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Abstract The optimal engineering design problem consists in minimizing the expected

total cost of a infrastructure or equipment, including construction and expected repair

costs, the latter depending on the failure probabilities of each failure mode. The so-

lution becomes complex because the evaluation of failure probabilities involves one

optimization problem per failure mode. This paper formulates the optimal engineer-

ing design problem as a bilevel problem, i.e., an optimization problem constrained by

a collection of other interrelated optimization problems. The structure of this bilevel

problem is advantageously exploited using Benders’ decomposition to develop and re-

port an efficient algorithm to solve it. An advantage of this approach is that the design

optimization and the reliability calculations are decoupled. The proposed algorithm is

structurally simple and exhibits high computational efficiency. Its practical interest is

demonstrated through a realistic but simple case study, a breakwater design example

with two failure modes: overtopping and armor instability.
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1 Introduction

1.1 Motivation and objective

Optimal design problems entail a complex tradeoff: a moderate building cost implies a

high maintenance and repair cost throughout the live of the equipment being designed,

while a high building cost results in a moderate maintenance and repair cost. It is thus

necessary to achieve a design, the optimal one, which results in minimum building plus

maintenance and repair (total) cost.

Building costs are easily expressed as a function of the design variables of the

equipment (or infrastructure) being designed. However, maintenance costs depend of

the failure modes of the equipment, and their computation requires solving a set of

involved and interrelated optimization problems.

The optimal design problem can thus be formulated as an optimization problem

involving a complex objective function (building and maintenance costs) and a set

of design and operational constraints. The objective function comprises two terms:

the building cost, which is a function of the design variables, and the maintenance

and repair costs, whose evaluation requires the solution of a number of interrelated

optimization problems. Constraints express building and operational restrictions and

depend on the design variables.

Thus, the problem to be addressed involves an objective function that embeds itself

a collection of optimization problems, which is subject to a number of constraints. This

problem structure leads naturally to a bilevel formulation: the term of the objective

function involving the collection of optimization problems is substituted by a set of

variables that are added to the objective function. Then, each of these variables is

made equal to each one of the optimization problems constituting the aforementioned

objective function term, and added to the original problem as a constraint. This results

in an optimization problem subject itself to a collection of optimization problems, i.e.,

to a bilevel problem (see Colson et al (2005); Conejo et al (2006)).
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1.2 Literature review

Optimization and engineering design has been an area of great interest for engineers

and scientists. Design of structural elements entails an iterative process which usually

requires practical experience. The designer selects the values of design variables and

parameters and checks that safety and functionality constraints are satisfied. This

process is repeated until a safe and cost effective structure is obtained. Optimization

procedures are a natural way to free the engineer from the mentioned cumbersome

iterative process, ensuring that the best possible solution is obtained.

This is the reason why optimal engineering design has been widely studied in the

literature. Two main paradigms exist, “Deterministic Structural Optimization” (DSO),

where the safety is accomplished using safety factors and fixed values of the random

parameters of the model, and “Reliability-Based Structural Optimization” (RBSO),

where the random character of the parameters involved is considered through prob-

ability density functions. Note that the main difficulty pertaining to RBSO is the

definition of the failure probability, which is used to estimate maintenance and repair

costs. Indeed, the failure probabilities are complicated to estimate and expressions for

their gradients with respect to the design variables are not available. This situation

makes standard nonlinear programming algorithms non appropriate for solving opti-

mization problems involving failure probabilities. Within this context, several authors

have proposed theoretical guidelines and heuristics for different optimization problems

involving failure probabilities. For an exhaustive review see Frangopol (1995).

Optimal design problems can be solved using smooth response surfaces (see Gasser

and Schuëller (1998)), which combined with standard nonlineal programming algo-

rithms may result in numerically robust procedures. However, the quality of the ap-

proximation depends on the quality of the approximating surfaces. Other attempts

use first order reliability methods (FORM, see Ditlevsen and Madsen (1996)), such

as Enevoldsen and Sorensen (1994), which express the probability of failure in terms

of the reliability index. However, Royset et al (2006) claim that the reliability index

may not have continuos gradients with respect to the design variables, so convergence

to an optimal solution is not guaranteed if gradient-based optimization algorithms

are used. To avoid this shortcoming by eliminating the reliability index calculation,

Madsen and Friis Hansen (1992) replace the probability of failure by the optimality

conditions pertaining to the design point or point of maximum likelihood. However,

this approach requires second-order derivatives and it may also lead to numerically

ill-conditioned problems. Alternatively, Royset et al (2001, 2006) propose a decoupled

approach where uncertainties can enter the objective function, the constraints, or both.

It is based on a sequence of approximating design problems, which is constructed and

solved using a semiinfinite optimization algorithm. Mı́nguez and Castillo (2009) pro-

pose also a decoupled approach based on decomposition techniques where the failure

probabilities are calculated through first order reliability methods.
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1.3 Aim and contribution

The aim of this paper is to provide a novel method based on Benders’ decomposition to

solve engineering design problems in a decoupled fashion, which allows taking advan-

tage of recent state-of-the-art mathematical programming algorithms for: i) evaluating

failure probabilities using FORM, ii) obtaining derivatives with respect to continuous

variables, and iii) solving large scale problems (see Mı́nguez et al (2006)).

Under convexity assumptions, the typical manner of addressing a bilevel problem

is to substitute the constraining lower-level problems by their corresponding KKT

conditions, which results in a mathematical program with complementarity constraints

(KKT constraints) so called MPCC. This MPCC is then attacked by conventional

optimization algorithms.

Instead of using complementarity techniques that entail non-convexity and poten-

tial numerical ill-conditioning, we propose a Benders’ decomposition algorithm (see

Benders (1962); Lasdon (1970); Geoffrion (1972); Geoffrion and Graves (1974)) to at-

tack the aforementioned optimal design problem. This algorithm avoids the use of KKT

conditions as constraints, which results in robustness and computational efficiency. The

complicating variables that allow advantageously decomposing the original problem are

the auxiliary variables that allow moving the optimization problems in the objective

function to the constraint set. In other words, the advantage of using Benders’ Decom-

position is to decompose the original problem into a set of subproblems of substantially

reduced complexity. The price to be paid for such advantage is the need of an iterative

algorithm.

Since Benders’ decomposition has been widely analyzed in the existing literature,

we dedicate space neither to repeat the advantages and shortcomings of this well known

method, nor to explain when it is applicable. However, we indicate the contributions

of this paper, which are fourfold:

1. To formulate a general optimal design problem as a bilevel problem.

2. To develop a Benders’ decomposition algorithm tailored to solve the optimal design

problem in item 1 above.

3. To implement dual variable techniques to obtain the partial derivatives required to

implement Benders’ decomposition.

4. To demonstrate the efficiency and robustness of the proposed Benders’ approach

solving a realistic case study.

1.4 Paper organization

The paper is organized as follows. In Section 2 we describe a general optimization prob-

lem whose objective function involves variables that require solving other optimization

problems, and explain how it can be tackled by Benders’ decomposition. In addition,
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we explain how the use of dual variables and an auxiliary optimization problem can

help to obtain the partial derivatives required by Benders’ decomposition. In Section

3 we illustrate the proposed method by using a simple example of breakwater design

considering two failure modes: overtopping and armor instability. Finally, in Section 4

we provide some conclusions.

2 The Benders Decomposition

Consider the following problem structure:

minimize
x

f(x) +
m

∑

i=1

fi(x) (1)

subject to

h(x) = 0 (2)

g(x) ≤ 0 (3)























f1(x) = minimum
y1

f1(x, y1)

subject to

a1(x, y1) = 0

b1(x, y1) ≤ 0,

(4)

...






















fm(x) = minimum
ym

fm(x, ym)

subject to

am(x, ym) = 0

bm(x, ym) ≤ 0,

(5)

where x ∈ IRn, yi ∈ IRsi , ∀i = 1, . . . , m, f(x) : IRn → IR, fi(x, yi) : IRn × IRsi →

IR , ∀i = 1, . . . , m, h(x) : IRn → IRp, g(x) : IRn → IRq, ai(x, yi) : IRn × IRsi →

IRui , ∀i = 1, . . . , m, and bi(x, yi) : IRn × IRsi → IRvi , ∀i = 1, . . . , m.

The problem includes both equality and inequality constraints. The objective func-

tion is composed by functions which are the result of other optimization problems,

f(x) corresponds to the initial or construction costs and fi(x) represents the mainte-

nance and repair costs for failure mode i. Variables x are complicating variables, i.e.,

variables that if fixed to given values render a decomposable problem dependent on

yi, ∀i = 1, . . . , m, which allows easily evaluating the objective function (1) by solving

the m subproblems (4)-(5).

Problem (1)-(5) has the appropriate structure to apply the Benders decomposition

advantageously. The aim of such decomposition is to reproduce the objective function

(1) as a function solely of the complicating variables x. If these variables are fixed
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to specific values using constraints of the form x = x(ν), the objective function at

iteration (ν) is evaluated solving the following problems:

fi

(

x
(ν)

)

= minimize
yi

fi(x, yi) (6)

subject to

ai(x, yi) = 0 (7)

bi(x, yi) ≤ 0 (8)

x = x
(ν) : λ

(ν)
i , (9)

for i = 1, . . . , m. The problems above are denominated subproblems, and their solutions

provide values for the non complicating variables, y
(ν)
i , and the dual variable vector

λ
(ν)
i , associated with those constraints that fix the complicating variables to given

values. These dual variables supply information for building the Benders’ cuts. An

alternative way of evaluating the sensitivities of the objective function (6) with respect

to x can be seen in Castillo et al (2006b). The resulting objective function of the

original problem (1) is

f
(

x
(ν)

)

+
m

∑

i=1

fi

(

x
(ν), y

(ν)
i

)

which is an upper bound z
(ν)
up of the optimal objective function value because problems

(6)-(9) are more constrained than the original one.

The information obtained solving the subproblem allows reproducing more and

more accurately the original problem. Moreover, if the objective function in (1) is

convex with respect to variables x, the following problem approximates from below

the original one:

Minimize
α, x

α (10)

subject to

h(x) = 0 (11)

g(x) ≤ 0 (12)

α ≥ f
(

x
(ν)

)

+
m

∑

i=1

fi

(

x
(ν), y

(ν)
i

)

+
n

∑

k=1





∂f(x)

∂x
+

m
∑

j=1

λ
(ν)
jk





(

xk − x
(ν)
k

)

.(13)

Constraint (13) is the so-called Benders’ cut and the problem (10)-(13) is denomi-

nated master problem. The optimal objective function value of this problem is a lower

bound of the optimal objective function value of the original problem because problem

(10)-(13) is a relaxation of the original problem. The solution of this master problem
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Fig. 1 Graphical illustration of how the objective function is approximated using Benders
cuts.

provides new values for the complicating variables that are used for solving the sub-

problems again. Using the new information provided by those subproblems is possible

to generate additional Benders cuts:

α ≥ f
(

x(l)
)

+
∑m

i=1 fi

(

x(l), y
(l)
i

)

+

n
∑

k=1





∂f(x)

∂x
+

m
∑

j=1

λ
(l)
jk





(

xk − x
(l)
k

)

; l = 1, . . . , ν,
(14)

which allows us, using information from the previous ν iterations, formulating a more

accurate master problem that provides new values of complicating variables.

For the one-dimensional case the derivatives on the Benders cuts correspond to the

slopes of the approximating hyperplanes as illustrated in Figure 1.

The procedure continues until upper and lower bounds of the objective function

optimal value are close enough.

Note from expression (14) that the partial derivatives
∂f(x)

∂x
= λ

(ν)0 are required.

These can be obtained analytically or by solving the following auxiliary optimization

problem:

minimize
x

f(x) (15)
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subject to

h(x) = 0 (16)

g(x) ≤ 0 (17)

x = x
(ν) : λ

(ν)0 , (18)

where λ(ν)0 are the dual variables associated with the constraints (18). Note that

problem (15)-(18) has a single solution given by constraint (18), x = x(ν).

2.1 Algorithm

Benders’ decomposition algorithm for solving problem (1)-(5) works as follows.

Input. A small tolerance ε to convergence control and initial guesses of the compli-

cating variables x0.

Output. The solution of problem (1)-(5)

– Step 0: Initialization. Set ν = 1, x(ν) = x0, z
(ν)
down = −∞.

Step 1: Subproblem and auxiliary problem solutions. Solve the subproblems

(6)-(9). The solution of these subproblems provide y
(ν)
i , and λ

(ν)
i , i = 1, . . . , m.

Update the objective function upper bound,

z
(ν)
up = f

(

x
(ν)

)

+
m

∑

i=1

fi

(

x
(ν), y

(ν)
i

)

.

Solve auxiliary problem (15)-(18) for x = x(ν) to obtain
∂f(x(ν))

∂x(ν)
.

– Step 2: Convergence check. If ||z
(ν)
up − z

(ν)
down|| ≤ ε, the solution with a level of

accuracy ε of the objective function is

x∗ = x(ν)

y∗

i = y
(ν)
i ; ∀i = 1, . . . , m.

Otherwise, the algorithm continues with the next step.

– Step 3: Master problem solution. Update the iteration counter, ν ← ν +1 and

solve the following master problem:

Minimize
α, x

α (19)
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subject to

h(x) = 0 (20)

g(x) ≤ 0 (21)

α ≥ f
(

x
(l)

)

+
m

∑

i=1

fi

(

x
(l), y

(l)
i

)

+

n
∑

k=1





∂f(x)

∂x
+

m
∑

j=1

λ
(l)
jk





(

xk − x
(l)
k

)

; l = 1, . . . , ν − 1 (22)

α ≥ αdown (23)

where αdown is a lower bound of α (heuristically obtained) to avoid an initial

unbound solution. Alternatively and/or additionally, lower and upper bounds of

the complicating variables x can be given.

Note that at every iteration a new constraint is added. The solution of the master

problem provides x(ν), and α(ν).

Update the objective function lower bound, z
(ν)
down = α(ν).

The algorithm continues in Step 1.

2.2 Benders Decomposition Convergence Analysis

The proposed algorithm provides the solution of the problem in a finite number of iter-

ations if the objective function projected on the subspace of the complicating variables

x is convex, otherwise, the procedure fails to converge (Geoffrion, 1972).

By definition, a function F (x) is convex if and only if F (y) ≥ F (x)+∇F (x)T (y−x)

holds for all x, y ∈ domain F (x). This condition is equivalent to constraint (22), and

if l → ∞ it allows reproducing exactly the original objective function at the optimal

solution neighborhood, which means that problems (1)-(5) and (19)-(22) are equivalent

if and only if the function F (x) is convex in the feasibility domain defined by (2)-(3).

F (x) is the objective function of problem (1)-(5) projected on the subspace of the

complicating variables x. In that case the original problem (1)-(5) and the master

problem (19)-(22) are equivalent and converge to the same solution.

3 Example of application

In this section the proposed method is illustrated by its application to the reliability-

based optimal design of a rubblemound breakwater (see Castillo et al (2004, 2006a);

Mı́nguez et al (2006)). The purpose of such construction is to protect a harbor area

from high waves during storms. The crest of the breakwater must be high enough to

prevent the intrusion of sea water into the harbor by overtopping and the armor pieces
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Fig. 2 Parameterized rubblemound breakwater used in the example.

large enough for the breakwater to be stable. For simplicity, only overtopping and

armor instability failures are considered (see Figure 2).

In coastal engineering it is customary to consider a given sea state, which is the

period of time dst (usually one hour) in which the characteristics of the wave climate

are assumed to be stationary, and are considered a reference for design. This given

sea state is called design sea state, and it is defined as the sea state which happens on

average once every Rp years, where Rp is the return period (usually 25, 50 or 100 years).

During the design sea state, waves occur randomly and are assumed to be defined by

their wave height H and wave period T , which follow a Rayleigh and a Bretscheider

distribution, respectively. The Rayleigh distribution is defined through the parameter

Hs, i.e., the significant wave height (approximately the average of the highest third of

the wave heights in the design sea state), and the Bretscheider distribution is defined

through the parameter T̄ , i.e., the wave mean period. There is also a random variable

associated with the sea level, the storm surge η, which for this particular case is assumed

to be normally distributed with zero mean and standard deviation ση . The storm surge

explains the variations of the water level Dwl of the design sea state due to atmospheric

conditions (high and low pressures).

For the sake of clarify, the following set of variables and/or parameters are defined:

i) optimization design variables Fc (freeboard) and tan αs (rubblemound slope angle)

whose values must be selected by the optimization procedure, ii) data selected by the

designer {Au, Bu, Dwl, g, cc, ca, Hs, T̄ , dst, γw, γs, ση, D, γar, γar, W}, where Au and

Bu are given coefficients depending on the armor units to calculate the wave run-up,

g is the gravity constant, constants cc and ca are the concrete and armor construction

costs per unit volume, respectively, γw is the water unit weight, γs is the rubblemound

unit weight, D is the breakwater lifetime, parameters γar and γar are the repair cost

proportions with respect to the construction cost of the breakwater for overtopping and

armor stability failures, respectively, and W is the weight of the armor pieces, iii) the

random variables wave height H , period T and storm surge η, and finally, iv) the non-

basic or auxiliary variable set {Ir, Ir0 , va, vc, Cco, Cov, Car, L, d, Pfov , Pfar , P ov
f , P ar

f ,
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Ru, Φe, R}, where Ir is the Iribarren number, Ir0 is the Iribarren number for shallow

water conditions, vc and va are the concrete and armor volumes, respectively, Cco is the

construction cost, Cov and Car the expected overtopping and armor instability repair

costs, L is the wave length, d is the caisson height, Pfov and Pfar are the probabilities

of overtopping and armor instability for a single wave during the sea state, P ov
f and

P ar
f are the probabilities of overtopping and armor instability during the design sea

state, Ru is the wave run-up, i.e. the maximum excursion of water over the breakwater

slope, Φe is the stability function and R is a dimensionless constant.

The construction cost Cco is given by

Cco = ccvc + cava.

The expected repair costs due to overtopping and armor instability are considered

to be given by

Cov = CcoP ov
f γovD (24)

Car = CcoP ar
f γarD. (25)

The probabilities P ov
f and P ar

f are related to the corresponding probabilities for

single waves Pfov and Pfar by the expressions

P ov
f = 1−

(

1− Pfov

)(dst/T̄ )
(26)

P ar
f = 1−

(

1− Pfar

)(dst/T̄ )
, (27)

which are obtained assuming that singles waves during a sea state are independent.

Note that (26)-(27) allow the calculation of the probability of failure for a sea state

considering that a failure occurs if any of the single waves during the sea state produce

a failure (series system).

With the above approximation, overtopping failure occurs whenever the wave run-

up Ru exceeds the freeboard Fc, i.e., if Fc − Ru < 0. Similarly, the armor instability

failure occurs whenever γwRΦeH3 exceeds the weight of the armor block W , i. e., if

W ≤ γwRΦeH
3, where the dimensionless constant R is

R =
γs

γw

(

γs

γw
− 1

)3 .

Under all these considerations, for a rubblemound breakwater of slope tanαs and

freeboard Fc (see Figure 2), the reliability based design problem (1)-(5) consists of:

Minimize
Fc, tan αs

Cto = (ccvc + cava)
[

1 + (P ov
f γov + P ar

f γar) D
]

(28)
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subject to

Fc = 2 + d (29)

vc = 10d (30)

va =
1

2
(Dwl + 2)

(

46+Dwl+
Dwl + 2

tanαs

)

(31)

Pfov = Φ
(

−βov)

(32)

P ov
f = 1−

(

1− Pfov

)(dst/T̄ )
(33)

Pfar = Φ
(

−βar) (34)

P ar
f = 1−

(

1− Pfar

)(dst/T̄ )
(35)

8 ≤ Fc ≤ 15 (36)

1/4 ≤ tan αs ≤ 1/2, (37)



































































βov = minimum
H,T, η

√

z2
1 + z2

2 + z2
3 subject to

Ru

H = Au

(

1− eBuIr
)

Ir = tanαs/
√

H/L

L = T
√

g(Dwl + η)

Φ(z1) = 1− e−2(H/Hs)
2

Φ(z2) = 1− e−0.675(T/T̄ )4

z3 = η/ση

Fc = Ru,

(38)











































































































βar = minimum
H,T, η

√

z2
1 + z2

2 + z2
3 subject to

Ar = 0.2566 − 0.177/ tan αs + 0.034/(tan αs)
2

Br = −0.0201 − 0.4123/ tan αs + 0.055/(tan αs)
2

Ir0 = 2.656 tan αs

Φe = Ar(Ir − Ir0) exp [br(Ir − Ir0)]

Ir ≥ Ir0
Ir = tanαs/

√

H/L
(

2π

T

)2

= g
2π

L
tanh

2π(Dwl + η)

L

Φ(z1) = 1− e−2(H/Hs)
2

Φ(z2) = 1− e−0.675(T/T̄ )4

z3 = η/ση

W = γwRΦeH3,

(39)

where constraints (29) to (39) correspond to constraints (2) to (5) in problem (1)-

(5). Note that the objective function (28) is written in terms of failure probabilities.

Constraints (29)-(31) define geometric relations, constraints (32) to (35) stablish the

relationships among different failure probabilities (single waves and sea state), and

(36) and (37) force reasonable bounds for the freeboard and the rubblemound slope,

respectively. Problems (38) and (39) are the subproblems and allow us calculating
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the reliability indexes associated with the overtopping and armor stability failures.

Note that using First Order Reliability Methods (Ditlevsen and Madsen, 1996), the

reliability index is related to the probability of failure through equalities (32) and (34),

where Φ(·) is the standard normal cumulative distribution function. The most likely

values of the random variables H,T and η which produce the overtopping and armor

stability failures, respectively, are also obtained.

Note that the Rosenblatt transformation (Rosenblatt (1952); Nataf (1962)) of the

random variables H , T and η into independent standard normal random variables z1, z2

and z3 is embedded in (38) and (39). The last constraints in (38) and (39) are the limit

state equations forcing strict overtopping and armor stability failures, respectively.

For a given solution of the master problem, tan α∗

s and F ∗

c , the subproblems can

be stated as follows:

βov = Minimize
H,T, η

√

z2
1 + z2

2 + z2
3 (40)

subject to

Ru

H
= Au

(

1− eBuIr
)

(41)

Ir = tan αs/
√

H/L (42)

L = T
√

g(Dwl + η) (43)

Φ(z1) = 1− e−2(H/Hs)
2

(44)

Φ(z2) = 1− e−0.675(T/T̄ )4 (45)

z3 = η/ση (46)

Fc = Ru (47)

tan αs = tan α∗

s : λov
tan αs

(48)

Fc = F ∗

c : λov
Fc

, (49)

where λov
tanαs

and λov
Fc

are the dual variables associated with constraints (48) and (49),

respectively, and

βar = minimum
H,T, η

√

z2
1 + z2

2 + z2
3 (50)

subject to

Ar = 0.2566 − 0.177/ tan αs + 0.034/(tan αs)
2 (51)

Br = −0.0201 − 0.4123/ tan αs + 0.055/(tan αs)
2 (52)

Ir0 = 2.656 tan αs (53)

Φe = Ar(Ir − Ir0) exp [br(Ir − Ir0)] (54)

Ir ≥ Ir0 (55)

Ir = tanαs/
√

H/L (56)
(

2π

T

)2

= g
2π

L
tanh

2π(Dwl + η)

L
(57)
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Φ(z1) = 1− e−2(H/Hs)
2

(58)

Φ(z2) = 1− e−0.675(T/T̄ )4 (59)

z3 = η/ση (60)

W = γwRΦeH3 (61)

tanαs = tanα∗

s : λar
tan αs

(62)

Fc = F ∗

c : λar
Fc

, (63)

where λar
tanαs

and λar
Fc

are the dual variables associated with constraints (62) and (63),

respectively.

Finally, the master problem is

Minimize
α, Fc, tan αs

α (64)

subject to

α ≥ C
(l)
to +λM

Fc

(

Fc − F
(l)
c

)

+λM
tan αs

(

tan αs − tanα
(l)
s

)

; l = 1, . . . , ν − 1 (65)

8 ≤ Fc ≤ 15 (66)

1/4 ≤ tan αs ≤ 1/2 (67)

α > 500, (68)

where the λM
Fc

=
∂Cto

∂Fc
and λM

tan αs
=

∂Cto

∂ tan αs
are calculated as follows

λM
Fc

= λ+
Fc

[

1 + (γovP ov
f + γarP

ar
f )D

]

+ CcoD

[

γov
∂P ov

f

∂βov + γar
∂P ar

f

∂βar

]

(69)

λM
tan αs

= λ+
tan αs

[

1 + (γovP ov
f + γarP

ar
f )D

]

+ CcoD

[

γov
∂P ov

f

∂βov + γar
∂P ar

f

∂βar

]

, (70)

where λ+
Fc

=
∂Cco

∂Fc
and λ+

tan αs
=

∂Cco

∂ tan αs
, that can be calculated analytically or by

solving the following auxiliary optimization problem

Minimize
Fc, tan αs

Cco = ccvc + cava (71)

subject to

Fc = 2 + d (72)

vc = 10d (73)

va =
1

2
(Dwl + 2)

(

46+Dwl+
Dwl + 2

tan αs

)

(74)

Fc = F ∗

c : λ+
Fc

(75)

tanαs = tan α∗

s : λ+
tan αs

, (76)
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Table 1 Illustration of the iterative procedure. The design and final values are bolfaced.

Iterations Fc (m) tan αs Cco ($) Cov ($) Car ($) Cto ($) zup ($) zdown ($) error
1 9.000 0.360 7555.7 5905.5 122.4 13583.6 13583.6 500.0 1.0000
2 9.090 0.250 8319.7 154.3 19099.9 27574.0 13583.6 500.0 26.1672
3 10.264 0.360 8316.5 406.2 135.5 8858.1 8858.1 500.0 16.7163
4 15.000 0.361 11149.6 0.0 178.1 11327.7 8858.1 7280.2 0.3209
5 10.318 0.329 8499.5 134.4 364.6 8998.6 8858.1 8673.7 0.5528
6 10.555 0.348 8543.4 142.4 173.2 8859.0 8858.1 8699.1 0.0779
7 11.195 0.400 8709.6 144.3 232.4 9086.4 8858.1 8768.0 0.1878
8 10.753 0.375 8543.0 200.7 135.7 8879.5 8858.1 8778.4 0.1087
9 10.429 0.356 8429.2 251.2 143.3 8823.8 8823.8 8786.1 0.0835
10 10.015 0.334 8287.8 346.3 273.1 8907.2 8823.8 8806.0 0.1068
11 10.246 0.341 8391.4 245.5 210.0 8846.9 8823.8 8812.5 0.0429
12 10.199 0.348 8332.0 335.3 170.8 8838.1 8823.8 8816.2 0.0228
13 10.310 0.348 8398.3 257.4 171.6 8827.2 8823.8 8817.2 0.0112
14 10.308 0.352 8375.9 296.5 153.5 8825.9 8823.8 8820.1 0.0129
15 10.362 0.352 8410.4 256.9 155.7 8823.0 8823.0 8820.3 0.0065
16 10.494 0.353 8486.2 190.5 154.8 8831.5 8823.0 8821.8 0.0144
17 10.440 0.353 8449.8 223.1 151.5 8824.5 8823.0 8821.9 0.0076
18 10.410 0.354 8429.8 243.2 149.8 8822.8 8822.8 8822.0 0.0042
19 10.381 0.354 8410.1 264.7 148.2 8822.9 8822.8 8822.0 0.0041
20 10.385 0.353 8417.3 254.1 151.2 8822.6 8822.6 8822.3 0.0032
21 10.407 0.355 8423.5 252.3 147.1 8822.9 8822.6 8822.6 0.0063
22 10.392 0.354 8417.4 256.5 148.7 8822.7 8822.6 8822.6 0.0033
23 10.401 0.354 8424.0 249.2 149.4 8822.7 8822.6 8822.6 0.0015
24 10.394 0.354 8420.3 252.6 149.7 8822.6 8822.6 8822.6 0.0011
25 10.388 0.354 8417.1 255.6 150.0 8822.6 8822.6 8822.6 0.0009

where F ∗

c and tan α∗

s are the solution of the master problem and λ+
Fc

and λ+
tan αs

are

the dual variables associated with the last two constraints (75) and (76), respectively.

The remainder derivatives
∂P ov

f

∂βov and
∂P ar

f

∂βar are calculated using the chain rule and the

dual variables λov
tan αs

, λov
Fc

, λar
tan αs

and λar
Fc

.

We assume the following values for the parameters involved:

Au = 1.05; Bu = −0.67; Dwl = 20 m; g = 9.81 m/s2;

cc = 60 $/m3; ca = 2.4 $/m3; Hs = 6 m; T̄ = 12 s;

dst = 1 h; γw = 10.25 kN/m3; γs = 26 kN/m3; ση = 1 m;

D = 25 years; γov = 0.3; γar = 0.1; W = 160 kN,

and ε = 10−3 as the tolerance. Using the methods proposed in Section 2, the considered

problem is solved using solver CONOPT (Drud, 1996) under the General Algebraic

Modeling System (GAMS, www.gams.com), which is a high-level modeling system for

mathematical programming and optimization.

The solution is provided in Table 1, where the evolution of the convergence process

is illustrated. The method converges in 25 iterations within the admissible tolerance

ε = 0.001.

The solution that minimizes the total expected cost (boldfaced in Table 1) is C∗

co =

$8417.1, and the repair cost due to overtopping and armor stability failures are C∗

ov =
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Fig. 3 Evolution of the objective function upper and lower bounds.

$255.6 and C∗

ar = $150.0, respectively, leading to a total cost of C∗

to = $8822.6. The

optimal design variable values F ∗

c = 10.388 and tan α∗

s = 0.354, are also provided in

Table 1.

In addition, the following optimal reliability values are obtained βov = 4.199, Pfov =

1.35×10−5, P ov
f = 4.05×10−3 βar = 4.068, Pfar = 2.38×10−5 and P ar

f = 7.13×10−3.

In Figure 3 the evolution of the lower and upper bound achieved through the

iterative process up to 25 iterations is shown. Note that bounds converge monotonically

to the optimal solution in 25 iterations within the admissible tolerance of ε = 0.001.

The CPU time required using a processor clocking at 1.73 GHz and 2 GB of RAM is

3.7734 seconds.

Figure 4 shows the total cost function contour plot in terms of the two design

variables Fc and tan αs, where the darker the contour line is the lower the total cost

is (see color scale on the right hand side of Figure 4). Black dots represent the master

problem solutions at every iteration until the final solution (white dot) is achieved. The

evolution of the master problem solutions is shown through the black line joining the

solution points. Note that at iterations 2 and 4 the lower slope angle and the upper

freeboard bounds become active, respectively.

Finally, Figure 5 provides a two-dimensional plot of α (the objective function) as a

function of Fc and tanαs (the complicating variables), and two vertical cross sections

for this two-dimensional plot (for Fc = 10.45 and tanαs = 0.35). Note that the function

is reasonably convex over the feasibility region. This justifies the functioning of the

method.
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4 Conclusions

This paper uses Benders’ decomposition to tackle optimal design problems in engineer-

ing. Considering the analysis reported in this paper, the following conclusions are in

order:

1. The optimal design problem is naturally expressed as a bilevel problem with a

structure exploitable via Benders’ decomposition.

2. Benders’ decomposition allows avoiding complementarity techniques, which are of-

ten cumbersome and hardly robust.

3. Under convexity assumption (of the objective function projected on the subspace

of the complicating variables), the proposed Benders’ decomposition algorithm is

both efficient and robust, achieving the optimal solution in low computational time.

4. The use of dual variables and an auxiliary optimization problem allows computing

efficiently the partial derivatives required to implement Benders’ algorithm.

5. The use of first order reliability approximations for failure probability calculations

and the decomposable structure of the solution strategy allows to take full advan-

tage of recent state-of-the-art mathematical programming algorithms.
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