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Abstract

Reliability based techniques has been an area of active research in structural
design during the last decade, and different methods have been developed.
The same has occurred with stochastic programming, which is a framework
for modeling optimization problems involving uncertainty. The discipline of
stochastic programming has grown and broadened to cover a wide range of
applications, such as agriculture, capacity planning, energy, finance, fisheries
management, production control, scheduling, transportation, water manage-
ment, etc., and because of this, techniques for solving stochastic programming
models are of great interest for the scientific community. This paper presents
a new approach for solving a certain type of stochastic programming problems
presenting the following characteristics: i) the joint probability distributions
of random variables are given, ii) these do not depend on the decisions made,
and iii) random variables only affect the objective function. The method
is based on mathematical programming decomposition procedures and first-
order reliability methods, and constitutes an efficient method for optimizing
quantiles in high-dimensional settings. The solution provided by the method
allows us to make informed decisions accounting for uncertainty.
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1. Introduction

The subject of structural reliability, which has been an intensive research
area over the last decade, offers a rational framework to quantify uncertainties
mathematically. It combines theories of probability, random variables and
random processes, and it has result in the development of different methods
to deal with uncertainty, such us, First-Order Reliability Methods (FORM).
On the other hand, stochastic programming is a framework for modeling
optimization problems that involve uncertainty. Since real world problems
almost invariably include uncertain parameters, the discipline of stochastic
programming has grown and broadened to cover a wide range of applica-
tions. Stochastic programming models take the advantage of the fact that
probability distributions governing the data are known or can be estimated,
which allows decision makers to maximize some function of the decision and
random variables.

This paper proposes a new method to solve certain class of stochastic
programming problems based on FORM and mathematical programming
decomposition techniques.

Between the different applied and studied stochastic programming mod-
els, in this paper we focus on a certain class of problems with the following
characteristics related to the random variables:

1. Their joint probability distribution is given or can be estimated para-
metrically.

2. Their distributions do not depend on the decisions variables.

3. The random variables only affect the objective function.

This model structure is suitable for managing profit risks in energy trad-
ing, where energy agents need appropriate methodologies to establish the
most profitable strategy for a specified risk level. In this particular case the
risk involved is due to the stochastic nature of energy prices. Additionally,
this problem structure can be exploited by investment companies, brokerage
funds, or any business participating in financial markets, and also to the
optimization of percentiles in contexts outside finance or markets.

The mathematical structure of the studied stochastic programming model
can be defined as follows:

Maximize
x

q (f(x, y)) , (1)
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subject to

h(x) = 0 (2)

g(x) ≤ 0, (3)

where x is the vector including the decision variables representing what we
may generally call portfolio, y is the stochastic variable vector including all
random variables involved, f(x,y) is the objective function, i.e., loss, cost,
profit or utility, and h(x) and g(x) are the constraints that must be satisfied,
i.e., maximum or minimum operational limits, market constraints, etc.

Note that due to the stochastic nature of y the objective function f(x,y)
is also a random variable whose probability distribution function depends
on the probability distribution functions of the random variables y, and the
values of the decision variables x. And since a random variable cannot be
maximized, the objective function is replaced by a quantile of the objective
function q (f(x,y)).

Hereafter, we use uppercase letters (Y ) to refer to random variables, and
lowercase letters (y) to refer to particular instances of these variables.

This paper provides a methodology to solve problem (1)-(3) using First-
Order Reliability Methods (FORM) and mathematical programming decom-
position techniques.

The solution is achieved by means of an iterative scheme, which involves
two procedures, namely, decision making and quantile evaluation:

1. Decision making: For given values of the random variables y, the
decision variables x∗ which maximizes the objective function are ob-
tained.

2. Quantile evaluation: For the decisions made in the previous step,
FORM is used to update the values of the random variables required
to achieve the target quantile. Note that FORM involves also solving
a mathematical programming problem.

This process is repeated until the quantile associated with the decision
variables coincides with the target quantile.

In the last decade, the advances in mathematical programming techniques
that allow the solution of large complicated problems have permitted re-
searchers to state and develop new methods for optimal risk-informed de-
cision making. Since measures of risk have a crucial role in optimization
under uncertainty several metrics and methods have been proposed in the
literature.
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The simplest method consists of solving problem (1)-(3) by replacing the
random variables with their expected values (ȳ), usually based on historical
observations. The optimal solution of this problem is a central value of the
objective function, which could also coincide with the expected value, i.e.
µF = f(x, ȳ) = E[f(x, Y )]. For example, this method is used in [1] within
the context of energy markets. The main drawback of this method is that
it does not take into account the volatility of any of the variables and may
be highly risky. Since the pioneering work of Markowitz [2], and in order to
account for volatility, several authors, such as, Conejo et al. [3], replace the
objective function (1) with:

Maximize
x

E[f(x,Y )]− δV [f(x,Y )] = µF − δσ2
F , (4)

where µF and σ2
F are the mean and the variance of the objective function

random variable f(x,y), and the parameter δ is a weighting constant con-
trolling risk positioning. However, the most popular measure of risk is the
Value-at-risk (VaR) [4], where the objective function (1) becomes:

Maximize
x

E[f(x, Y )]− α-VaR[f(x,Y )] = µF − α-VaR , (5)

however results reported in [5] and [6] show that it is difficult to work with
when the random variables are not “normally” distributed, and efficient al-
gorithms for optimization of VaR in high-dimensional settings are still not
available. An additional risk metric similar to VaR, which has superior prop-
erties in many respects, is the Conditinal Value-at-Risk (CVaR). CVaR was
first employed because the VaR does not provide an indication of the extent
of losses that might be suffered beyond the amount indicated by this mea-
sure, i.e. the volatility of the losses remains unknown. Using this risk metric,
the objective function (1) becomes:

Maximize
x

E[f(x,Y )]− α-CVaR[f(x,Y )] = µF − α-CVaR . (6)

This alternative measure has gained widespread specially since Rockafellar
and Uryasev [5, 7] proposed a new technique based on scenarios which cal-
culates VaR and optimizes CVaR simultaneously.

The aim of this paper is to introduce a new approach to solve a certain
class of stochastic programming problems defined by (1)-(3), which is in-
spired by structural engineering methods [see 8, 9, 10, 11, 12, 13, 14]. The
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method relies on first-order reliability methods and mathematical program-
ming decomposition techniques.

Note that the method proposed in this paper has the following advantages
with respect to existing ones:

1. It can be used with any number of random variables, filling the gap of
quantile optimization in high-dimensional settings.

2. The random variables need not be distributed in any particular manner.

However, the methodology is only suitable for solving stochastic pro-
gramming problems where the random variables are modeled using the joint
probability distribution function instead of scenarios or finite sampling.

The rest of the paper is organized as follows. Section 2 provides an
introduction to first-order reliability methods, and describes the relationships
between some of the existing risk metrics and the one proposed in the paper.
In Section 3 a detailed description of the method for solving the stochastic
programming problem is presented. In Section 4 results from a realistic case
study pertaining to the self-scheduling of a power producer are described,
analyzed, and compared with existing approaches. Finally, in Section 5 some
relevant conclusions are duly drawn.

2. First-Order Reliability Based Methods (FORM)

In this section, a general framework for characterizing the cumulative
distribution function of f(x,y) is introduced.

The proposed procedure to solve problem (1)-(3) involves two steps: i)
decision making, and ii) quantile evaluation for given values of the decision
variables. We advocate the use of first-order reliability methods for the sec-
ond step since they can be applied to any joint probability distribution func-
tion of the random variables (Y ), making it appropriate for high dimensional
settings.

For given values of the decision variables x, the objective function of
problem (1)-(3) involves several random variables (Y1, . . . , Yn), which makes
f(x,y) to be also a random variable. Assuming the stochastic character of
the objective function we could be interested on i) calculating the probability
of this objective function being lower than or equal to a given threshold qα

(i.e. its cumulative distribution function (CDF)), or conversely, ii) what is
the objective function value so that the probability of the random objective
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function of being lower than or equal to this particular threshold is equal to
a given value 1− α (i.e. the quantile qα).

The problem of getting the objective function CDF of a particular value
qα selected by the decision-maker can be achieved as follows. The random
variables involved belong to an n-dimensional space, which can be divided
into two regions with respect to the limit-state equation f(x,y) = qα, the
unacceptance and the acceptance regions. That is,

U ≡ {(y1, y2, . . . , yn)}|f(x, y1, y2, . . . , yn) > qα},
A ≡ {(y1, y2, . . . , yn)}|f(x, y1, y2, . . . , yn) ≤ qα}, (7)

where the unacceptance region U corresponds to realizations whose f -values
are greater than qα and the acceptance region A to f -values lower than or
equal to qα.

The CDF of the objective function can be calculated using the joint prob-
ability distribution function of all random variables involved, by means of the
following integral over the acceptance region A:

CDF(qα; x,κ) =

∫

f(x,y)−qα≤0

fY (y,κ)dy1dy2 . . . dyn, (8)

where κ is the parameter vector of the model defining the random variability
and dependence structure of the random variables involved (standard devia-
tions, variation coefficients, correlations, covariance matrices, parameters of
ARMA models, etc.).

Rather than using approximate (and numerical) methods to perform
the integration required in (8), the non-normal dependent distributions can
be transformed into equivalent normal distributions that can be integrated
straightforwardly. Using the appropriate transformations, (8) can be evalu-
ated by solving the following optimization problem:

β = Minimize
y

√
n∑

j=1

z2
j , (9)

subject to

f(x,y)− qα = 0 (10)

T (y,κ) = z, (11)
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where (10) is the strict acceptance condition, and (11) is the transformation
[15, 16] that converts y into a standard set of independent random normal
variables z.

The optimal objective function solution of (9) is called the reliability
index (β), which constitutes the risk metric proposed, whereas the optimal
vectors yML and zML are points of maximum likelihood in the initial and
transformed space, respectively, which are related by (11). Note that the
solution of problem (9)-(11) corresponds to the point, i.e. particular instances
of the random variables, inside the acceptance region whose value of the joint
probability distribution function is maximum, representing the most likely
values of the random variables that produce the outcome f(x,y) = qα.

The CDF of the objective function is related to the reliability index by
the relation

CDF(qα) = Φ(−β), (12)

where Φ(·) is the cumulative distribution function of the standard normal
random variables. This method provides the exact CDF if the limit-state
equation is linear in the standard normal random space, i.e. if the resulting
objective function distribution is normally distributed f(x,y) ∼ N(µF , σ2

F );
otherwise, it is an approximate method.

From expression (10) particularized for the optimal solution of problem
(9)-(11) it holds:

qα = f(x,yML), (13)

which implies that assuming certain values of the decision variables x there is
a unique correspondence between the cumulative distribution function of the
objective function for a given value qα and the point of maximum likelihood
yML. This relationship is exploited afterwards to solve problem (1)-(3).

In Figure 1, a 2-D graphical interpretation of the FORM method is shown.
In the standard normal random space z, the joint probability distribution
function contours are concentric circumferences at the origin such that the
further the point (z1, z2) is away from the origin, the lower the value of
the joint probability distribution function. The solution of problem (9)-(11)
provides the closest point to the origin inside the acceptance region. The
limit-state equation is then linearized at the design point zML.

A key step for the successful application of this technique is the trans-
formation (11). In [15, 16, 17, 18] and [13] several methods for transforming
arbitrary and dependent random variables into independent standard normal
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Figure 1: Joint probability distribution function contours, limit-state equation, and design
points in: a) the initial random space y, and b) the unit standard normal random space
z.

variables are presented. Note that the selection of the appropriate transfor-
mation is strongly dependent on the information available.

2.1. Relationship Among Risk Metrics

First-order reliability methods rely on the calculation of the reliability
index β as the corresponding risk metric, the relationships between some of
the most common risk metrics and this index are provided. Note that for
solving the stochastic programming problem (1)-(3) the quantile (qα) to be
maximized must be selected through the confidence level α, i.e. 1 − α =
CDF(qα). From (12) it yields:

1− α = Φ(−β) ⇒ β = −Φ−1(1− α), (14)
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Figure 2: Probability distribution function of the objective function random variable for
given values of the decision variables.

which represents the reliability index associated with the confidence level α.
Note that we consider the reliability index positive for α-values greater than
0.5.

Optimization methods under uncertainty using existing risk metrics op-
timize also a given quantile qα of the objective function distribution (see
Figure 2). This quantile corresponds to:

1. In the expected value analysis, qα1 corresponds to a central value
(mean or close to the mean) of the objective function µF (qα1 = µF ),
so that the optimal values of the decision variables (x∗) ensure the
greatest possible central value for the objective function distribution.

2. In the mean-variance analysis, qα2 corresponds to a value of the ob-
jective function equal to µF −δσ2

F , so that the optimal values of the de-
cision variables (x∗) ensure the greatest possible value of qα2 = µF−δσ2

F

for a given value of parameter δ.

3. For the Value-at-Risk analysis, qα3 corresponds to the value of the ob-
jective function equal to µF − (α-VaR), so that Prob(f(x, y) ≤ qα3) =
1 − α. In this case, the optimal values of the decision variables (x∗)
ensure the maximum possible value of qα3 = µF − (α-VaR) while hold-
ing the probability constraint. Note that the integral of the probability
distribution function from −∞ to qα3 (light gray shadow in Figure 2)
corresponds to the desired probability as a function of the confidence
level (1− α).

4. For the CVaR analysis, qα4 corresponds to the value of the objective
function equal to µF − (α-CVaR), i.e. the mean value of the random
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variable f(x,y) conditioned by f(x, y) ≤ µF − (α-VaR). The optimal
values of the decision variables (x∗) also ensure the greatest possible
value for qα4 = µF − (α-CVaR).

For the different risk metrics to be equivalents, the quantiles associated
with those risk metrics must coincide:

1. For the expected value analysis qα = qα1 = µF , using (14) results in a
confidence level of α = 0.5 and β = 0.

2. The equivalence between the mean-variance and the reliability index
formulations comes from the expression (qα = qα2) µF − δσ2

F = µF −
βσF , and δσF = β = −Φ−1 (1− α).

3. For the VaR method, the relationship is µF − α-VaR = µF − βσF

(qα = qα3), thus,

α-VaR = βσF = −Φ−1 (1− α) σF , (15)

which coincides with (14).

4. For the CVaR, the analysis is more involved. Considering that z =
(qα4 − µF )/σF and using Bayes theorem, qα4 for a given confidence
level α is:

qα4 = µF +
σF

1− α

∫ −β

−∞
zfZ(z)dz =

= µF − σF
1

1− α

exp (−β2/2)√
2π

,

(16)

which is valid for α ≥ 0.5. Thus,

α-CVaR =
1

1− α

exp (−β2/2)√
2π

σF . (17)

Note that (15) and (17) provide the relationships between α-VaR and
α-CVaR with the reliability index β.
At this point, the reliability index β can be defined as the number of
standard deviations by which the mean value of the objective function
µF exceeds qα4 .
By combining (14), (15), (17) and simplifying, the following relation-
ship is obtained:

α∗ = 1− Φ

(
−exp {−(−Φ−1 (1− α))2/2}

(1− α)
√

2π

)
; ∀α ≥ 0.5, (18)
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which provides the relationship between confidence levels α∗ and α for
the α∗-VaR and α-CVaR approaches to be equivalent.

Using the expressions derived above, it is possible to obtain the approx-
imate relationships between the different risk metrics to obtain a similar
statistical distribution of the objective function for given values of the deci-
sion variables x. These relations are exact if the resulting objective function
distribution is normally distributed.

3. Method for solving the stochastic programming problem

Problem (1)-(3) maximizes a given quantile qα for an α-value decided by
the decision maker. From (14) the desired reliability index is also known. It
is also known from (13) that for given values of the decision variables x there
is a unique point of maximum likelihood yML which provides the desired
quantile, i.e. qα = f(x,yML).

The goal of problem (1)-(3) is to select the values of the decision variables
x in order to maximize the corresponding quantile qα, which implies holding
the following conditions:

qα = Maximum
x

f(x,yML) , (19)

subject to

h(x) = 0 (20)

g(x) ≤ 0, (21)

whose optimal solution is x∗, and so that yML truly corresponds to qα, i.e.

β = −Φ−1(1− α) = Minimimum
y

√
n∑

j=1

z2
j , (22)

subject to

f(x∗, y) = qα (23)

T (y, κ) = z, (24)

whose optimal solution is the point of maximum likelihood yML used in (19).
Note that the optimal objective function qα and variables x∗ from problem
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Figure 3: One and bi-dimensional graphical interpretation of the FORM method using for
optimal risk management.

(19)-(21) are used in (23), and conversely, the optimal variables yML from
problem (22)-(24) are used in (19).

In Figure 3 (a), a 3-D graphical interpretation of the risk management
method using FORM is shown. Note that the objective function qα contour
in the independent standard normal random space is tangent to the circum-
ference centered at the origin with a radius equal to β = −Φ−1(1−α). Using
the linear approximation of the contour (limit-state equation) at the point of
maximum likelihood, the problem reduces to one dimension and the objec-
tive function is normally distributed (F − µF )/σF ∼ N(0, 12) (see Figure 3
(b)), i.e. F ∼ N(µF , σ2

F ) (see Figure 3 (c)).
Unfortunately, problem (1)-(3) cannot be solved directly because it in-

volves two nested but decoupled optimization formulations: decision making
per se, and quantile evaluation. The procedure presented in this paper solves
iteratively two different problems until the quantile associated with the de-
cision variables coincides with the target quantile.

To make the problem tractable we use the following lemma:

Lemma 3.1. The problem (22)-(24) at the optimum is equivalent to the fol-
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lowing optimization problem [see 19]:

qα = Minimum
y

f(x∗,y) , (25)

subject to
√√√√

n∑
j=1

z2
j = β = −Φ−1(1− α) (26)

T (y,κ) = z. (27)

Proof of this lemma is provided in Appendix Appendix A. Problem (25)-
(27) allows us for given values of the decision variables to update the point
of maximum likelihood which fulfills the confidence level criterion (14).

The proposed iterative scheme solves problem (1)-(3) based on decompo-
sition techniques [see 20, 14] and it is described step by step on the following
algorithm.

Algorithm 3.1. (Iterative method).

Input: Target confidence level α, objective function, constraints, the statis-
tical description of the involved random variables Y and the tolerance
of the process ε. These data are selected by the decision maker.

Step 1: Initialization. Initialize the iteration counter to ν = 1, and the
point of maximum likelihood to the mean values of the random variables
yML

(ν) = ȳ. We select this initial point since it corresponds to the quantile
associated with α = 0.5. Alternative selections are also valid.

Step 2: Solving the decision variable problem at iteration ν. Assuming
that the actual values of the point of maximum likelihood correspond
to the the desired quantile, obtain new values of the decision variables
for the actual iteration by solving problem (19)-(21). The result pro-
vides values of the decision variables, x(ν), which satisfy the feasibility
constraints (20)-(21).

Note that at the first iteration (ν = 1) this problem corresponds to the
expected value analysis.

Step 3: Convergence checking. If the iteration counter is equal to 1 (ν =
1) go to Step 4, otherwise, proceed to check convergence, i.e., if ||x(ν)−
x(ν−1)|| ≤ ε go to Step 5, else continue in Step 4.
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Step 4: Evaluating the new point of maximum likelihood. The actual
value of the decision variables x(ν) is the solution of the global problem
(19)-(24) if and only if yML

(ν) truly corresponds to the desired quantile
qα, which generally does not hold.

Thus, we update the point of maximum likelihood for the next itera-
tion yML

(ν+1) forcing it to hold the quantile constraint. This is achieved

solving problem (25)-(27) for the actual values of the decision variables
x(ν). The iteration counter must then be updated ν → ν + 1 before
proceeding to Step 2.

Step 5: Output. The solution for a given tolerance corresponds to x∗ =
x(ν), yML = yML

(ν) and q∗F = f(x∗,yML).

Extensive numerical simulations involving different problems show that
the process converges quickly to the optimal solution. Note that by using
decomposition techniques, both problems –optimal management (decision
making) and risk (quantile evaluation)– are treated separately.

The convergence characteristics of this iterative method are discussed in
Appendix Appendix B.

4. Case Study: Self-Scheduling Problem

We consider below the self-scheduling problem of a power producer. Elec-
tric energy can be traded in two markets, a pool and a futures market. The
pool consists of a day-ahead market while the futures market allows trading
electricity up to one year ahead. The futures market presents a lower average
price than the pool but involves reduced volatility. Thus, it allows hedging
against the financial risk inherent in pool price volatility [see 21].

A power producer needs to define its involvement in both the pool and
the futures markets so that its profit is maximized within a particular risk
level based on profit volatility. The producer decides how much power to sell
in the futures market at a fixed price spanning the time horizon, and for each
period of the time horizon it decides how much power to sell in the pool. The
considered profit-maximization problem can be formulated as follows:

Maximize
pP

1 , pP
2 , . . . , pP

T , pC
q

(
T∑

t=1

(
λtp

P
t − ct

)
+ λCpCNT

)
, (28)
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subject to

(pP
1 , pP

2 , . . . , pP
T , pC) ∈ Π, (29)

where q(·) represents a quantile of the random objective function, pP
t is power

sold in the pool during period t (optimization variable), pC is power sold in
the futures market (optimization variable), λt is the pool price in period t, λC

is the futures market price, ct is the production cost during period t, and NT is
the number of time periods considered. Constraint (29) represents operation
constraints. Further information on the definition of these functions can be
found in [3].

Data for the power producer are taken from [3]. The futures market price
is taken to be 36 $/MWh. Pool prices are random variables with mean λest

and the covariance matrix V λ taken from [3].
The problem is analyzed under different statistical assumptions: the case

that pool prices are assumed to be normally distributed, and the case these
are log-normally distributed and the costs are also random variables. Note
that all problems are solved using Package GAMS (http://www.gams.com)
on a Linux-based server with one processor clocking at 2.6 GHz and 32 GB
of RAM.

The aim of the producer is maximize the profit that has a probability of
being exceeded equal to the confidence level α. Thus, only parameter α has
to be selected in order to obtain an appropriate trade-off between profit and
risk.

4.1. Case 1: Gaussian distributed pool prices

We have chosen this set up for comparison purposes. Since pool prices are
assumed to be normally distributed, once power production in pool market
pP, power production in futures market pC and costs c are known, the profit
distribution function is normally distributed with the following parameters:

µP =
T∑

t=1

(
λest

t pP
t − ct

)
+ λCpCNT , and σ2

P = (pP)T V λp
P, (30)

which allows solving the different risk models using the quantile expressions
derived in subsection 2.1. Note that the proposed iterative method provides
exact results for this particular case since profit is normally distributed.

In order to compare the above procedures, the following models have been
solved:
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1. VaR and CVaR approaches using a confidence level α = 0.95 and
quantile expressions derived in subsection 2.1, which are exact. These
problems are mixed-integer nonlinear programming problems which are
solved using solver SBB [22].

2. VaR and CVaR approaches using a confidence level α = 0.95 and the
proposed iterative algorithm, which is also exact since the resulting
profit distribution is normal. For this case, the decision making prob-
lem (19)-(21) is also a mixed-integer nonlinear programming problems
which is solved using SBB, and the quantile updating problem (25)-
(27) is a nonlinear programming problem which is solved using MINOS
[23].

3. CVaR approach using the same confidence level α = 0.95 but based
on different number (10, 50, 100, 150, 200 and 300) of synthetically
generated scenarios from the price distribution. This problem is also a
mixed-integer nonlinear programming problem.

Table 1 provides the objective function optimal value (OFV), the mean
(µP ), the standard deviation (σP ), the variation coefficient of the profit distri-
bution (ρP ), the number of equations (neq), the number of continuos variables
(ncv), the number of discrete variables (ndv) of the corresponding model, and
the cpu time required to attain the optimal solution. Considering these re-
sults, the following observations are pertinent:

1. VaR using both methods provide the same solution within a similar
computational time (see first two rows in Table 1).

2. Analogously, both continuos CVaR approaches attain the same solu-
tion, which is more conservative than using VaR, yielding lower mean
and standard deviation values (third and fourth rows in Table 1).

3. In the results given by the CVaR approach using scenarios, the solu-
tion oscillates for different number of scenarios. Note that this result
is not surprising since CVaR solution is based only on the benefits
corresponding to the worst 5% scenarios, i.e. 1, 2, 5, 7, 10 and 15
scenarios, respectively, and analogously to the Monte Carlo simulation
a minimum number of sampled scenarios is necessary to estabilice the
solution.

4. Computational time for the scenario approach increases exponentially
due to the size of the problem to be solved, which makes the calculation
of this minimum threshold computationally very expensive.
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OFV µP σP ρP neq ncv ndv cpu time
[$] [$] [$] [s]

α-VAR 29471.29 30741.30 772.11 0.0251 289 221 96 2.11
α-VARit 29471.29 30741.21 772.06 0.0251 290 221 96 8.43
α-CVAR 29171.91 30541.50 663.97 0.0217 289 221 96 1.47
α-CVARit 29171.91 30541.35 663.90 0.0217 290 221 96 13.92
n = 10 30797.32 31964.82 820.77 0.0257 1821 1115 96 17.09
n = 50 29417.89 30876.77 877.86 0.0284 8621 5075 96 361.27
n = 100 29373.38 31040.94 908.71 0.0293 17121 10025 96 1487.79
n = 150 29583.63 31135.76 847.08 0.0272 25621 14975 96 3843.82
n = 200 29405.58 30939.21 773.91 0.0250 34121 19925 96 6633.87
n = 300 29459.89 31048.80 837.36 0.0270 61121 29825 96 19916.61

Table 1: Results of the case study using different risk models for normally distributed pool
prices.

5. Note also that for these particular scenarios the solution overestimates
the CVaR. However, in order to obtain statistically sound conclusions
the expected solution value for different scenarios should be calculated.
This is a cumbersome process which makes the proposed method more
appropriate for these particular case.

It is worth mentioning that results for the VaR and CVaR approaches with
gaussian distributed pool prices are obtained after six and ten iterations of
the proposed method.

4.2. Case 2: Log-normally distributed pool prices and logistic distributed pro-
duction costs

To show the applicability of the proposed method in high dimensional
settings using non-normal random variables, log-normally distributed pool
prices are considered. In addition, production costs ct are assumed to be
independent random variables following the logistic distribution. This hy-
pothesis attempts to account for the possible influence of costs uncertainty
in the self-scheduling problem and it has been selected for illustration pur-
posed, i.e. it is not based on data fits.

At this point, it is important to select the right transformation of the
random variables. In this case, since ln λ are normally distributed random
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variables, the orthogonal transformation is adequate [see 13]:

Zλ = A(ln λ− µln λ),

where A is the inverse of the Cholesky decomposition of the variance-covariance
matrix V ln λ, and µln λ is the mean values vector of the logarithm of the prices
whose components can be obtained as follows:

µln λi
= ln

µλi√
1 +

(
σλi

µλi

)2
.

The components of the covariance matrix V ln λ are [18]:

Vln λij
= σln λi

ρ′ijσln λj
, ρ′ij =

ln

(
1 +

ρijσλi
σλj

µλi
µλj

)

σln λi
σln λj

,

where σln λi
=

√
ln (1 + (σλi

/µλi
)2), ρij is the element (i, j) of the correlation

matrix in the original space and ρ′ij is the element (i, j) of the correlation
matrix in the logarithmic space.

For the costs, the required transformation is [15]:

Φ(zct) = FC(ct) =
1

1 + exp
(−π(ct − c̄)/(

√
3c̄δ)

) ; ∀t, (31)

where zct is the associated transformed variable, FC is the cumulative distri-
bution function of the costs, c̄ is the mean cost which is considered equal for
every time period, and δ is the coefficient of variation which is taken equal
to 0.05 (5%).

Note that in Case 1 both VaR and CVaR models could be solved either by
using the quantile expressions derived in Section 2.1 or the iterative method
provided in Section 3. However, for this particular case, only the following
models can be solved:

1. VaR and CVaR approaches using a confidence level α = 0.95 and the
proposed iterative algorithm.

2. CVaR approach using the same confidence level α = 0.95 but based
on different number (10, 50, 100, 150, 200 and 300) of synthetically
generated scenarios from the price and costs distributions.
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OFV µP σP ρP neq ncv ndv cpu time
[$] [$] [$] [s]

α-VARit 28561.03 30902.40 1423.45 0.04606 290 221 96 10.63
α-CVARit 27976.46 30838.05 1387.30 0.0450 290 221 96 13.21
n = 10 29639.55 31323.91 1483.45 0.0474 1821 1115 96 20.07
n = 50 28055.41 31091.36 1681.44 0.0541 8621 5075 96 467.92
n = 100 28182.63 31089.55 1452.33 0.0467 17121 10025 96 2050.89
n = 150 28340.59 31123.89 1427.951 0.0459 25621 14975 96 4221.47
n = 200 27936.49 30909.86 1520.84 0.0492 34121 19925 96 7882.51
n = 300 28079.63 31124.15 1465.23 0.0471 51121 29825 96 29491.02

Table 2: Results of the case study using different risk models for lognormally distributed
pool prices and logistic distributed costs.

Table 2 provides analogous results as those in Table 1. Considering these
results, the following observations are pertinent:

1. The proposed method solves both VaR and CVaR approaches within a
reasonable amount of cpu time.

2. CVaR solution is also more conservative than the one using VaR, yield-
ing lower mean and standard deviation values.

3. Results given by the CVaR approach using scenarios oscillate for differ-
ent number of scenarios and computational time increases exponentially
with the number of scenarios.

4. Both methods provide similar solutions for large number of scenarios,
but the latter is computationally more involved and it can not to be
used to maximize VaR.

The results for the VaR and CVaR approaches with log-normally dis-
tributed pool prices and logistic distributed costs are obtained after seven
and nine iterations of the proposed algorithm.

5. Conclusions

Based on first-order reliability methods and decomposition techniques,
this paper proposes an iterative method for solving a certain type of stochas-
tic programming problems, which constitute an essential part of many differ-
ent decision-making processes. It can also be used for optimizing quantiles
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in any context outside finance. The method is specially suitable for problems
presenting the following characteristics:

1. The joint probability distribution of the random variables is given or
can be estimated parametrically.

2. Their distribution do not depend on the decision variables.

3. The random variables only affect the objective function.

Comprehensive simulations carried out for different case studies show the
effectiveness of the proposed methodology in high-dimensional settings deal-
ing with non-normal random variables. It constitutes an effective alternative
to scenario based methods, which face problems such as i) constructing ap-
propriate scenarios from the probability distributions to approximate uncer-
tainty, and ii) size, which can lead to problem intractability.

Additional advantages of the proposed method are:

1. Relationships between the reliability index and alternative risk metrics
are given.

2. The decision variable and quantile evaluation problems are decoupled,
allowing a richer interpretation of the solution.

3. The decomposition procedure presents good convergence properties and
computational behavior, making it suitable to solve large scale prob-
lems.

The utilization of first-order reliability methods and decomposition tech-
niques brings new possibilities for solving different stochastic programming
problems, such as those including random variables affecting constraints.
This constitutes a subject for further research.
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Appendix A. Proof of Lemma 3.1

The first-order Karush-Kuhn-Tucker (KKT) optimality conditions for the
nonlinear programming problem (NLPP) (22)-(24) at the optimal solution
(yML,zML) are:

∇



√√√√
n∑

j=1

zML2

j


 + λy∇

(
f(x∗,yML)− qF

)

+
n∑

j=1

µyj
∇ (

Tj(y
ML,κ)− zML

j

)
= 0 (A.1)

f(x∗, yML) = qF (A.2)

Tj(y
ML,κ) = zML

j ; j = 1, . . . , n,(A.3)

where λy and µy are the dual variables associated with constraints (23)-(24),
respectively. If i) λy 6= 0, ii) no redundant constraints exist, and iii) an
optimal solution exists, then we can rewrite (A.1)-(A.3) as:

1

λy

∇



√√√√
n∑

j=1

zML2

j − β∗


 +∇ (

f(x∗, yML)− qF

)
+

+
n∑

j=1

µyj

λy

∇ (
Tj(y

ML, κ)− zML
j

)
= 0 (A.4)

√√√√
n∑

j=1

zML2

j = β∗ (A.5)

Tj(y
ML,κ) = zML

j ; j = 1, . . . , n(A.6)

which are the first-order KKT optimality conditions for the NLPP (25)-(27)
at the optimal solution.

Appendix B. Iterative FORM Convergence Analysis

Considering that i) problem (19)-(24) is feasible, ii) the functions involved
are twice continuously differentiable, and iii) the optimal solution is (x∗,
yML, zML, λ∗x, λ∗yz, µ∗

yz), the first-order KKT optimality conditions for the
decomposed problem (19)-(21) at the optimal solution are:
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∇xLx(x
∗,λ∗x) = ∇xf(x∗, yML) + λ∗

T

x ∇xh
∗(x∗) = 0 (B.1)

h∗(x∗) = 0, (B.2)

where h∗(x∗) includes the equality constraints (20) and the active inequality
constraints (21). The KKT optimality conditions for problem (22)-(24) are:

∇yzLyz(y
ML, zML, λ∗yz, µ

∗
yz) = ∇yz

(
f(x∗,yML)− qF

)

+λ∗yz∇yz




√√√√
n∑

j=1

zML2

j


 + µ∗T

yz∇yz

(
T (yML,κ)− zML

j

)
= 0 (B.3)

√√√√
n∑

j=1

zML2

j = β∗ (B.4)

T (yML,κ) = zML. (B.5)

In the proposed iterative FORM, the Newton-Raphson method is used to
solve these two system of equations, establishing that the first-order condi-
tions make the gradient equal to zero. Starting from initial values x(k), y(k),

z(k), λ(k)
x , λ

(k)
yz and µ

(k)
yz sufficiently close to the optimal solution, the search

directions are obtained solving the following systems of equations:
[
∇xxL(k)

x ∇xh
∗T

(k)

∇xh
∗
(k) 0

][
∆x(k)

∆λ(k)
x

]
= −

[
∇xL(k)

x

h∗(x(k),y(k))

]
(B.6)

[KKTa] [∆a] = − [∇La]

and



∇yzyzL(k)

yz ∇yzβ(k) ∇yzT
T
(k)

∇yzβ(k) 0 0
∇yzT (k) 0 0







∆y(k)

∆z(k)

∆λ
(k)
yz

∆µ
(k)
yz


 = −




∇yzL(k)
yz

β =

√
n∑

j=1

zML2

j − β∗

T (y(k), κ)− z(k)


(B.7)

[KKTb] [∆b] = − [∇Lb]

which at every iteration are solved in a distributed fashion. Note that, here-
after, letters a and b refer to problems (B.1)-(B.2) and (B.3)-(B.5), respec-
tively. Thus, the descent directions for problems a and b, (∆a, ∆b), in the
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proposed decomposition algorithm can be obtained by solving the decompos-
able and approximate linear system of equations

KKT ≡
(

KKTa 0
0 KKTb

)(
∆a

∆b

)
= −

( ∇La

∇Lb

)
. (B.8)

However, for solving equations (B.1)-(B.5) using the Newton-Raphson
method, the search directions for sub-problems a and b, (∆a, ∆b), are com-
puted by solving in each iteration a system of linear equations of the form

KKT′ ≡
(

KKT′
a KKT′

ba

KKT′
ab KKT′

b

)(
∆a

∆b

)
= −

( ∇aL′
∇bL′

)
, (B.9)

where KKT′
a, KKT′

b, KKT′
ab and KKT′

ba are the Newton matrices [see 24]
for problems a and b, defined as

KKT′
a =

[
∇xx(L(k)

x + L(k)
yz ) ∇xh

∗T

(k)

∇xh
∗
(k) 0

]
,

KKT′
b =



∇yzyz(L(k)

x + L(k)
yz ) ∇yzβ(k) ∇yzT

T
(k)

∇yzβ(k) 0 0
∇yzT (k) 0 0


 ,

KKT′
ab =

[
∇xyz(L(k)

x + L(k)
yz ) 0 0

0 0 0

]
, KKT′

ba = KKT′T
ab.

From these definitions, if at the optimal solution of problem (19)-(24) it
holds that

ρ(I −KKT−1KKT′) < 1, (B.10)

then the proposed decomposition algorithm converges locally to the solution
at a linear rate. Here ρ(A) denotes the spectral radius of matrix A, while
matrix I is the identity matrix. Condition (B.10) is related to the many
results reported in the technical literature for the distributed solution of
linear systems of equations, see for example [25] and [26]. Finally, note that
by using the Newton method, the local rate of convergence for a centralized
approach can be quadratic.
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