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Abstract

Minimizing the expected total cost of a structure, including maintenance and construction, is
a difficult problem because of the presence in the objective function of the yearly failure rates,
which have to be calculated by an optimization problem per each failure mode (FORM). In
this paper a new method for the design of structures that minimizes the total expected costs
of the structure during its lifetime based on Benders’ decomposition is presented. In addition,
some tools for sensitivity analysis are introduced, which make it possible to determine how the
cost and yearly failure rates of the optimal solution are affected by small changes in the input
data values. The proposed method is illustrated by its application to the design of a composite
breakwater under breaking and non breaking wave conditions.

Key Words: Decomposition techniques, Benders decomposition, Cost optimization, Reliability
based design, Failure probability, Modes of failure.

1 Introduction

Engineering design of structural elements is a complicated and highly iterative process that usually
requires an extensive experience. Iterations consist of a trial-and-error selection of the design
variables or parameters, together with a check of the safety and functionality constraints, until
reasonable structures, in terms of cost and safety, are obtained. Since maintenance and repair take
place during the service lifetime of the structure, the associated costs must be added to construction
costs. The objective of the design is to verify that the structure satisfies the project requirements
during its lifetime in terms of acceptable failure rates and cost (see Losada [1] and ROM [2]).

Since repair depends on the modes of failure and their frequencies, these must be defined. Each
mode of failure m is defined by its corresponding limit state equation as, for example:

gm(x1, x2, . . . , xn) = hsm(x1, x2, . . . , xn)− hfm(x1, x2, . . . , xn); m ∈ M, (1)

where (x1, x2, . . . , xn) refer to the values of the variables involved, gm(x1, x2, . . . , xn) is the safety
margin and hsm(x1, x2, . . . , xn) and hfm(x1, x2, . . . , xn) are two opposing magnitudes (such as sta-
bilizing and mobilizing forces, strengths and stresses, etc.) that tend to avoid and produce the
associated mode of failure, respectively, and M is the set of all failure modes.
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The failure occurs when the critical variables satisfy gm ≤ 0. With the consideration of all
extreme events (see Galambos [3] and Castillo [4]) that may occur in the reference period, the
different failure rates for all failure modes can be estimated.

Over the last few years design methods have been improved by applying optimization techniques.
The main advantage is that these techniques lead to optimal design and automation. Designer’s
concerns are only the constraints to be imposed on the problem and the objective function.

Some authors consider the construction cost (Castillo et al. [5, 6, 7, 8, 9]) or the total cost
(construction, maintenance and repairs) as the design criteria (Van Dantzig [10], Burchart et al.
(1995), Voortman et al. [11], Enevoldsen [12], and Enevoldsen and Sorensen [13, 14]). The main
problem of including repair and maintenance cost is that in such a case the cost function includes
yearly failure rates, the calculation of which implies solving as many optimization problems as
failure modes. Thus, use of optimization programs is not straightforward.

In addition to requiring optimal solutions to problems, some interest is shown by people in
knowing how sensitive are the solutions to data values. A sensitivity analysis provides excellent
information on the extent to which a small change in the parameters or assumptions (data) modifies
the resulting design (geometric dimensions, costs, reliabilities, etc.).

The aims of this paper are: (a) to present a decomposition design method that permits solving
the total cost minimization problem, and (b) to provide tools to perform a sensitivity analysis.

The paper is structured as follows. In Section 2 the proposed method for optimal design based on
Benders’ decomposition is presented. In Section 3 a technique for performing a sensitivity analysis
is explained. Section 4 illustrates the proposed method by an example dealing with the design of a
composite breakwater. Section 5 is devoted to the discussion of the statistical assumptions. Section
6 presents a numerical example. Finally, Section 7 gives some conclusions.

2 Proposed Method for Optimal Design

In the design and reliability analysis of a structure, there are some random variables (X1, . . . , Xn)
involved. They include geometric variables, material properties, loads, etc. In this paper, with-
out loss of generality, we make no distinction between random and deterministic variables. So,
deterministic variables are only particular cases of them.

It is important to distinguish between design values of the random variables Xi, and actual
values xi (i = 1, 2, · · · , n). The design values are those values used by the engineer at the design
stage for the geometric variables (dimensions), the material properties (strengths, stiffness, etc.),
that do not necessarily correspond with those in the real work. Thus, in this paper the design values
are assumed to be the means or the characteristic values (extreme percentiles) of the corresponding
random variables, and are denoted x̄i (mean) and x̃i (characteristic), respectively. Some of these
design values are chosen by the engineer or given by the design codes, and some are selected by
the optimization procedure to be presented. In this paper, the set of variables (X1, . . . , Xn) will be
partitioned in four sets:

1. Optimized design variables d: Their mean values are to be chosen by the optimization
procedure. Normally, they describe the dimensions of the work being designed, such as width,
thickness, height, cross sections, etc., but can include material properties, etc.

2. Non-optimized design variables η: Their mean or characteristic values are fixed by the
engineer or the code guidelines as input data to the optimization program. Some examples are
costs, material properties (unit weights, strength, Young modulus, etc.), and other geometric
dimensions of the work being designed (bridge length, platform width, etc.) that are fixed.
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3. Random model parameters κ: Set of parameters used in the probabilistic design, defining
the random spatial and temporal variability and dependence structure of the random variables
involved (standard deviations, variation coefficients, correlations, covariance matrices, etc.).

4. Dependent or non-basic variables ψ: Variables which can be written in terms of the basic
variables d and η to facilitate the calculations and the statement of the problem constraints.

The corresponding means of d will be denoted d̄, and the mean or the characteristic values of
η is denoted η̃.

Given a set of values of the optimized design variables d̄, the probability of failure pm
st under

mode m during a random extreme event can be calculated using the joint probability density
function f(x) = fX1,X2,...,Xn(x1, x2, . . . , xn; θ) of all variables involved, by means of the integral:

pm
st(θ) =

∫

gm(x1,x2,...,xn)≤0

fX1,X2,...,Xn(x1, x2, . . . , xn; θ)dx1dx2 . . . dxn, (2)

where θ is a parametric vector which contains the parameters of the joint pdf of the variables
(X1, X2, . . . , Xn). In this paper we assume that the parametric vector θ = (d̄, η̃,κ) contains the
means d̄, the means or the characteristic values η̃, and the vector of random model parameters κ.

2.1 Model assumptions

Our model is based on the following assumptions:

1. The reference period for evaluating the probability of failure and, therefore, the repair costs
will be taken as one year.

2. Failures occur only during extreme events, that are assumed to be stochastic processes, i.e.,
to occur at random times with yearly rate rst (mean number of extreme events per year).
Note that no assumption is needed about the dependence or independence of extreme events
or the distribution of occurrence times, because only the yearly failure rate is sought.

3. The probability of failure in mode m in a random extreme event is pm
st(d̄, η̃, κ). Thus, the

mean number of failures per year (failure rate) is:

rm(d̄, η̃,κ) = rstp
m
st(d̄, η̃,κ); m ∈ M. (3)

4. One extreme event can cause at most only one failure of each type (mode) because repair is
not possible during extreme events. This implies that failure accumulation is not included.

5. The proposed approach is based on guaranteeing bounded yearly failure rates of all failure
modes. However, for the global failure rate, one can consider the well known lower and upper

bounds P lower
f = max

m
Pfm and P upper

f = 1−
M∏

m=1
(1− Pfm), respectively.

2.2 Total expected cost function

In this paper the criteria for design are based on minimizing the expectation of the total cost. The
objective function consists of two components that describe the construction costs as a function of
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design variables, and the expected costs of failure (see Sorensen et al. [15], Voortman et al. [11]).
Thus, expectation of the total cost, including construction and repairs, measured at initiation is:

E[cost] = C0(d̄, η̃, ψ) +
D∑

n=1

(
M∑

m=1

Cm0(d̄, η̃, ψ)rm(d̄, η̃, κ)αn
m

)
, (4)

where E[cost] is the expected cost during the service lifetime D, d̄ and η̃ are the design variables
at their means and characteristic values, respectively, C0(d̄, η̃, ψ) is the initial construction cost,
which could include design costs as well, Cm0(d̄, η̃, ψ) is the mean repairing cost associated with
failure mode m, both evaluated at time t = 0, rm(d̄, η̃, κ) is the mean number of failures per year
related to mode m and αm is the factor for interest and inflation correction of Cm0 with respect to
t = 0, that is equal to

αm =
(

1 + f

1 + r

)
, (5)

where f is the inflation rate and r is the interest rate.

2.3 Evaluation of the failure mode probabilities in an extreme event

In this paper we evaluate the failure mode probabilities in a random extreme event using first order
reliability methods (FORM). More precisely, pm

st(d̄, η̃,κ) for m = 1, 2, . . . , M is obtained using:

pm
st(d̄, η̃, κ) = Maximum

d, η
Φ(−βm) = Φ(−

√
zT z) , (6)

i.e., maximizing with respect to d, η, subject to

z = G(d, η, ψ, θ) (7)
q(d, η) = ψ (8)

gm(d,η, ψ) = 0, (9)

where βm is the reliability index for failure mode m, Φ(·) is the cumulative distribution function
of the standard normal random variable, G(d, η, ψ,θ) is the transformation leading to standard
normal z variables used in FORM, q(d,η) = ψ are the equations for the intermediate variables ψ,
and gm(d,η, ψ) = 0 is the boundary of the failure region for failure mode m.

Note that minimizing βm is equivalent to a maximum likelihood estimation of a critical point in
the failure surface in the standard normal space or to maximizing the probability of failure Φ(−β),
because the Φ() function (cdf of the standard normal distribution) is increasing. In this paper the
last alternative has been used because the sensitivities of the probabilities of failure with respect
to the data are sought after, and this approach leads to direct formulas.

For a complete description of “First Order Reliability Methods” (FORM) and some examples
see Madsen, Krenk and Lind [16], Ditlevsen and Madsen [17], or Melchers [18].

Once the probabilities for all failure modes have been calculated it is possible to obtain the
repair costs Cm0 as a function of the failure rate (see (3)).

Then, we are ready to state the design problem as an optimization problem as follows.
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Figure 1: Graphical illustration of how the expected cost function is approximated using Benders
cuts.

2.4 Design as an optimization problem

In this paper the design problem is equivalent to solving the following optimization problem:

Minimize
d̄

E[cost] = C0(d̄, η̃, ψ) +
D∑

n=1

(
M∑

m=1

Cm0(d̄, η̃,ψ)rm(d̄, η̃, κ)αn
m

)
, (10)

subject to

q(d̄, η̃) = ψ (11)
h(d̄, η̃,ψ) ≤ 0, (12)

where h(d̄, η̃,ψ) ≤ 0 is the set of geometric or design constraints, rm(d̄, η̃, κ) is given by solving
the problem (6)-(9), which is a FORM solution for pm

st , and using (3).

2.5 Solving the cost optimization problem using Benders’ decomposition

This type of problem can be solved using decomposition techniques (see Benders [19] and Geoffrion
[20]) that were applied to reliability optimization problems by Mı́nguez et al. [21]. The price
that has to be paid for such a simplification is iteration. That is, instead of solving the original
problem at once, two simpler problems are solved iteratively: a simple problem called master
problem (approximation of the original one) and the subproblem or subproblems (evaluation of the
probability of failure using FORM), so that subproblems are being progressively taken into account
into the master problem. The expected cost function is approximated by an increasing number of
hyperplanes (see Figure 1). Note that for fixed values of the design variables d̄ the function to
be optimized can be evaluated solving the optimization problems (6)-(9) and using (3), so in the
following these variables are considered as complicating (design) variables.

The following iterative scheme can be applied to solve the problem (10)-(12).

• Step 0: Initialization. Initialize the iteration counter ν = 1, α to its initial lower bound
αlo and select some initial values for the design variables d̄ = d̄1.
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• Step 1: Subproblem solution. Solve the subproblems, i.e., the problems (6)-(9) modified
to

rm(d̄ν , η̃, κ) = Maximum
d,η, d̄

rstΦ(−βm) = rstΦ(−
√

zT z) (13)

subject to

z = G(d, η,ψ, d̄, η̃, κ) (14)
gm(d, η,ψ) = 0, (15)

q(d, η) = ψ (16)
d̄ = d̄ν : µmν , (17)

where the notation in (17) is used to refer to the dual variables µmν = ∂rm(d̄ν , η̃, κ)/∂d̄ν

associated with the constraint d̄ = d̄ν . Note that dual variables are the sensitivities of the
objective function (13) with respect to d̄ν .

Next, evaluate the cost function α(d̄ν):

α(d̄ν) = C0(d̄ν , η̃, ψ) +
D∑

n=1

(
M∑

m=1

Cm0(d̄ν , η̃, ψ)rm(d̄ν , η̃, κ)αn
m

)
, (18)

where α(d̄ν) is the total cost for fixed values of the complicating (optimizing design) variables
(see the corresponding point of the total cost function in Figure 1).

Finally, for approximating the objective function (total expected cost) in (10), we need to
obtain the derivatives of the objective cost function using the formula:

λν =
∂C0(d̄ν , η̃, ψ)

∂d̄ν
+

D∑

n=1

(
M∑

m=1

[
∂Cm0(d̄ν , η̃, ψ)

∂d̄ν
rm(d̄ν , η̃, κ) + Cm0(d̄ν , η̃, ψ)µmν

]
αn

m

)
,

(19)
where µmν = ∂rm(d̄ν , η̃, κ)/∂d̄ν are the derivatives of the yearly failure rates rm(d̄ν , η̃, κ)
obtained as the dual variables of the problem (13)-(17).

• Step 2: Convergence checking. As function (18) is more constrained than the objective
function of the original problem (10)-(3) in the sense that the optimization variables are fixed
for the actual iteration, an upper bound of the objective function optimal value is computed
as z

(ν)
up = α(d̄ν). A lower bound of the objective function optimal value is z

(ν)
down = α. If∣∣∣∣∣

z
(ν)
up − z

(ν)
down

z
(ν)
up

∣∣∣∣∣ is lower than the tolerance, the procedure stops, otherwise, it goes to Step 3.

• Step 3: Master problem solution for iteration ν. The master problem is solved:

Minimize
d̄

α (20)

subject to

α ≥ α(d̄k) + λT
k (d̄− d̄k); k = 1, 2, · · · , ν − 1 (21)

q(d̄, η̃) = ψ (22)
h(d̄, η̃,ψ) ≤ 0 (23)
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α ≥ αlo, (24)

obtaining d̄ν (see the intersection of the hyperplanes in Figure 1). Note that the objective
function of the original problem in (10) is replaced by the linear approximations in (21) (see
the Benders cuts in Figure 1). As problem (20)-(24) is a relaxation of the original problem
(10)-(3) the optimal solution of this problem (α) is a lower bound of the objective function
optimal value.

Let ν = ν + 1, and go to Step 1 and the process is repeated until convergence.

3 Sensitivity Analysis

The problem of sensitivity analysis in reliability based optimization has been discussed by several
authors, see, for example, Enevoldsen [22]. In this section we show how the duality methods can
be applied to sensitivity analysis in a straightforward manner. We emphasize here that the method
to be presented in this section is of general validity.

When the parameters with respect to which the sensitivities are looked for appear on the
right hand side of one of the constraints in an optimization problem, then, the corresponding
sensitivities are simply the values of the associated dual variables, that practically all software
optimization packages give by free because once the optimal solution has been found, they can be
easily calculated. The problem arises when the data or parameters with respect to which we want
to calculate the sensitivities do not appear on the right hand side of a constraint.

One way of solving this problem consists of generating auxiliary (redundant) constraints that
satisfy such a condition. One way of generating these constraints consists of transforming all the
parameters or data with respect to which the sensitivities are sought for, into auxiliary variables
and adding the constraints that set the variables to their actual values. To illustrate, we apply this
technique to the optimization problems (13)-(17) and (20)-(24) at the optimal solution d̄

∗.
The problem (13)-(17) is obviously equivalent to the problem

rm(d̄∗, η̃, κ) = Maximum
d, η,d∗,η∗, κ∗

rstΦ(−βm) = rstΦ(−
√

zT z) (25)

subject to

z = G(d, η, ψ, η∗,κ∗, d∗) (26)
q(d, η) = ψ (27)

gm(d, η,ψ) = 0 (28)
d∗ = d̄

∗ : µm (29)
η∗ = η̃ : δm (30)
κ∗ = κ : ξm, (31)

where d∗, η∗ and κ∗ are the auxiliary variables.
The basic idea is simple. Assume that we wish to know the sensitivity of the objective function

to changes in some data values d̄
∗, η̃ and κ. Converting the data into auxiliary variables, d∗,

η∗ and κ∗, and setting them, by means of constraints (29)-(31), to their actual values d̄
∗, η̃ and

κ, we obtain a problem that is equivalent to the initial optimization problem but has constraints
such that the values of the dual variables associated with them give the desired sensitivities. More
precisely, the values of the dual variables µm, δm and ξm associated with constraints (29)-(31) give
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Figure 2: Composite breakwater showing the geometric design variables.

the sensitivities of the yearly failure rates to d̄
∗, η̃ and κ, respectively. These sensitivities allow us

determining for example how the reliability of an engineering design changes when its design values
and the statistical parameters of the random variables involved are modified.

Similarly, the problem (20)-(24) is obviously equivalent to the problem

Minimize
d̄,η∗, κ∗

α (32)

subject to

α ≥ α(d̄j) + λT
j (d̄− d̄j) + φT (η∗ − η̃) + εT (κ∗ − κ); j ∈ J (33)

q(d̄,η∗) = ψ (34)
h(d̄, η∗, ψ) ≤ 0 (35)

α ≥ αlo (36)
η∗ = η̃ (37)
κ∗ = κ, (38)

where now η∗ and κ∗ are the auxiliary variables and J is the set of active Benders cuts at the
optimal solution.

Note that the variables φ and ε are the partial derivatives of the total expected cost function
with respect η̃ and κ, respectively. The values of the dual variables associated with constraints (37)
and (38) give the sensitivities of the total expected cost to η̃ and κ, respectively. These sensitivities
allow us determining how the expected cost of a breakwater changes when the geometric dimensions
and the statistical parameters of the random variables are modified.

4 Optimized Design of a Composite Breakwater

The probability based design of composite breakwaters has been studied by Christiani et al. [23],
Burcharth and Sorensen [24], Sorensen and Burcharth [25], as well as in the European project
PROVERBS (see Oumeraci et al. [26]) and the PIANC Working Group 28 on Breakwaters with
Vertical and Inclined Concrete Walls [27].
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In this section the proposed procedure is applied to the design of a composite breakwater. The
main section of the breakwater is shown in Figure 2 where the main parameters are shown. Notice
that these parameters define geometrically the different elements of the cross section and must
be defined in the construction drawings. Our goal is an optimal design based on minimizing the
construction and repair costs.

4.1 Model assumptions

The breakwater example to be discussed below is simply an illustrative example, and it must be
considered as such because the analysis cannot be considered exhaustive, since several failure modes
were not implemented. Our breakwater model is based on the following assumptions:

1. The extreme events will be storms.

2. Long-term statistics for storms are characterized by a set of three variables (Hsmax ,Hmax, and
Tzmax). The maximum significant wave height Hsmax of all its sea states (Hs is a parameter
of a sea state defined as the mean of the one third highest wave heights in the sea state)
is used to characterize the severity of the storm. Hmax is its maximum wave height (the
peak) within the sea state associated with Hsmax , and Tzmax is the wave period occurring with
Hmax. It is assumed that they are dependent random variables whose probability distribution
and dependence structure must be derived from real data. Once a storm has occurred, its
intensity and characteristics can be derived from this joint distribution, i.e., a set of values
{Hsmax , Hmax, Tzmax} can be drawn at random from a population with the corresponding
distribution.

3. Interaction between failure modes though an important problem is not considered here.

4.2 Modes of failure

In this study, a total of 8 modes of failure have been considered: sliding (s), turning (t), 4 foundation
(b, c, d, sea), overtopping (o), and seaside berm instability (a) failures (see Figure 3).

The external wave forces on the upright section are the most important considerations in the
design of vertical breakwaters, including both pulsating and impact wave loads. The well known
Goda pressure formulas (see Goda [28]) for the evaluation of the forces acting on the breakwater
(see Figure 3) have been used in this paper. But as the impulsive pressure coefficient used in
Goda’s formula does not accurately estimate the effective pressure due to impulsive pressure under
all conditions the new impulsive pressure coefficient proposed by Takahashi et al. [29] is used.
The maximum wave height (Hbreak) is adjusted in the surf zone due to random wave breaking as
described by Goda [30]:

Hbreak

L0
= A

{
1− exp

(
−1.5

πh0

L0
(1 + 15 tan4/3 θb)

)}
, (39)

where h0 is the water height in the distance of five times the maximum significant wave height
Hsmax toward the offshore of the breakwater, L0 is the deep water wave length, θb is the mean
angle of the sea bottom, and the coefficient A takes different values depending of the kind of waves,
it takes the value 0.17 for regular waves. Its upper and lower limits are 0.18 and 0.12, respectively.

Thus the design wave height Hd is

Hd = min(Hmax,Hbreak). (40)
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Sliding failure. This failure occurs when the breakwater caisson suffers an horizontal displace-
ment, it can occur as a slip either at the interface between the caisson concrete base and the rubble
material, or entirely in the rubble material. The safety against sliding failure can be verified by the
following limit state equation (see Figure 3(a)):

gs = min(µc, tan(φr))(W1 − Fv)− Fh, (41)

where µc is the friction coefficient, φr is the angle of internal friction of rubble, Fh and Fv are
the total vertical and horizontal forces due to wave pressure, and W1 is the actual caisson weight
reduced for buoyancy, which are given by:

Fh = hc(p1 + p4)/2 + h′(p1 + p3)/2 (42)

Fv =
1
2
puB (43)

W1 = Vcγc − h′Bγw (44)
Vc = Bhb + woho, (45)

where hc is the freeboard, p1, p3 and p4 are the Goda’s pressures at the water level, caisson’s bottom
and freeboard, respectively, pu is the uplift pressure, B the caisson width, Vc is the total caisson
volume, γc is the average unit weight of caisson, h′ is submerged height of the caisson, γw is the
water unit weight, hb is caisson height, and ho and wo are the parapet breakwater height and width,
respectively.

Overturning failure. This failure occurs when the breakwater structure rotates with respect to
point O (see Figure 3(b)) because of water pressure forces. The safety against turning failure can
be verified by the following limit state equation:

gt = W1y −Mv −Mh, (46)

where y is the W1 offset with respect to point O, and Mv and Mh are the moments with respect
to point O of the vertical and horizontal water pressure forces, which are given by

Mv =
2
3
FvB =

1
3
puB2 (47)

and
Mh =

1
6
(2p1 + p3)h′2 +

1
2
(p1 + p4)h′hc +

1
6
(p1 + 2p4)(hc)2. (48)

Foundation failure. The following geotechnical failure functions for a feasibility level of sophis-
tication proposed by Oumeraci et al. [26] considering that the subsoil material is rock are used in
this paper:

1. Rotation failure (b).

2. Rupture surface through rubble only (c).

3. Rupture surface through rubble and along top of subsoil (d).

4. Additionally, we have also considered the seaward rupture surface through rubble only (sea).
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Rock subsoil

Seaward side Leeward or harbour

 side

S.W.L.

θ s 

Figure 3: The eight composite failure modes considered in the breakwater example.

The set of failure modes consists of a limited number of failure surfaces with a known a-priori
geometry (see Figures 3 (c)-(f)). Alternatively, more sophisticated equations based on the upper
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bound theory can be used (see Sorensen and Burchart [25], Oumeraci et al. [26]).
It is often very practical to consider the equilibrium of the wall separately from the equilibrium

of the soil, thus the integrated effective stresses acting on the skeleton of rubble foundation are
obtained as resultant from the other forces acting on the wall. The distance of the vertical force
W1 − Fv component to the harbour side edge Bz is:

Bz = 2
W1y − FhyFh

− FvyFv

W1 − Fv
, (49)

where yFh
and yFv are the lever arms of Fh and Fv, respectively.

The effect of wave induced pressure along the rupture boundary inside the rubble (Fhu) can be
obtained under the assumptions of triangular pressure distribution in the horizontal direction and
hydrostatic pressure in the vertical direction as:

Fhu =





B2
z tan θs

2B
pu if Bz ≤ hn/ tan θs,

hn(2Bz − hn/ tan θs)
2B

pu if Bz > hn/ tan θs,

(50)

where hn is the core height, and θs is the angle between the bottom of the wall and the rupture
surface (see Figure 3 (d)), that can be obtained as:

θs = arctan
hn

Bz + b + (hn + e) cot α`
, (51)

where b is the leeward berm width, e is the armor layer thickness and α` is leeward slope angle.
Then, the safety against rotation failure can be verified by the following limit state equation

(see Figure 3 (c)):

gb = B2
z (γs − γw) tan φr

(
tan2(π/4 + φr/2) exp(π tanφr)−1

)
−(W1 − Fv)

(
1

1− Fh/(W1 − Fv)

)3

,

(52)
where γs is the rubble mound unit weight.

The safety against rupture surface through rubble only failure can be verified by the following
limit state equation (see Figure 3 (d)):

gc = W1− Fv+ (γs − γw)[(Bz + b + e cotα`)hn/2 + (b + e cotα`/2)e]−(Fh + Fhu) cot(φr − θs). (53)

The safety against rupture surface through rubble and along top of subsoil failure can be verified
by the following limit state equation (see Figure 3 (e)):

gd = (W1−Fv + (γs − γw) [(2(Bz + b + e cotα`) + hn(cotα` − cotαφr))hn/2µs

+(b + e cotα`/2)e])− (Fh + Fhu), (54)

where µs is the friction coefficient between the rubble bedding layer and the rock subsoil. Note
that in this case the angle between the bottom of the wall and the rupture surface is φr (see Figure
3 (e)),

12



In addition, for avoiding the seaward failure in calm sea wave conditions, the rupture surface
through rubble only is considered using the following limit state equation (see Figure 3 (f)):

gsea = φr − arctan
(

hn

B + Bm + (e + hn) cot αs)

)
, (55)

where Bm is the seaward berm width and αs is the seaward slope angle. Note that no wave forces are
considered in this failure mode, so the yearly probability treatment in the lifetime of the structure
will be different than the other failure modes (it does not depend on rst).

Overtopping failure. For a composite breakwater of seaboard slope tanαs and freeboard hc,
(see Figure 3 (g)), and a sea state defined by a significant maximum wave height Hsmax , the mean
overtopping volume q per unit of breakwater length is given, for a caisson breakwater, by the
exponential relation (see Franco and Franco [31])

q = a exp(−bohc/Hsmax)
√

gH3
smax

, (56)

where q/
√

gH3
smax

is the dimensionless discharge, hc/Hsmax is the relative freeboard, and a and
bo are coefficients that depend on the structure shape and on the water surface behavior at the
seaward face.

The safety against overtopping failure can be verified from the following equation:

go = q0 − q, (57)

where q0 is the maximum allowable mean overtopping discharge for structural damage.

Berm instability failure. It is customary in caisson breakwater construction to provide a few
rows of foot-protection concrete blocks at the front and rear of the upright section. It usually
consists of rectangular blocks weighting form 100 to 400 kN depending on the design wave height.
This protection is indispensable especially against oblique wave attack. The remainder of the berm
and slope of the rubble mound foundation must be protected with armor units of sufficient weight
to withstand the wave action. In this paper berm instability failure refers to the removal of pieces
from the berm and slope as it is shown in Figure 3 (h).

Based on experiments, Losada [1] and following Tanimoto, Yagyu and Goda [32], proposed the

following limit state equation to evaluate the dimensionless quantity
W

γwH3
d

:

W

γwH3
d

= RΦe, (58)

where Φe is the berm stability function, R is an dimensionless constant, which depends on γs (for
rubble armor units) and γw, and W is the individual armor block weight of the berm, that are
given by

W = γs`
3
e (59)

R =
γs/γw(
γs

γw
− 1

)3 (60)
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Φe = min



0.3,

[
4.2

(1− c)d
c1/3Hd

+ 3.24 exp

(
−2.7

d(1− c)2

Hdc1/3

)]−3


 (61)

c =
4πd

L sinh
(

4πd

L

) sin2
(

2πBm

L

)
, (62)

where le is the equivalent cubic block side, d is the berm depth in front of the caisson, c is an
auxiliary variable, and Bm is the seaward width. Under such a conditions, the occurrence of failure
can be determined from the following equation:

ga = W − γwRΦeH
3
d . (63)

4.3 Practical design criteria

In maritime works there are some rules of good practice that should be observed. Some of them
are country dependent and some have historical roots, others are taken as a precaution against
impulsive breaking wave conditions. Those used in this example, are:

1. Layers slopes and berms widths: The seaside and leeward berm and slope protection
has the following restrictions. The minimum armor unit weight allowed is 0.3 kN while the
maximum is 21 kN (concrete pieces have to be used for greater weight armor units), this
implies that the armor layer thickness limits are (e = 2`e):

0.5 ≤ e ≤ 2 (m), (64)

where `e is the equivalent cubic block side for the main layer. The minimum berm widths
limits, note that berm widths in Spain are smaller than usual berm widths in Japan, are:

Bm ≥ 2`e; b ≥ 2`e. (65)

The maximum berm widths limits are:

Bm ≤ 1.5B; b ≤ 1.5B. (66)

The gradient of the slope of the rubble mound is usually set to

1.5 ≤ cotαs ≤ 3; 1.5 ≤ cotα` ≤ 3. (67)

2. Construction or operational reasons: The caisson width limits are:

10 ≤ B ≤ 35 (m), (68)

while the maximum seaward (hc) and the minimum leeward freeboard are

hc = hn + hb + ho − hlo − tr ≤ 15; hn + hb − hlo − tr ≤ 1 (m), (69)

respectively, where hb is caisson height, hn is the core height, hlo is the water depth in front
of the caisson corresponding to the zero port reference level (minimum water depth) and tr
is the tidal range.
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The minimum water level in front of the vertical breakwater and the minimum water depth
in front of the caisson are respectively,

h ≥ hlo; d ≥ hlo − (hh + e). (70)

For the vertical breakwater to be a composite breakwater we must have:

hn + e

hlo + tr
≥ 0.3;

hn + e

hlo
≤ 0.9. (71)

3. Geometric identities:

h = h1 + h2; h = h′ + hn; h′ + hc = hb + ho; d + e = h′, (72)

where h1 is the water level owing to the astronomical tide, and h2 is the water level produced
by barometrical or storm surge effects.

4.4 Construction cost

The details of the derivation of the cost function are given in Appendix A. The resulting total
construction cost becomes:

C0(d̄, η̃, ψ) = CcVc + Ca`Va` + CcoVco, (73)

where Vc, Va` and Vco are the sand filled caissons, armor layer, and core volumes, respectively, and
Cc, Ca` and Cco are the respective construction costs per unit volume.

4.5 Repair cost

The repair cost Cm0 for each mode of failure m has been assumed to be a fraction rpm of the
construction costs, which depends on the consequences of the failure, thus

Cm0 = rpmC0. (74)

4.6 Set of variables

As an illustration, for the composite breakwater example (see Figure 2), the optimized design
variables (d), the non-optimized design variables (η), the random model parameters (κ), and the
dependent variables (ψ) are, respectively:

d = {b,B, Bm, e, hb, hn, ho, α`, αs}
η = {Hmax,Hsmax , Tzmax , h1, h2, θw, A, µc, µs, φr, γc, γs, Ag, Bg,MAg , MBg , Sg, bo, Car}

∪{Fm, a, Ca`, Cc, Cco, D, f, q0, r, rpm , rst, wo, γw, tan θb}
κ = {vb, vBm , ve, vhn , vα`

, vαs , κs, δs, λs, ar, br, κw, δw, λw, at, bt, ct, σTzmax
, hlo, tr, σh2 , σθw}

∪{σA, σµc , vµs , vφr , σγc , σγs , σAg , σBg , σMAg
, σMBg

, ρAg , ρBg , σSg , σbo , σCar , vFm}
ψ = {Bz, c, d, Fh, Fv, Fhu, h, h0, h

′, hc,Hbreak,Hd, `e, L, L0,Mh,Mv, p1, p3, p4, pu}
∪{q, R, Vc, Va`, Vco,W,W1, y, yFh

, yFv , αm, θs, Φe}.
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5 Statistical assumptions

To complete the model, the statistical assumptions need to be provided. They are strongly depen-
dent on the location of the maritime structure. For illustrative purposes, in this section we present
those for a composite breakwater in the harbor at Gijón.

The service life of the breakwater is consider to be D = 50 years, and the joint distribution of
all variables involved is based on the following assumptions:

1. Optimized design variables: The subset {B, hb, ho} of optimized design variables d related to
the concrete caisson are assumed to be deterministic because the construction control is good,
whereas the subset of variables associated with the rubble mound {b,Bm, e, hn, α`, αs} are
considered normal random variables whose mean values are obtained from the optimization
procedure. In what follows the mean value, standard deviation and the coefficient of variation
of any variable x will be denoted as µx, σx and vx, respectively.

2. Load variables: The joint distribution of (Hsmax ,Hmax, Tzmax) which define our simplified
storms and other factors affecting the incident waves, are defined by:

(a) The marginal cumulative distribution function of Hsmax . Based on extreme value con-
siderations and the truncated character of the simplified storms (they were considered
for Hsmax ≥ 3), Hsmax can be assumed to be a generalized Pareto distribution:

FHsmax
(Hsmax) = 1−

(
1− κs(Hsmax − λs)

δs

)1/κs

; 1− κs(Hsmax − λs)
δs

≥ 0. (75)

where κs, λs and δs are the parameters to be estimated from the data.
(b) The conditional distribution Hmax|Hsmax of Hmax given Hsmax . Based on a regression

analysis it is observed that they exhibit a linear regression:

Ĥmax = ar + br Hsmax , (76)

where Ĥmax is the estimate Hmax given Hsmax and ar and br are the linear regression
coefficients, and that the residuals Hmax − Ĥmax follow a maximal Weibull model with
cumulative distribution function:

FX(x) =exp

{
−

[
1− κw

(
x− λw

δw

)]1/κw
}

; 1− κw

(
x− λw

δw

)
≥ 0. (77)

The combination of both assumptions leads to the final model for Hmax|Hsmax .
(c) The conditional distribution Tzmax |Hmax,Hsmax of Tzmax given Hmax,Hsmax . Based on

a regression analysis the following model is obtained:

T̄zmax = at + bt Hsmax + ct Hmax, (78)

where at, bt and ct are the linear regression coefficients, with residuals Tzmax − T̄zmax

following a normal distribution:

Tzmax − T̄zmax ∼ N(0, σ2
Tzmax

),

where σTzmax
is the standard deviation.

The combination of these assumptions leads to the final model for Tzmax |Hmax,Hsmax .
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(d) The water depth h1, considering the tidal elevation, is modelled as a random variable
with cumulative distribution function:

Fh1(x) =
arccos (2(hlo − x)/tr + 1)

π
, (79)

where hlo is the minimum value of h1 (zero port reference level) and tr is the tidal range.

(e) The water rise level owing to meteorological causes h2 is assumed to be a normal random
variable with mean µh2 and standard deviation σh2 .

(f) The incident wave angle θw is assumed to be normal N(0, σ2
θw

).

(g) The coefficient A in (39) for modelling the change in the maximum wave height due to
random wave breaking is modelled as a normal random variable. As there is no clear
information on the variance but only reasonable extreme values, the simple rule that
two standards deviations account for the difference between the maximum (minimum)
and the mean value was adopted. Thus, µA = (0.18 + 0.12)/2 = 0.15 and σA = (0.18−
0.12)/4 = 0.015.

3. The soil strength is modelled using the following assumptions:

(a) The friction factor µc between the caisson base and the rubble is assumed as log-normal
distributed with mean µµc and standard deviation σµc .

(b) The friction coefficient µs between the rubble bedding layer and the rock subsoil is
assumed as log-normal distributed with mean µµs and coefficient of variation vµs .

(c) Since the breakwater foundation is made of friction material an statistical model for
the angle of internal friction of rubble is required. This angle is modelled by a normal
random variable with mean µφr and coefficient of variation vφr . We do not take into
account spatial variation.

(d) The average unit weights of caisson γc and rubble γs are considered as normal random
variables with means µγc , µγs , and standard deviations σγc , σγs , respectively.

4. In an attempt to consider all the sources of uncertainty, the uncertainties of the formulas
used in the computations have to be examined. In any case a calibration factor is applied to
the result of the formula providing the true value.

(a) The Goda formulae for pulsating wave forces are biased in order to provide a safe relation
(see Van der Meer [33] and Oumeraci et al. [26]). The uncertainty is taken into account
using the calibration factors Ag, Bg, MAg , MBg and Sg affecting horizontal forces (Fh),
uplift forces (Fv), horizontal moments (Mh), uplift moments (Mv) and seepage horizontal
forces, respectively.

(b) The reliability of the overtopping prediction formula (56) can be expressed assuming a
normal distribution for the random variable bo, thus bo ∼ N(µbo , σbo) (see Franco and
Franco [31]). Note that the coefficient a in (56) is considered deterministic.

(c) The berm stability function φe in (58) uncertainty is considered due to the normal
random coefficient Car ∼ N(µCar , σ

2
Car

).

5. To consider model uncertainties for the limit state equations model factors equivalent to
global safety factors are considered. These will be random parameters Fm (m refers to failure
mode) log-normally distributed with expected values µFm and coefficients of variation vFm .
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Table 1: Statistical model and random model parameters κ.

i Xi Meaning Mean (µ) Parameters Distrib.
1 b Leeward berm width (m) b̄ vb = 0.1 Normal
2 Bm Seaward berm width (m) B̄m vBm

= 0.1 Normal
3 e Armor protection thickness (m) ē ve = 0.1 Normal
4 hn Rubble core height (m) h̄n vhn = 0.1 Normal
5 α` Leeward slope angle (rad) ᾱ` vα`

= 0.1 Normal
6 αs Seaward slope angle (rad) ᾱs vαs = 0.1 Normal

Maximum significant κs = −0.1197
7 Hsmax wave height (m) δs = 0.446 Pareto

λs = 3
Hmax obtained from ar = −0.641855
linear regression of Hmax|Hsmax

br = 1.92856
Residual between the maximum κw = 0.172482

8 Hmax wave height (m) & the one δw = 0.470151 Weibull
obtained from above λw = −0.201646
Tzmax

obtained from at = 5.66953
linear regression of bt = 3.5765
Tzmax

|Hmax,Hsmax
ct = −1.35536

9 Tzmax Hmax wave period (seg) σTzmax
= 1.6128 Normal

10 h1 Tidal water level (m) hlo = 20 Cosine
tr = 5

11 h2 Meteorological water level (m) 0.02414 σh2 = 0.11597 Normal
12 θw Incident wave angle (rad) 0.0 σθw = π/18 Normal
13 A Random wave breaking coefficient 0.15 σA = 0.015 Normal
14 µc Friction factor caisson-rubble 0.636 σµc = 0.0954 LN
15 µs Friction factor rubble-rock 0.5 vµs = 0.1 LN
16 φr Rubble friction factor (rad) 0.601 vφr = 0.1 Normal
17 γc Average density of caisson (kN/m3) 22.3 σγc = 0.11 Normal
18 γs Rubble unit weight (kN/m3) 21 σγs = 0.11 Normal
19 Ag Fh model uncertainty 0.9 σAg = 0.2 LN
20 Bg Fv model uncertainty 0.77 σBg = 0.2 LN
21 MAg Mh model uncertainty 0.72 σMAg

= 0.37 LN
22 MBg Fv model uncertainty 0.72 σMBg

= 0.34 LN
23 Sg Seepage model uncertainty 0.65 σSg = 0.30 LN
24 bo Overtopping model uncertainty 3 σbo = 0.26 Normal
25 Car Stability function uncertainty 1 σCar = 0.1 Normal

Fm m = s, t, b, c, d, sea 1 vFm = 0.2 LN
32 Fa Armor failure uncertainty, m = a 1 vFa = 0.1 LN
33 Fo Overtopping failure uncertainty, m = o 1 vFo = 0.1 LN

Note, for example, that in the overtopping failure, Fo takes into account the uncertainty of
the critical structural safety discharge q0.

All these assumptions and the numeric values used in the example are listed in Table 1.
Dependence assumptions The group of random variables {Hsmax ,Hmax, Tzmax} are assumed
to be dependent with the marginal and conditional distributions given above. For the sake of
simplicity, the tidal water level is assumed to be independent of the remaining variables, and the
same assumption is used for the meteorological tide; note however that this hypothesis is not really
valid because it is dependent on Hsmax . The same would be applicable if storm surge effect in
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Table 2: Fixed deterministic parameters used in the numerical example.

i Xi Meaning Value (µ) Units
1 a Structure shape coefficient 0.082 −−
2 Ca` Armor layer construction cost per unit volume 70 $/m3

3 Cc Sand filled caisson construction cost per unit volume 123 $/m3

4 Cco Rubble core construction cost per unit volume 2.4 $/m3

5 D Lifetime of the breakwater 50 years
6 f Inflation rate 0.04 −−
7 q0 Maximum allowable mean overtopping discharge 0.2 m3/s/m.l.

for structural damage
8 r Interest rate 0.0525 −−
9 rps

Sliding repair percentage 0.05 −−
rpm m = {t, b, c, d, sea} repair percentage 0.2 −−

15 rpo
Overtopping repair percentage, m = o 0.01 −−

16 rpa
Armor instability repair percentage, m = a 0.05 −−

17 rst Mean number of storms per year 45.3427 storms/year
18 wo Caisson parapet width 2 m
19 γw Water unit weight 10.35 kN/m3

20 tan θb Mean angle tangent of the sea bottom 1/50 −−

shallow waters were considered. The remaining variables will be considered independent in this
paper.

6 Numerical example

The proposed method has been implemented in GAMS (General Algebraic Modelling System)
(see Castillo, Conejo, Pedregal, Garćıa and Alguacil [34]). GAMS is a software system especially
designed for solving optimization problems (linear, non-linear, integer and mixed integer) of small
to very large size. All the examples have been solved using the generalized reduced gradient
method (for more details see VanderPlaats [35] or Bazaraa, Jarvis and Sherali [36]) that has shown
good convergence properties including constraints to the variables. Of course, other optimization
programs such as AIMMS, AMPL, LINDO, MPL or the Matlab Optimization Toolbox, can be
used instead.

To illustrate the method, the automatic optimal design of a composite breakwater with the
nominal values, statistical and cost parameters in Tables 1 and 2, respectively, has been performed.

The convergence of the process is attained after 46 iterations with an error tolerance lower than
10−5 as it is shown in Figure 4, but a reasonable solution is obtained after 26 iterations (error
lower than 10−3). It is worth mentioning that the convergence behavior is very good even using a
starting design far away from the optimal. The final values of the optimized design variables d̄ are
shown in Figure 5, which corresponds to a construction cost (C0), a repair cost (Cr), and a total
expected cost (E[cost]) of 74488.8, 28112.8 and 102601.6 $, respectively. The optimal failure rates
are:

rs = 0.01365; rt = 0.00098; rb = 0.01903; rc = 0.00545;
rd = 0.00236; rsea = 0.000; ro = 0.11765; ra = 0.05326.

Analysis of results The following conclusions can be drawn from the analysis of the results:
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Figure 4: Graphical illustration of the reconstruction of the expected cost function using Benders
cuts.
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Figure 5: Scaled graphical illustration of the optimal composite breakwater.

1. The proposed method leads to the solution of the breakwater design, showing a good behav-
ior. Note that in the computational example we have used 9 design variables, 33 statistical
variables and 8 failure modes.

2. The optimal safety requirements show that the yearly overturning failure rate is very low
because this failure mode is really dominated by the bearing capacity in rubble (rotation
failure b). The yearly overtopping failure rate is bigger because consequences of failure are
less important.

3. The cost sensitivities with respect to the cost of materials and some parameters of the model
(η̃ and κ) are given in Table 3. It allows one to know how much a small change in a single
design factor value changes the optimal expected cost per running meter of the composite
breakwater. This information is extremely useful during the construction process to control
the cost, and for analyzing how the changes in the yearly failure rates required by the codes
influence the total cost of maritime works. For example, a change of one unit in the cost
of concrete Cc leads to a cost increase of 92982.9 $ (see the corresponding entry in Table
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Table 3: Some sensitivities of the total expected cost with respect η̃ and κ parameters.

η̃i
∂E[cost]

∂η̃i
|η̃i| ($)

µφr -47011.8
µγc -2245856.2
µγs -2085151.2
µAg 46821.3
µbo -50156.5
µFb

10867.2
µFc 14465.8
µFa 10376.1

η̃i
∂E[cost]

∂η̃i
|η̃i| ($)

Cal 7291.0
Cc 92982.9
D 20546.9
r -32290.2
f 24897.7
rcb 10606.6
rst 28111.8
γw 2069737.2

κi
∂E[cost]

∂κi
|κi| ($)

δS 58157.8
λS 251740.3
br 259900.9
aT 52869.0
bT 194463.0
cT -51501.4
hlo 66980.3
tr 55287.6

Table 4: Sensitivities of the the yearly failure rates rm with respect the design variables (d̄).

d̄i
∂rs

∂d̄i
|d̄i| ($)

∂rt

∂d̄i
|d̄i| ($)

∂rb

∂d̄i
|d̄i| ($)

∂rc

∂d̄i
|d̄i| ($)

∂rd

∂d̄i
|d̄i| ($)

∂rsea

∂d̄i
|d̄i| ($)

∂ro

∂d̄i
|d̄i| ($)

∂ra

∂d̄i
|d̄i| ($)

b - - - -0.009748 -0.004519 - - -
B -0.051304 -0.009356 -0.108691 -0.023888 -0.009114 -0.000019 - -
Bm - - - - - -0.000001 - 0.149561
e 0.002167 0.000140 0.003124 -0.000419 -0.000140 - - -0.211066
hb -0.060404 -0.004051 -0.040577 -0.016804 -0.005459 - -1.772274 -
hn -0.003819 -0.001590 -0.000931 -0.000534 -0.004979 0.000022 -0.703502 0.112582
ho 0.003984 0.000736 0.006557 0.002391 0.001250 - -0.286670 -
α` - - - 0.002363 0.001172 - - -
αs - - - - - 0.000013 - -

3). Similarly, while an increase in the unit weight of the rubble mound γs decreases the cost
(−2085151.2 $), both the tidal range (tr) and the zero port (hlo) increase the cost by 55287.6
and 66980.3 $ per relative unit increase, respectively.

4. The sensitivities of the yearly failure rates with respect to the optimized design variables
d̄ are given in table 4. As an example, the influence of the freeboard on the verification
equation for overtopping (57) and, therefore, on the corresponding yearly failure rate will be
analyzed. This equation shows how this failure occurrence depends only on hc, q0, a, bo and
Hsmax . Note that increasing only the freeboard will lead to a safer structure. The freeboard
is defined as hc = hn + hb + ho − h with h = h1 + h2 and hlo ≤ h1 ≤ hlo + tr. Any increase
on variables related to breakwater heights hn, hb, ho will generate a decrease of yearly failure
rate for overtopping due to the fact that all of them appear in the freeboard definition with
positive sign.

7 Conclusions

The methodology presented in this paper provides a rational and systematic procedure for auto-
matic and optimal design of engineering works. The engineer is capable of obtaining optimal yearly
failure rates for the different modes of failure, so that the choice of the safety level for which the
structure has to be designed taking into account the different consequences of a complete of partial
failure depending on the structure and the environment is carried out. In addition, a sensitiv-
ity analysis can be easily performed by transforming the input parameters into auxiliary variables,
which are set to their associated actual values. The provided example illustrates how this procedure
can be applied and proves that it is practical and useful.
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Some additional advantages of the proposed method are:

1. The method allows an easy connection with optimization frameworks.

2. The responsibility for iterative methods is given to the optimization software.

3. The reliability analysis takes full advantage of the optimization packages, which allows the
solution of huge problems without the need of being an expert in optimization techniques.

4. Sensitivity values with respect to the target reliability levels are given, without additional
cost, by the values of the dual problem.

5. It can be applied to different types of problems such as linear, non-linear, mixed-integer
problems. The designer needs just to choose the adequate optimization algorithm.
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diseño de obras maŕıtimas. In Procedimiento Metodológico Participativo para la Canalización,
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A Appendix: Cost function

Consider the composite breakwater in Figure 2. To derive the cost function the following parts are
considered:

Concrete volume: The caisson volume is:

Vc = Bhb + woho. (80)
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Armor layer volume: The armor layer volume is:

Va` = e[Bm + b + hn(1/ sinαs + 1/ sinα`) + 0.5e(1/ tanαs + 1/ tan α`)]. (81)

Core volume: The core volume is:

Vco = hn(b + B + Bm − e(tan(αs/2) + tan(α`/2)) + hn(1/ tanαs + 1/ tanα`)/2). (82)

Then, the construction cost per unit length becomes:

C0 = CcVc + Ca`Va` + CcoVco. (83)
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