with a huge number of equations and/or unknowns. In the proposed
method we utilize some special decomposition techniques to solve these problems.

The remainder of this paper is structured as follows. Section 2 presents a new method for
solving the inverse reliability problem. Section 3 demonstrates the validity and efficiency of
the proposed method by some numerical examples. Section 4 provides some extensions of the
proposed method, including optimization. Section 5 gives an application to an engineering
design problem, namely, a bridge crane design. Finally, some conclusions are drawn in
Section 6.

2 The Proposed Method

We start with the simpler inverse reliability problem (with equalities in (5) and without (9)),
i.e., finding the parameters η and κ that give the desired reliability levels β∗ = (β∗

1 , . . . , β
∗

n)T ,
where n is the number of failure modes, and

β∗

i = Minimum
zi

√

s
∑

r=1
z2

ir , i = 1, . . . , n, (10)

subject to

gi(xi,η,ψi) = 0, (11)

T(xi,η,κ) = zi, (12)

q(xi,η) = ψi, (13)
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gi(x1,η,ψ1) ui > 1, (14)

T (x1,η,κ) = 0. (15)

q(x1,η) = ψ1, (16)

where the auxiliary variable ui and the three constraints in (14)-(16) ensure that the sign of
β is the desired one and x1 is the random variable values corresponding to the point z1 = 0
in the standard normal random space.

The positive β∗

i value resulting from the solution of problem (10)–(16) must be corrected
by the sign of ui. This corrects the possibly wrong answer obtained by solving the problem
(1)–(4), as mentioned earlier.

The problem in (10)-(16) is difficult to solve in the sense that it cannot be implemented
directly using standard optimization packages. To solve this problem, we propose a decom-
position technique. Decomposition techniques (see Mı́nguez [21] and Conejo et al. [22])
consists of dividing the initial problem in several problems that are easy to solve and such
that iteration of solutions of these simpler problems lead to the solution of the initial prob-
lem . Thus, the proposed method consists of an iterative procedure that solves two types of
problems until convergence: the master problem, which consists of solving a linear system
of equations, and the subproblems, which are the evaluations of the reliability indices for all
failure modes.

2.1 The Master Problem

Specifically, for iteration j, we write:

β
(j)
i = fi(η

(j),κ(j)); i = 1, . . . , n, (17)

where fi(η,κ) is the function that gives the βi-value as a function of the parameters η and
κ. Expanding the function (17) in Taylor series, we obtain the linear system of n equations:

β∗

i = β
(j)
i +

∑

∀m

∂fi(η,κ)

∂ηm

(

ηm − η(j)
m

)

+
∑

∀l

∂fi(η,κ)

∂κl

(

κl − κ
(j)
l

)

, (18)

i = 1, 2, . . . , n. Thus, for iteration j the master problem consists of solving the linear system
of equations (18), i.e., we find the values of ηm and κl that satisfy (18).

2.2 The Subproblems

In the j-th iteration, the subproblems consist of determining the reliability coefficients, i.e.,
solving the corresponding minimization problems. However, since for stating this linear
system of equations in the master problem, we need the partial derivatives of the function
(17) with respect to the parameters η and κ evaluated at η(j),κ(j), we slightly modify the
subproblems to obtain these partial derivatives, which are the sensitivities of the β values
to η and κ. To this end, we need to convert the data values into artificial variables (η0,κ0)
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and add the corresponding constraints to the problem in (10)–(16), leading to the modified
subproblems:

β
(j)
i = Minimum

zi,η0,κ0

√

s
∑

r=1
z2

ir , i = 1, . . . , n, (19)

subject to

gi(xi,η0,ψi) = 0, (20)

T(xi,η0,κ0) = zi, (21)

q(xi,η0) = ψi, (22)

gi(x1,η0,ψ1) ui > 1, (23)

T (x1,η0,κ0) = 0, (24)

q(x1,η0) = ψ1, (25)

η0 = η(j), (the corresponding dual variable is λ(j)), (26)

κ0 = κ(j), (the corresponding dual variable is θ(j)). (27)

Thus one can obtain the desired partial derivatives, as the values of the dual variables
associated with the constraints in (26) and (27). They are the sensitivities of the objective
function with respect to the parameters η and κ, i. e., they give how much the objective
function changes with a very small increment of the corresponding parameter. These values
are nothing more than the values of the corresponding values of the dual variables.

2.3 The Modified Master Problem

Let α be a vector whose i-th element is αi = sign(ui). The master problem in (18) can be
transforms to:

β∗

i = αiβ
(j)
i +

∑

∀m

αiλ
(j)
m

(

ηm − η(j)
m

)

+
∑

∀l

αiθ
(j)
l

(

κl − κ
(j)
l

)

; i = 1, . . . , n, (28)

where the sign function is used to correct for the sign of β and allows the updating of the
design parameters η and κ until convergence is reached. This process is illustrated in Figure
1 for the simple case of a single parameter η.

Note that the system of n equations (28) in η and κ can be written in matrix form as:

A
(

η

κ

)

= β∗ − β(j) + A
(

η(j)

κ(j)

)

= γ. (29)

This system can have no solution, a unique solution or multiple solutions. Therefore, it is
important to know when each of these situations occurs:

1. No solution: This occurs when rank(A) 6= rank (A|γ), where A|γ is the matrix A
augmented by the vector γ.

2. An unique solution: When rank(A) = rank (A|γ) = n.
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β

*β
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η
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λ

(2)
λ

Figure 1: Graphical illustration of the master problem in the single parameter case.

3. Multiple (infinite) solutions: This occurs when rank(A) = rank (A|γ) < n. The set of
all solutions can be obtained by determining the null space of A.

In case of multiple solutions, it is of interest to know the set of all possible local solutions,
that is, the differential increments that need to be given to the design variables to have the
same set of desired reliability coefficients.

Note that to obtain a unique solution of the problem, it is necessary that the number of
design parameters be at least equal to the number of geometric and/or reliability based con-
straints. But the equality of the number of design parameters and the number of geometric
and/or reliability constraints does not guarantee a unique solution.

2.4 Advantages of the Proposed Method

The proposed method has several advantages. These include:

1. The mathematical statement of the problem is simple (only elemental Taylor series
expansion and systems of equations need to be dealt with).

2. Standard optimization software can be used without the need of knowing the op-
timization techniques, that is, the responsibility of finding the solution is given to
optimization experts.

3. No critical convergence parameters need to be assessed by the engineer, so that con-
vergence is independent of the right choice of these values.
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4. The sensitivities of the reliability indices with respect to the design variables are also
readily available without additional costs.

5. The method checks for the existence of no, unique, or multiple solutions, and if multiple
solution exists, they are obtained (locally).

2.5 The Proposed Algorithm

The above methodology can be summarized by the following algorithm.

Algorithm 1 (Inverse Reliability Problem)

• Input:

1. The desired reliability bounds β∗ with respect to all failure modes.

2. The design variables and parameters.

3. An error value ε to control convergence of the procedure.

• Output:

1. An indication of whether the problem has one or multiple solutions, and the values
of the parameters η and κ associated with one solution of the problem.

2. The sensitivities of the reliability indices β, for all failure modes, with respect to
the solution parameters.

3. The set of all local multiple solutions if they exist.

Initialization. Initialize the iteration counter to j = 1 and select the initial values for the
design parameters η(j) and κ(j) (based on engineering or statistical knowledge and or
assumptions).

Step 1: Solve the subproblems. Solve problem (19)–(27) to obtain exact values αiβi for
the β-values for all failure modes. The element-wise products λ·α and θ·α are the
partial derivatives of the β-values with respect to η and κ, respectively. They are
proportional to the dual variables λ and θ corresponding to equations (26) and (27).

Step 2: Check for existence of solution. If rank(A) 6= rank (A|γ), stop the process be-
cause there is no solution. Otherwise, continue with Step 3.

Step 3: Solve the master problem. Update the iteration counter j = j + 1, and obtain
a new approximation of the unknown parameters solving the linear system of equations
(28) in η and κ.

Step 4: Check convergence. In the current iteration, if changes in the design parameters
are larger than a given threshold value ε, go to Step 1. Otherwise, go to Step 5.
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Step 5: Check for uniqueness. If rank(A) = rank (A|γ) = n, then the solution is unique.
In this case, return the actual solution η∗ and κ∗, and their corresponding sensitivities
λ∗ and θ∗ and stop. Otherwise; i.e., if rank(A) = rank (A|γ) < n, continue with Step
6.

Step 6: Find local multiple solutions. Obtain the set of all local solutions determined
by the null space of A, and return the actual solution η∗ and κ∗, and their corresponding
sensitivities λ∗ and θ∗, together with the null space of matrix A and stop.

We have implemented the proposed method in GAMS (General Algebraic Modelling
System) (see Castillo et al. [23]). GAMS is a software system especially designed for solving
optimization problems (linear, non-linear, integer and mixed integer) from small to very large
sizes. All the examples have been solved using the generalized reduced gradient method (for
more details, see Vanderplaats [24] or Bazaraa, Jarvis and Sherali [25]) that has shown good
convergence properties when the variables are constrained. The main advantages of GAMS
are:

1. It is a high quality software package (reliable, efficient, fast, widely tested, etc.).

2. It allows the problem to be defined as it is stated mathematically, i.e., without difficult
transformations.

3. It allows relations to be handled in implicit or explicit forms.

4. It allows very large (in terms of number of variables or constraints) problems to be
solved.

Of course, other optimization programs such as AIMMS [26, 27], AMPL [28, 29], LINDO,
What’s Best, MPL or the Matlab Optimization Toolbox, can be used instead.

3 Illustrative Numerical Examples

In this section we illustrate the proposed method and compare it with existing methods by
means of some numerical examples.

Example 1 (A single limit state function) Consider the limit state function in the stan-
dard normal space

G(z, η) = exp[−η(z1 + 2z2 + 3z3)] − z4 + 1.5, (30)

as shown in Der Kiureghian et al. [17] and in Li et al. [18], where the target reliability index
is β∗ = 2.0. Two cases with different hypotheses are analyzed here:

Case 1: Considering η as a deterministic parameter, using the initial values for η(1) = 0.15
and the variables z(0) = (0.2, 0.2, 0.2, 0.2)T , and a tolerance for convergence ε = 10−4,
the results in Table 1 are obtained. Note that the convergence is achieved in only 4
iterations. In addition, the sensitivity ∂β/∂η = −0.90847, which means that a small
increment ∆η of η produces a decrement in β of ∆β = 0.90847∆η of .
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Table 1: Example 1, Case 1: Illustration of the Iterative Process.

j η β
1 0.15000 2.28286
2 0.30992 2.05684
3 0.36231 2.00442
4 0.36711 2.00003

Table 2: Example 1, Case 2: Illustration of the Iterative Process.

j η β
1 0.20000 2.20417
2 0.33208 2.03821
3 0.37006 2.00217
4 0.37249 2.00001
5 0.37250 2.00000

Case 2: In this case the parameter is considered as a lognormal random variable with a
coefficient of variation κ = 0.30. The mean, µ, of this random variable is to be chosen
so that β∗ = 2.0. Table 2 shows the iterations converge to a unique solution. In this
case, the sensitivities are:

∂β

∂µ
= −0.88805 and

∂β

∂κ
= 0.03081.

Thus, the reliability index is more sensitive to changes in µ than to changes in κ and
it decreases with µ but increases with κ.

Example 2 (Three limit state functions) Consider the following three limit state func-
tions related to four random variables:

g1(x) = x2
1 − 4x2 − 2x3x4, (31)

g2(x) = 2x1x4 − x2x3, (32)

g3(x) = x1x2x4 − 2x3, (33)

with given target reliability indices β∗ = (3.0, 3.5, 4.0)T . We consider three cases:

Case 1 The design parameters are the mean values η1, η2, and η3 of three of these variables,
and the distributional assumptions are shown in Table 3. The initial values of the design
parameters are (5, 2, 2). Table 4 shows the convergence of the process is attained in 4
iterations and Table 5 gives the sensitivities. Note that the sensitivities of the β-values
with respect to the κ-values (coefficients of variation) are negative, thus increasing
the coefficients of variation will decrease the reliability indices, which implies that the
probabilities of failure will increase with κ.
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Table 3: Example 2, Case 1: Design Variables and Distributional Assumptions.

Mean Coefficient Distribution
Variable Value of Variation Type

x1 η1 κ1 = 0.01 Normal
x2 η2 κ2 = 0.2 Lognormal
x3 η3 κ3 = 0.1 Lognormal
x4 η4 = 1 κ4 = 0.1 Gumbel

Table 4: Example 2, Case 1: Illustration of the Iterative Process.

j η
(j)
1 η

(j)
2 η

(j)
3 β

(j)
1 β

(j)
2 β

(j)
3

1 5.00000 2.00000 2.00000 4.90903 3.92591 3.75717
2 4.31505 2.15542 1.76851 2.88599 3.49957 3.97454
3 4.36348 2.16168 1.78304 2.99919 3.49989 3.99986
4 4.36379 2.16169 1.78312 3.00000 3.50000 4.00000

Case 2 To show how the method detects the case of infinite solutions, we take all four
parameters η1, η2, η3, η4 in Table 3 to be the design values, thus we have four parameters
and three reliability conditions. The solutions given by GAMS are:

η1 = 4.557, η2 = 2.1617, η3 = 2.1021, η4 = 1.1772,

shown in Table 6, and the general local solution is:











η1

η2

η3

η4











=











4.5570
2.1617
2.1021
1.1772











+ ρ











1.2300
0

2.4538
1











; ρ ∈ IR ,

which shows the required local increments of the design variables to attain the desired
reliability indices values. This means that increasing η1, η3, and η4 by 1.23ρ, 2.4538ρ,
and ρ, respectively, for small values of ρ and no changes in η2, gives to the same values
of the reliability indices.

Case 3 In this case the standard deviation of variable X1 and the mean values of X2 and
X3 are taken as design parameters and the distributional assumptions are shown in
Table 7. We consider here the case where all variables are uncorrelated. Table 8 shows
the convergence of the process and Table 9 gives the sensitivities, where the relative
influences of the η and κ parameters on the reliability indices can be observed.

Case 4 In the above case, the variables are assumed to be uncorrelated. To show the effect
of correlation, we consider the case where the variables X1 and X2 have a correlation
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Table 5: Example 2, Case 1: Sensitivities of the β-Values with Respect to the Parameters.

x ∂β1/∂x ∂β2/∂x ∂β3/∂x
η1 2.82100 0.98424 0.98666
η2 –2.28247 –1.98689 1.99176
η3 –0.68482 –2.40872 –2.41463
η4 –1.22113 4.29504 4.30557
κ1 –4.58017 –0.64761 –0.74408
κ2 –13.09599 –11.59053 –15.08793
κ3 –0.32201 –5.96740 –6.91545
κ4 –0.22688 –4.57130 –4.98348

Table 6: Example 2, Case 2: Illustration of the Iterative Process.

ν η
(ν)
1 η

(ν)
2 η

(ν)
3 η

(ν)
4 β

(ν)
1 β

(ν)
2 β

(ν)
3

1 5.00000 2.00000 2.00000 1.00000 4.90903 3.92591 3.75717
2 4.49679 2.15542 2.21765 1.18822 2.79700 3.44547 3.92032
3 4.55613 2.16169 2.19236 1.17754 2.99681 3.49976 3.99973
4 4.55700 2.16169 2.19211 1.17724 3.00000 3.50000 4.00000

Table 7: Example 2, Case 3: Design Variables and Distributional Assumptions.

Mean Coefficient Distribution
Variable Value of Variation Type

x1 η1 = 6 κ1 Normal
x2 η2 κ2 = 0.2 Lognormal
x3 η3 κ3 = 0.1 Lognormal
x4 η4 = 1 κ4 = 0.1 Gumbel

coefficient κ5 = 0.8. Table 10 shows the convergence of the process and Table 11
gives the sensitivities. It can be seen that the presence of correlation causes substantial
changes in the design parameters.

Example 3 (Sadovský example) Consider the following limit state function in the stan-
dard normal space, as in Sadovský [20].

G(z) =
1

2

4
∑

i=1

κizi + β − ηz5, (34)

where the specified reliability index is β∗ = 4.0 and the principal curvatures are κi = 0.8 −
0.2(i− 1); i = 1, . . . , 4. The initial values for the variables are z(0) = (0.1, 0.1, 0.1, 0.1, 0.1)T
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Table 8: Example 2, Case 3: Illustration of the Iterative Process.

j η
(j)
2 η

(j)
3 κ

(j)
1 β

(j)
1 β

(j)
2 β

(j)
3

1 3.00000 3.00000 0.60000 2.65851 1.14061 4.10454
2 2.13744 1.98133 0.79952 2.96971 3.69678 4.00158
3 2.19721 2.08110 0.76742 3.00126 3.49551 3.99929
4 2.19614 2.07856 0.76826 3.00000 3.50000 4.00000
5 2.19614 2.07855 0.76826 3.00000 3.50000 4.00000

Table 9: Example 2, Case 3: Sensitivities of the β-Values with Respect to the Parameters.

x ∂β1/∂x ∂β2/∂x ∂β3/∂x
η1 1.22232 0.78095 0.81981
η2 –0.76072 –1.55992 1.51727
η3 –0.32405 –1.64817 –1.60310
η4 –0.67355 3.42580 3.33213
κ1 –3.44349 –1.63991 –2.06535
κ2 –1.28896 –7.24050 –9.18161
κ3 –0.06807 –3.72778 –4.06734
κ4 –0.01079 –3.16512 –3.29011

Table 10: Example 2, Case 4: Illustration of the Iterative Process.

j η
(j)
2 η

(j)
3 κ

(j)
1 β

(j)
1 β

(j)
2 β

(j)
3

1 3.00000 3.00000 0.60000 3.99969 1.58532 3.26436
2 3.08635 1.90852 0.81251 3.23005 4.11441 3.99731
3 3.28513 1.99117 0.82850 3.00504 3.51452 3.99709
4 3.29190 1.99206 0.82868 3.00000 3.50001 3.99999

and η(0) = 0.15. Table 12 shows the convergence of the process. In addition, the sensitivity
is ∂β/∂η = −4.

Example 4 (A limit state function from Kim et al.) In this example, a limit state func-
tion from Kim et al. [30] is considered:

g(x) = exp((x1 + 2) + 6.2) − exp(0.3x2 + x3) − 200, (35)

where X1 and X2 are standard normal and X3, assumed normal, is treated as a design
variable with coefficient of variation κ3 = 0.1 and unknown mean value, the design parameter
η3. The target reliability index is β∗ = 2.5. Table 13 shows the convergence of the process
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Table 11: Example 2, Case 4: Sensitivities of the β-Values with Respect to the Parameters.

x ∂β1/∂x ∂β2/∂x ∂β3/∂x
η1 1.52529 0.89235 0.72172
η2 –0.56874 –1.77144 0.63872
η3 –0.43651 –2.92732 –1.05549
η4 –0.86956 5.83141 2.10261
κ1 –4.42652 0.57598 –2.68825
κ2 3.85286 –10.04233 –7.71261
κ3 –0.13850 –11.20670 –1.54269
κ4 –0.06466 –7.48251 –1.55252
κ5 1.40599 2.98899 –0.99616

Table 12: Example 3: Illustration of the Iterative Process.

j η(j) β(j)

1 0.15000 26.66667
2 0.27750 14.41441
3 0.47799 8.36831
4 0.72751 5.49821
5 0.92575 4.32083
6 0.99449 4.02218
7 0.99997 4.00012
8 1.00000 4.00000

Table 13: Example 4: Illustration of the Iterative Process.

j η
(j)
3 β(j)

1 4.00000 3.45532
2 5.05935 2.18575
3 4.82430 2.49808
4 4.82284 2.50000

that is attained in 4 iterations and Table 14 gives the sensitivities. Note that the sensitivities
of the reliability indices to coefficients of variations (κ) are negative, that is, the larger the
coefficient of variation, the smaller the reliability indices.
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Table 14: Example 4: Sensitivities of the β-Values with Respect to the Parameters.

x ∂β/∂x
η1 0.75478
η2 –0.34648
η3 –1.31575
κ1 –1.42425
κ2 –0.30012
κ3 –7.75633

4 Extensions

If, as indicated previously, the equalities in (10) are relaxed, replacing them by inequalities
as in (5) and adding constraints (9), then the resulting problem becomes more realistic from
the engineering point of view, and can be solved using a similar approach. Then, the master
problem becomes

β∗

i ≤ β
(j)
i +

∑

∀m

∂fi(η,κ)

∂ηm

(

ηm − η(j)
m

)

+
∑

∀l

∂fi(η,κ)

∂κl

(

κl − κ
(j)
l

)

, (36)

hj(η,κ) ≤ 0; j = 1, 2, . . . ,m. (37)

The most general solution, if constraints (37) are linear (typical for variable bounds), is a
polyhedron, i.e., the sum of a polytope (set of vectors generated by linear convex combina-
tions of a set of vectors), a cone (set of vectors generated by non-negative linear combinations
of a set of vectors), and a linear space (set of vectors generated by linear combinations of a
set of vectors) (see Castillo et al. [31, 23]).

In some cases, for example when the number of design parameters exceeds the number
of constraints, the solution may be not unique, but the uniqueness can be enforced by
introducing the optimization of a related objective function (see Castillo et al. [32, 33, 34,
35, 36]). In this case the master problem becomes:

β = Minimize
η,κ

c(η,κ)

subject to

β∗

i ≤ β
(j)
i +

∑

∀m

∂fi(η,κ)

∂ηm

(

ηm − η(j)
m

)

+
∑

∀l

∂fi(η,κ)

∂κl

(

κl − κ
(j)
l

)

, (38)

hj(η,κ) ≤ 0; j = 1, 2, . . . ,m, (39)

where c(η,κ) is a cost, or similar, function.
Thus, the generalized inverse reliability problem is a special case of a more general

reliability-based optimization problem with multiple design parameters, constraints, and
a cost function (see Thoft-Christensen and Murotsu [37]), and arises when one is seeking
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Figure 2: An illustration of a bridge crane.

directly the values of some parameters related either to the limit state functions (η) or to
the statistical assumptions (κ) corresponding to specified reliability levels. This problem
arises in a large number of engineering applications. An illustrative example is shown in the
following section.

5 Bridge Crane Design Application

Modern industries require equipment for handling large, heavy, or bulky objects. To meet
this demand engineers specialize in overhead material handling equipments such as bridge
cranes, hoists, and monorails. In this section we apply the extension of the proposed method
introducing the optimization of a related objective function to an engineering example: the
design of a bridge crane.

Figure 2 depicts an under running overhead crane with a single girder. Its structural
elements must be manufactured in accordance with current mandatory requirements of the
National Safety and Health Act, OSHA Sections 1910.179 and 1910.309 as applicable. Addi-
tionally, all ACECO cranes are manufactured in accordance with the appropriate standard of
ANSI specifications, the National Electric Code, and the Crane Manufacturers Association
of America (CMAA) specifications.

Crane girders are designed using structural steel beams (reinforced as necessary) or fab-
ricated plate box sections. Bridge girders are designed for loadings, stresses, and stability in
accordance with current CMAA design specifications. We now apply the engineering design
method developed in Section 3 to the design of an overhead crane in Figure 2. In partic-
ular, the bridge girder dimensions that allow trolley travelling horizontally are calculated.
It consists of a box section fabricated from plate of structural steel, for the web, top and
bottom plates, so as to provide for maximum strength at minimum dead weight. Maximum
allowable vertical girder deflection is a function of span length.
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Figure 3: Illustrations of the bridge girder modes of failure.

5.1 Design Variables and Parameters

Consider the girder and the cross-section shown in Figure 2, where L is the span or distance
from centerline to centerline of runway rails; b and e are the flange width and thickness,
respectively; and tw and hw are the web thickness and height, respectively. As indicated in
Section 1, the set of variables involved in the problem can be partitioned into four subsets:

1. Statistical variables: x = {b, e, tw, hw, fy, E, ν, γy, L, P}, where fy is the value of the
elastic limit of structural steel, E is the Young modulus of the steel, ν is the Poisson
modulus, γy is the steel unit weight, L is the span length, and P is the maximum load
supported by the girder.

2. Design parameters: η = {µb, µe, µtw , µhw
, µfy

, µE, µν , µγy
, µL} are the mean values of

the corresponding statistical variables. Instead of using mean values, other representa-
tive values of the variables involved can be used (i. e., characteristic values). Note that
in this case all the design parameters are considered random, this is the most general
case.

3. Random model parameters: κ = {λP , δP , vfy
, vE, vν , vγy

, vL, vd}, where v refers to the
coefficient of variation of the corresponding variable, λP and δP are the Gumbel distri-
bution model parameters for the maximum load, and vd is the coefficient of variation
of the design variables corresponding to the cross-section dimensions.

4. Intermediate variables: ψ = {W, Ixx, Iyy, It, G, σ, τ,Mcr, δ,M, T}. These variables sim-
plify the statement of the problem.

Assume that the following four failure modes are considered (see Figure 3):
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1. Maximum allowed deflection. The maximum deflection constraint (see Figure 3(a)) is
defined as the ratio:

gd(x,η,ψ) =
δmax

δ
, (40)

where δ is the maximum deflection on the center of the girder and δmax is the maximum
deflection allowed by codes.

2. Damage limit state of the steel upper and lower flanges. The ratio of the actual strength
to actual stresses:

gu(x,η,ψ) =
fy√

σ2 + 3τ 2
, (41)

is the limit state constraint, where σ and τ are the normal and tangential stresses at
the center of the beam, respectively (see Figure 3(b)).

3. Damage limit state of the steel web. The bearing capacity limit state is the ratio of
the shear strength capacity to actual shear stress at the center of the beam (see Figure
3(b)):

gw(x,η,ψ) =
fy√
3τ

. (42)

4. Global Buckling. The global buckling limit state equation is the ratio of the maximum
moment applied at the center of the beam to the critical moment against buckling of
the cross section (see Figure 3(d)):

gb(x,η,ψ) =
M

Mcr

. (43)

The bridge girder is safe if and only if gd, gu, gw and gb ≥ 1.

5.2 Design Constraints

The following constraints are considered:

1. Geometrical and mechanical properties of the girder. The moments of inertia Ixx and
Iyy are obtained as

Ixx =
1

12

(

b(hw + 2e)3 − (b − tw)h3
w

)

, (44)

and

Iyy =
1

12

(

2eb3 + hwt3w
)

, (45)

whereas the torsional moment of inertia is obtained using

It =
1

3

(

2be3 + hwt3w
)

. (46)

The deflection at the center of the beam is calculated using:

δ =
PL3

48EIxx

+
5WL4

384EIxx

, (47)
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where
W = γs(2eb + twhw), (48)

is the girder bridge weight per unit length. The stresses at the center of the beam are
calculated as:

T = P/2, (49)

M = PL/4, (50)

where T and M are the shear force and moment, respectively. Thus,

σ =
M(hw + e)

2Ixx

, (51)

and

τ =
T

hwtw
. (52)

The critical moment for global buckling is

Mcr =
π

L

√

EGIyyIt (53)

with auxiliary parameter

G =
E

2(1 + ν)
.

2. Code and other constraints. The following constraints are fixed by the codes and other
requirements. These correspond to constraints (37):

0.008 ≤ µe ≤ 0.038 (m), (54)

0.008 ≤ µtw ≤ 0.038 (m), (55)

0.3 ≤ µb ≤ 1.0 (m), (56)

0.5 ≤ µhw
≤ 1.5 (m). (57)

Thus, for example, to support the trolley, the unit that travels on the bottom flange
of the bridge girder and carries the hoist, the minimum flange width (b) must be 0.30
meters.

The maximum deflection allowed is

δmax = L/888.

To avoid local buckling (see Figure 3(c)) the design must satisfy the following con-
straint:

µb

2µe

≤ 15

√

√

√

√

276000

µfy

, (58)

where µfy
is the mean steel strength in kN/m2.
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5.3 A Numerical Example

To perform a probabilistic design in the bridge girder example, the joint probability density
of all variables is required. The statistical distributions of the variables involved (x) are
taken from the Probabilistic Model Code [38, 39]:

1. The maximum supported load has a Gumbel (Maximum) distribution, G(P ; λP , δP ).

2. The variables fy, E and ν have log-normal distributions:

log fy ∼ N(µfy
, µfy

vfy
),

log E ∼ N(µE, µEvE),
log ν ∼ N(µν , µνvν),

(59)

where µfy
= 355,000 kN/m2, µE = 210,000,000 kN/m2, µν = 0.3, vE = 0.03 and

vν = 0.03. The coefficient of variation vfy
is unknown and has to be selected by the

proposed method.

3. The variables L, γy, b, e, tw and hw have the following normal distributions:

L ∼ N(µL, µLvL), γy ∼ N(µγy
, µγy

vγy
), b ∼ N(µb, µbvd),

e ∼ N(µe, µevd), tw ∼ N(µtw , µtwvd), hw ∼ N(µhw
, µhw

vd),
(60)

where
λP = 600 kN , δP = 70.2 kN , µL = 6 m, µγy

= 78.5 kN /m3.

The means of the design variables b, e, tw, hw and the variation coefficients vL and vd

are the values obtained from the inverse reliability problem.

In addition, the following constraints are used to bound the relevant variables and to
enforce reasonable values on the desired parameters:

0.01 ≤ vfy
≤ 0.2, (61)

0.01 ≤ vL ≤ 0.3, (62)

0.01 ≤ vd ≤ 0.3. (63)

These correspond to constraints (37).
The target reliability indices are:

β∗

d = 2.05, β∗

u = 3.719, β∗

w = 3.719, β∗

b = 3.29,

which correspond approximately to probabilities of failure of 0.02, 0.0001, 0.0001, and 0.0005,
respectively. Note that violations of limit states with more serious consequences are associ-
ated with higher reliability indices, but other reasonable values could have been chosen.

Using the Rosenblatt [14] transformation, the set of random variables is transformed into
a set of standard normal random variables Z1, Z2, · · · , Z10 by
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Φ(z1) = exp

{

− exp

[

−(P − λP )

δP

]}

, z2 =
log fy − log

(

µfy
/
√

1 + v2
fy

)

√

log (1 + v2
fy

)
,

z3 =
log E − log

(

µE/
√

1 + v2
E

)

√

log (1 + v2
E)

, z4 =
log ν − log

(

µν/
√

1 + v2
ν

)

√

log (1 + v2
ν)

,

z5 =
γy − µγy

µγy
vγy

, z6 =
L − µL

µLvL

,

z7 =
b − µb

µbvd

, z8 =
e − µe

µevd

,

z9 =
tw − µtw

µtwvd

, z10 =
hw − µhw

µhw
vd

,

(64)

where the coefficient of variation of e, b, tw, hw, is assumed to be equal to vd.
To extend the inverse reliability problem to reliability optimization, a cost function re-

lated to the unknown parameters has to be defined. In this case, we minimize the direct
cost of the bridge crane using a penalty factor to consider the cost of reducing variation
coefficients,

c(η,κ) = cyµγs
µL(2µeµb + µtwµhw

)
(

1 + exp(−30vfy
)/2 + exp(−30vL)/2 + exp(−30vd)/2

)

,

(65)
where cy = 0.24 ($/N), is the cost per unit weight of steel, µγs

µL(2µeµb + µtwµhw
) is the

weight of the bridge crane and the factor involving the variation coefficients vfy
, vL, and

vd considers the cost increase due to variability of the corresponding variables. Note that
increasing the random variability (coefficients of variation) implies reducing the execution or
control costs and vice versa. This cost function has been selected for illustration purposes,
but other solutions could have been chosen.

From the above presentation, the inverse reliability problem in this case can now be stated
as minimizing the cost function (65) with respect the parameters {µb, µe, µtw , µhw

, vfy
, vL, vd}

(the remaining parameters of η and κ are taken as fixed values using additional constraints)
in such a way that the corresponding reliability indices are greater or equal to the target ones
β∗, subject to equations (40)–(43) defining the limit state equations related to the different
failure modes, (44)–(58) imposing code and other requirements, and (61)–(63) leading to
reasonable values for the desired parameters.

The results of the proposed method are given in Table 15. It can be seen that convergence
is reached after 14 iterations but the values of the parameters do not change significantly
after iteration 6. The first iteration column shows the values of the design variables, and
the actual reliability coefficients (β-values) associated with the initial design values. Note
that the β’s do not hold. Then, the iterative process continues increasing the cost until
all constraints hold. The last column of the table shows the values of the design variables
together with the final β-values, where it can be seen that they are equal to the target
reliability level except for that corresponding to steel web, this implies that satisfaction of
the other failure modes in terms of safety ensures the bridge crane to be safe enough against
web damage.
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Table 15: Bridge Crane Design: Illustration of the Iterative Process.

j 1 2 3 4 5 6 14
cost 3243.1 3406.6 3370.6 3371.6 3371.6 3371.8 3371.8

µ
(j)
b 0.35000 0.52880 0.51749 0.51676 0.51552 0.51675 0.51626

µ(j)
e 0.02000 0.01999 0.01956 0.01954 0.01949 0.01954 0.01952

µ
(j)
tw 0.00800 0.00800 0.00800 0.00800 0.00800 0.00800 0.00800

µ
(j)
hw

1.00000 0.76898 0.77335 0.76830 0.76873 0.76866 0.76867

v
(ν)
fy

0.15000 0.16866 0.15387 0.14255 0.14282 0.14265 0.14269

v
(ν)
L 0.10000 0.11970 0.08493 0.08075 0.08288 0.08230 0.08241

v
(ν)
d 0.10000 0.08941 0.05502 0.06072 0.05790 0.05980 0.05905

β(ν)
u 3.46043 3.36588 3.68875 3.71432 3.71849 3.71877 3.71900

β(ν)
w 5.72148 4.89613 5.41711 5.46030 5.48699 5.47003 5.47701

β
(ν)
b 0.59192 2.72843 3.37080 3.28561 3.28895 3.28898 3.29013

β
(ν)
d 2.16990 1.66615 2.13351 2.04748 2.04963 2.04926 2.05014

The method also gives the sensitivities associated with the β-values, that are shown in
Table 16. It is useful to know how much the β-values change due to a small change in a
single data value (e.g., the means or the coefficients of variation). In this table the designer
can easily analyze how the quality of the material (reduced standard deviation of fy) or
precision in the applied loads (reduced standard deviation of P ) influences the safety of the
beam. Note that an increase in the dispersion (standard deviation or coefficient of variation)
leads to a decrease of the β indices.

6 Conclusions

The method presented in this paper takes full advantage of the optimization frameworks
and allows practitioner engineers to solve the inverse reliability problem with either single
or multiple design parameters, treated as either deterministic or random. In addition, sensi-
tivity analysis can be easily performed by transforming the input parameters into artificial
variables, which are constrained to take their associated constant values. The provided ex-
amples illustrate how the proposed procedure can be applied to a wide range of practical
engineering design problems. In some applications, particularly in multiple design variable
problems, the procedure provides a cost-saving alternative to applying and interpolating
results from the standard methods. Additional advantages of the proposed method include:

1. The method is simple and allows and easy connection with optimization frameworks.

2. The reliability analysis takes full advantage of the optimization packages, which allows
the solution of huge problems without the need of being an expert in optimization
techniques.
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Table 16: Bridge Crane Design: Sensitivities of the β-Values with Respect to the Parameters.

x ∂βu/∂x ∂βw/∂x ∂βb/∂x ∂βd/∂x
µb 4.185 0.000 12.566 6.431
µe 110.376 0.000 321.319 178.958
µtw 181.396 450.358 40.683 38.913
µhw

4.975 4.687 0.141 9.729
µfy

0.000 0.000 0.000 0.000
µE 0.000 0.000 0.000 0.000
µν 0.000 0.000 –0.066 0.000
µγy

0.000 0.000 0.000 0.000
µL –0.394 0.000 –1.099 –1.230
λP –0.003 –0.003 –0.004 –0.005
δP –0.022 –0.030 –0.015 –0.011
vfy

–7.290 –10.446 0.000 0.000
vE 0.002 0.000 –0.007 –0.012
vν 0.000 0.000 0.001 0.000
vγy

0.000 0.000 0.000 0.000
vL –1.538 0.000 –9.233 –7.686
vd –6.224 –9.799 –18.693 –10.578

3. The responsibility for iterative methods is given to the optimization software.

4. Constraints can be written in either implicit or explicit form.

5. Unlike level II methods (FORM), the proposed method does not need to invert the
Rosenblatt transformation and the failure region need not be written in terms of the
normalized transformed variables.

6. Sensitivity values with respect to the target reliability levels are given, without addi-
tional cost, by the values of the dual problem.

7. The extension to reliability-based optimization is easy.

8. It can be applied to different types of problems such as linear, non-linear, and mixed-
integer problems. The designer needs just to choose the adequate optimization algo-
rithm.

9. The method checks for the existence of no, unique, or multiple solutions.
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