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Abstract

In this paper a review of some decomposition techniques previously given by the au-
thors to solve bi-level problems is presented within a unified formulation and a new
variant is investigated. Different reliability-based optimization problems in engineer-
ing works are formulated and solved: (a) the failure-probability safety-factor prob-
lem that makes the compatibility of the classical approach, based on safety-factors,
and the modern probability-based approach possible; (b) a modern reliability-based
approach where design is based on minimizing initial/construction costs subject to
failure-probability and safety-factor bounds for all failure modes; (c) minimizing the
expected total cost of a structure, including maintenance and construction, which
depend on the failure probabilities, and (d) a mixed model minimizing the expected
total cost adding failure-probability and safety-factor bounds for all failure modes.
In these four problems the objective consists of selecting the values of the design
variables that minimize the corresponding cost functions subject to some reliabil-
ity conditions together with geometric and code constraints. The solution becomes
complex because the evaluation of failure probabilities using first order reliability
methods (FORM) involves one optimization problem per failure mode, so that de-
composition methods are used to solve the problem. The proposed methods use
standard optimization frameworks to obtain the reliability indices and to solve the
global problem within a decomposition scheme. An advantage of these approaches
is that the optimization procedure and the reliability calculations are decoupled. In
addition, a sensitivity analysis is performed using a method that consists of trans-
forming the data parameters into artificial variables and using the dual associated
variables. To illustrate the methods, a breakwater design example is used.
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1 INTRODUCTION AND MOTIVATION

Design of structural elements in engineering is normally done by an iterative
process, which usually requires practical experience. In each iteration, the
engineer or the computer selects the values of design variables or parameters
and checks that the safety and functionality constraints are satisfied. This
process is repeated until a safe and cost reasonable structure is obtained.

Optimization procedures are a good solution to free the engineer from the
above mentioned cumbersome iterative process, i.e., to automate the design
process [1]. In this case, the values of the design variables are given by the
optimization process and the engineer can fully concentrate on fixing the con-
straints, defining the objective function to be optimized, and analyzing the
resulting structure.

Safety of structures is the most fundamental criterion for design. To this end,
the engineer first identifies all failure modes of the work being designed and
then establishes the safety constraints to be satisfied. To ensure satisfaction
of the safety constraints, two approaches are normally used: (a) the classical
safety-factor approach, and (b) the probability-based approach:

(1) The classical approach is based on safety-factors, which are used to guar-
antee the required safety of the structures to be designed.

A classical design fixes the values of the safety-factors and chooses
the values of the design variables to satisfy these safety conditions. The
greater the damage associated with the failure mode, the greater the level
of safety required for this mode. All the variables involved are assumed
to be deterministic and initially random variables are fixed to particular
quantiles, i.e, mean value or characteristic values.

(2) The probability-based approach works with probabilities of failure. Nor-
mally, a global probability of failure is used as the basic design criterion.
However, working with failure probabilities is difficult because (a) it re-
quires the definition of the joint probability of all variables involved, and
(b) the evaluation of the failure-probability is not an easy task. The prob-
lem becomes even more difficult if several failure modes are analyzed, be-
cause the system failure region is the union of the different failure mode
regions, and regions defined as unions are difficult to deal with because
of their irregular and non-differentiable boundaries [2]. As an alternative
design criterion, the probabilities of failure for the different modes can be
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used independently. Nevertheless, one may easily obtain upper and lower
bounds for the system failure-probability [3].

A probability-based design checks that the selected design leads to
failure probabilities below given upper bounds. Some or all the variables
involved are assumed to be random.

In engineering design two main philosophies exist, “Deterministic Structural
Optimization” (DSO), where the safety is accomplished using safety factors,
and “Reliability-Based Structural Optimization” (RBSO), where the random
character of the variables involved is considered through density functions. In
the last few decades, there has been considerable research focusing on these
topics, for example, Der Kiureghian [4], Geyskens [5], Sorensen and Faber [6],
Neuenhofer and Zilch [7], Parkat al. [8], Zhang and Der Kiureghian [9], Polak et
al. [10], Royset et al. [11], Enevoldsen [12], Enevoldsen and Sorensen [13]. For
an exhaustive review see Frangopol [14]. In these works, different approaches
are proposed, such as minimizing the cost subject to safety constraints using
safety-factors, maximizing utility, and considering the expected cost during
the lifetime of the structure, which allows maintenance and repair costs, etc.
to be included.

In this paper, based on these approaches four bi-level reliability types of design
problems are considered:

(1) The failure-probability safety-factor method (FPSF). Classic engineers
criticize the probabilistic approach because of its sensitivity to statisti-
cal hypotheses, especially tail assumptions [15,16]. Similarly, probability-
based engineers question classical designs because it is not clear how far
their designs are from failure. To avoid the lack of agreement between
defenders of both approaches, and to obtain a more reliable design the
combined safety-factors and failure-probability constraints method has
been proposed [17,18].

(2) Design methods based on minimizing initial/construction costs. Other au-
thors minimize initial/construction costs subject to probability bounds
for all failure modes, without considering the classical approach based on
safety-factors [19,18,20].

(3) Design methods based on total costs. Some authors go further including in
their reliability-based design problems the total cost (construction, main-
tenance and repairs) where the objective function itself depends on the
probabilities of failure for each failure mode, so that these probabilities
are also variables of the problem [13,21].

(4) Design methods based on the mixed approach. In this paper a new method
combining the three previous approaches is considered, so that the most
restrained safety conditions between different approaches prevail.

The main problem of all these approaches is that the failure probabilities
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needed to establish the corresponding bounds, or to get the value of the ob-
jective function if repair is included, are the solution of optimization problems
themselves (using FORM). Since the failure-probability bounds cannot be
directly imposed in the form of standard constraints, use of optimization pro-
grams is not straightforward, and special methods are needed. In particular,
several decomposition iterative schemes to solve the problem [22] are pro-
posed. In this way these problems are solved in a distributed solution, which
allows us to solve large problems which cannot be dealt with using traditional
optimization routines.

In this paper a review of some decomposition techniques previously given by
the authors is presented and a new variant is investigated. To illustrate the
methods, a completely new example of a breakwater is used. In particular, we
wish to clarify that this paper is not a state of knowledge on decomposition
techniques used in reliability problems.

In addition to requiring optimal solutions to problems, some interest is shown
by people in knowing how sensitive the solutions to the assumed data values
are. A sensitivity analysis provides excellent information on the extent to
which a small change in the parameters or assumptions (data) modifies the
resulting design (geometric dimensions, costs, reliabilities, etc.).

Because sensitivity analysis and decomposition techniques are very closely re-
lated, in this paper, in addition to presenting several decomposition techniques
for solving different bi-level reliability-based optimization problems, tools to
perform a sensitivity analysis are provided.

Note that these methods present some limitations with respect to other avail-
able methods existing in the literature: (a) they are limited to problems where
the failure modes are considered independent, thought approximate bounds
on the system probabilities could be added easily, and (b) it uses FORMS
to obtain the failure probabilities. Note that second order reliability methods
(SORM, [23–27], etc.) could be included, but it would make the formula-
tion of the problem more complicated and fuzzier because curvature of the
failure region must be obtained. The proposed methods are intended to facili-
tate the use of optimization frameworks when solving the RBO problem once
constraints have been defined. On the other hand, the use of importance sam-
pling (see [28] and [29]) methods to obtain the probabilities of failure is not
an appropriate method at the design stage because the sensitivities of those
probabilities of failure with respect the design variables are more difficult to
obtain. It could, however, be an excellent method to check the effectiveness
of the design solution and the individual failure mode bounds on the global
probability of the design given by the approximate methods proposed.

The paper is structured as follows. In Section 2 the different reliability-based
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design models are introduced and the description of the decomposition tech-
niques for solving the different models is shown. In Section 3 the technique
for performing a sensitivity analysis is explained. In Section 4 an illustrative
example is shown. Finally, Section 5 gives some conclusions.

2 RELIABILITY-BASED OPTIMIZATION

In this section we introduce some basic concepts that are needed to understand
the subsequent material.

The design and reliability analysis of an engineering work involves a number
of random variables (X1, . . . , Xn). These include geometric variables, material
properties, loads, etc. They belong to an n-dimensional space, which can be
divided into two regions, the safe S and the failure F regions:

S ≡ {(x1, x2, . . . , xn)|g(x1, x2, . . . , xn; F 0) ≥ 0},

F ≡ {(x1, x2, . . . , xn)|g(x1, x2, . . . , xn; F 0) < 0},
(1)

where g(x1, x2, . . . , xn; F 0) can be related to the non-dimensional ratio of two
opposing magnitudes, such as stabilizing to overturning forces, strengths to
ultimate stresses, etc. and F 0 = 1 is the global safety-factor. Since the con-
straint g(x1, x2, . . . , xn; F 0) = 0 defines the limit state, to increase safety, the
constant F 0 is normally replaced by a larger constant, F 0 > 1. If m different
modes of failure are considered, the problem modifies to

Si ≡ {(x1, x2, . . . , xn)|gi(x1, x2, . . . , xn; F 0
i ) ≥ 0}, (2)

where i = 1, 2, . . . ,m.

One must distinguish between design values (those designed by the engineer),
which in this paper are assumed to be the expectations (E(Xi) or x̄i) or
characteristic values (x̃i), of the random variables Xi : i = 1, 2, · · · , n, and
actual values xi (those existing in reality). Some of these expectations are
chosen by the engineer or the design codes, and some are selected by the
optimization procedure to be presented.

It is important and clarifying to classify the set of variables involved in an
engineering design problem into the following four subsets:

d: Optimization design variables. These are the design variables the param-
eters of which are to be chosen by the optimization program to optimize
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the objective function (minimize the cost function, etc.). They define the
dimensions of the work being designed, such as height, diameter, thick-
ness, length, width, cross sections, etc.

η: Non-optimization design variables. These are the set of variables the mean
or characteristic values of which are fixed by the engineer or the code and
must be given as data to the optimization program. Some examples are
costs, material properties (unit weights, strength, Young modula, etc.),
and other geometric dimensions of the work being designed.

κ: Random model parameters. These are the set of parameters defining the
random variability and dependence structure of the variables involved.
For example, standard deviations, correlation coefficients, etc.

ψ: Auxiliary or non-basic variables. These are auxiliary variables the values
of which can be obtained from the basic variables d and η, using certain
formulas. They are used to facilitate the calculations and the statement
of the problem constraints.

It should also be noted that variables in sets d and η are considered random,
and, therefore, the corresponding means of d will be denoted d̄, and the mean
or the characteristic values of η is denoted η̃. In this paper deterministic
variables are considered as particular cases of random variables.

Thus, the most general reliability-based design problem can be stated as fol-
lows:

minimize
d̄

c(d̄, η̃) + cpf
(β), (3)

subject to

gi(d̄, η̃,ψ; F 0
i )≥ 0; ∀i ∈ I (4)

βi(d̄, η̃,κ)≥ β0
i ; ∀i ∈ I (5)

h(d̄, η̃) =ψ (6)

rj(d̄, η̃,ψ)≤ 0; ∀j ∈ J, (7)

where the bars and tildes refer to mean and characteristic values of the vari-
ables, respectively, c(d̄, η̃) is the initial construction cost, cpf

(β) is the main-
tenance or repair function which depends on reliability indices β (related to
the probabilities of failure), (4) are the limit state equations related to the
different failure modes based on global safety-factors F 0

i , (5) are constraints
that fix the lower bounds on the reliability indices βi (this constraint could be
expressed in terms of probabilities of failure), (6) are the equations that allow
the auxiliary variables ψ to be obtained from the basic variables d̄ and η̃,
and the ri in (7) are the geometric or code constraints. Note that in the most
general case problem (3)-(7) uses mean or characteristic values of the random
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variables involved, and its solution provides mean or characteristic values of
the design variables.

Rather than use approximate (and numerical) methods to perform the inte-
gration required to obtain the probabilities of failure, the FORM approach is
used. This method has been widely utilized in engineering design [30], [31],
[32], [33], [34], etc. It consists of transforming the integration problem into an
optimization problem:

βi(d̄, η̃,κ) = Minimum
di,ηi

βi =

√

n
∑

j=1
z2

j (8)

subject to

gi(di,ηi,ψ; 1) = 0 (9)

T (di,ηi; d̄, η̃,κ) = z (10)

h(di,ηi) =ψ, (11)

where di and ηi are the design points associated with the design d and η ran-
dom variables for failure mode i, (9) is the limit state condition defining strict
failure (F 0

i = 1), and (10) is the usual transformation [35,36] that converts
di and ηi into the standard independent normal random variable set z with
components (z1, z2, . . . , zn).

The probability of failure pf is related to the reliability indices by the approx-
imate relation pf = Φ(−β), where Φ(·) is the cumulative distribution function
of the standard normal random variable.

Thus, depending on the equations considered in problem (3)-(7), different
decomposition techniques exist to solve the problem.

2.1 The failure-probability safety-factor method

To incorporate the advantages of both the optimal classic design and the
optimal probability design, in this section the failure-probability safety-factor
(FPSF) method is presented and solved by an iterative scheme (see [17]).

As indicated previously, the target of the FPSF method is:

Minimize
d̄

c(d̄, η̃) (12)

subject to constraints (4)-(7), where the cost term related to the probability
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of failure has been removed from the objective function. The method used
to solve this problem, which is presented in this section, proceeds within an
iterative scheme as follows:

Step 1. Solving the master problem.

An optimal classic design based on the safety-factor lower bounds using a
first-order approximation of constraint (5) is done. In other words, problem
(12), (4)-(7) is solved replacing (5) by the following constraint:

β
(k)
i +λ

(k)T

i (d̄−d̄
(k)

) ≥ β0
i ; i ∈ I, (13)

where λ
(k)T

i is the vector of the partial derivatives of β
(k)
i with respect to d̄

(k)
,

which will be obtained below from the dual variables of the problem, and
k = ν − 1, where ν refers to the iteration number.

This problem is called the master problem. The result of this process is a set of

values of the design variables for the actual iteration (d̄
(ν)

), which satisfy the
safety-factor constraints (4), the geometric and code ones (7) and an approxi-
mation of the reliability constraints (5). Note that this method is analogous to
the successive linear programming (SLP) approach for solving nonlinear pro-
gramming problems [37], where only the reliability constraints are linearized
at every iteration.

Step 2. Evaluating new β-values (subproblems).

The actual β-values associated with all modes of failure are evaluated, based
on the values of the design variables obtained in Step 1. To this end, the
problem (8)-(11) is solved for any i ∈ I including the constraint:

d̄ = d̄
(ν)

: λ(ν), (14)

where the colon after a constraint is used in this paper to indicate the dual
variables associated with the constraint, that is, λ is the dual variable related
to constraint (14), which provides the sensitivity (partial derivative) of the
reliability index with respect to the actual values of the mean or characteristic

design variable values (d̄
(ν)

). These derivatives are used to build constraint (13)
for the next iteration.

In this step as many optimization problems as the number of modes of failure
are solved, and the design points or points of maximum likelihood d∗

i and η∗

i

for each mode of failure I are also obtained.

Step 3: Convergence checking.
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If the relative change in the solution is smaller than a pre-specified threshold,

i.e., if the norm ||d̄
(ν)

− d̄
(ν−1)

|| ≤ ε, the process stops and the optimal solution
has been found, otherwise the procedure continues in Step 1.

The process of solving iteratively these two problems is repeated starting from
ν = 0 and increasing the value of ν in one unit, until convergence of the
solution is obtained. Note that at iteration ν = 0 there is no hyperplane
approximation (13) of constraint (5). This solution is a lower bound of the
global problem because it is less constrained.

It should be noted that replacing (5) by (13) relaxes problem (12), (4)-(7) in
the sense that functions βi(·) are approximated using cutting hyperplanes.

Once the convergence of the process has been attained, one can calculate:

(1) The actual safety-factors Fi because the values F 0
i are only lower bounds,

but not actual values.
(2) The actual failure mode probabilities.

Finally, a Monte Carlo simulation using importance sampling can be per-
formed to check the goodness of the approximations and the correlation be-
tween different failure modes, i.e., system probabilities of failure.

In Appendix A, the convergence problem of the iterative method is discussed.

2.2 Cost function depending on the probability of failure

Alternatively, the design can be based on minimizing the expectation of the
total cost. The objective function consists of two components that describe
the construction costs as a function of design variables, and the expected costs
of failure [21]:

Minimize
d̄

c(d̄, η̃) + cpf
(β) (15)

subject to (6)-(7), where constraints related to the safety-factor and reliability
index lower bounds are removed. The optimal solution of this problem also
provides the optimal values of the target reliability indexes.

Decomposition techniques [38], which have been already applied to reliability
optimization problems by [39], are ideal for solving this type of problem. How-
ever, one has to pay the price of iteration. With this technique, the complex
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Linear aproximations of
the expected cost function

(Benders cuts)

Solution of the 

master problem

d

Cost

d0 d1d2 d3d4

Design variables

λ0

λ1

λ2

λ3
Objective function values

α2

α3

α4

Fig. 1. Graphical illustration of how the expected cost function is approximated
using Benders cuts.

original problem is replaced by two simpler problems, which are solved iter-
atively. The first is the master problem (approximation of the original one)
and the second is the subproblem or subproblems (evaluation of the proba-
bilities of failure using FORM), so that the results of the subproblems are
being progressively taken into account in the master problem. The main idea
consists of approximating the expected cost function by an increasing number
of hyperplanes (see Figure 1).

The following iterative scheme based on Benders decomposition can be applied
to solve the problem (15), (6)-(7):

• Step 0: Initialization. First, the iteration counter ν = 1 is initialized,
the auxiliar variable α is set to its initial lower bound αlo and some initial
values for the mean or characteristic values of the design variables d̄ = d̄

(1)

are selected.

• Step 1: Subproblem solution. The subproblems, i.e., the problem (8)-
(11) is solved for any i ∈ I including the constraint:

d̄ = d̄
(ν)

: µ(ν), (16)
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i.e., in this step as many optimization problems as the number of modes of

failure are solved, where µ(ν) = ∂β(d̄
(ν)

, η̃,κ)/∂d̄
(ν)

are the dual variables
associated with constraint (16).

Next, evaluate the expected cost function in (15) which, hereinafter is

denoted as α(d̄
(ν)

):

α(d̄
(ν)

)) = c(d̄
(ν)

, η̃) + cpf
(β(ν)), (17)

representing the expected total cost for fixed values of the optimizing design
variables (see the corresponding gray shadow point of the expected total cost
function in Figure 1).

Next, the objective function (total expected cost) in (15) is approximated
using the derivatives of the objective cost function, which are obtained using
the chain rule as follows:

λ(ν) =
∂c(d̄

(ν)
, η̃,ψ)

∂d̄
(ν)

+
∂cpf

(β(ν))

∂β(ν)
µ(ν)T

. (18)

Note that these values correspond to the slopes of the approximating hy-
perplanes in Figure 1.

• Step 2: Convergence checking. First, an upper bound of the objective

function optimal value is computed as z(ν)
up = α(d̄

(ν)
), taking into account

that function (17) is more constrained than the objective function of the
original problem (15), (6)-(7) in the sense that the optimization variables
are fixed for the actual iteration. Similarly, a lower bound of the objective

function optimal value is obtained by z
(ν)
down = α. Then, if

∣

∣

∣

∣

∣

∣

z(ν)
up − z

(ν)
down

z
(ν)
up

∣

∣

∣

∣

∣

∣

is lower than the tolerance ε, the procedure stops, otherwise, it goes to
Step 3. An alternative stopping criteria could be used, that is, if the norm

||d̄
(ν)

− d̄
(ν−1)

|| ≤ ε.

• Step 3: Master problem solution for iteration ν. An approximation
of the original problem, the so-called master problem, where the objective
function is replaced by approximating hyperplanes is solved:

Minimize
d̄

α (19)

subject to

α≥α(d̄
(k)

) + λ(k)T

(d̄− d̄
(k)

); k ∈ K (20)

ψ= q(d̄, η̃) (21)

0≤h(d̄, η̃,ψ) (22)

α≥αlo, (23)
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where K = 1, · · · , ν − 1, obtaining the new values of the mean or charac-

teristic design variable values d̄
(ν)

(see the white shadow intersecting points
between hyperplanes in Figure 1). Note that the objective function of the
original problem in (15) is replaced by the linear approximations in (20)
(see the Benders cuts in Figure 1). As problem (19)-(23) is a relaxation of
the original problem (15), (6)-(7) the optimal solution of this problem (α)
is a lower bound of the objective function optimal value.

Let ν = ν + 1, and go to Step 1 and the process is repeated until conver-
gence.

The proposed algorithm provides the solution of the problem in a finite number
of iterations whenever the objective function is convex, otherwise, the proce-
dure fails to converge [40]. In Appendix B, the convergence of this algorithm
is proved.

2.3 Mixed approach

The last method consists of solving the most general reliability based problem
(3)-(7). In this case the algorithm is a combination of both algorithms pre-
viously stated in Subsections 2.1 and 2.2, where the Benders decomposition
algorithm is also used, replacing the master problem (19)-(23) by:

Minimize
d̄

α (24)

subject to

α≥α(d̄
(k)

) + λ(k)T

(d̄− d̄
(k)

); k ∈ K (25)

gi(d̄, η̃,ψ; F 0
i )≥ 0; ∀i ∈ I (26)

β
(k)
i +λ

(k)T

i (d̄−d̄
(k)

)≥ β0
i ; i ∈ I; k = ν − 1, (27)

ψ= q(d̄, η̃) (28)

0≤h(d̄, η̃,ψ) (29)

α≥αlo, (30)

where two additional constraints (26) and (27) have been included, which
correspond to the reliability constraints (5) linearized at every iteration and to
the constraint fixing the lower bounds of the global safety-factors, respectively.
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3 SENSITIVITY ANALYSIS

Sensitivity analysis is the study of how the variation in the output of a model
can be apportioned, qualitatively or quantitatively, to different sources of vari-
ation, and attempts to determine how the model depends upon the data or
information fed into it, upon its structure and upon the framing assumptions
made to build it. As a whole, sensitivity analysis is used to increase the con-
fidence in the model and its predictions, by providing an understanding of
how the model response variables respond to changes in the inputs. Adding a
sensitivity analysis to a study means adding quality to it.

Even though a sensitivity analysis is not a standard procedure, it is very
useful to (a) the designer, who can discover which data values have greater
influence on the safety and cost of the designed work, (b) to the builder, who
can learn how changes in prices or dimensions influence the total safety and
cost, and (c) to the code maker, who can find out the costs and reliability
changes associated with an increase or decrease in the required safety-factors
or failure probabilities they select. Below, a methodology is proposed and
which is simple, efficient and allows a simultaneous determination of all the
sensitivities. At the same time it is the natural way of evaluating sensitivities
when design is based on optimization procedures.

The sensitivity analysis problem in reliability based optimization has been
discussed by several authors, such as [41] or [42]. It is shown in this section
how duality methods can be applied to sensitivity analysis in a straightforward
and simple manner (see Castillo et al. [22,43,44]).

The proposed method is based on including additional variables and con-
straints fixing their value to the values of the parameters whose sensitivities
are sought, i. e.:

η = η̃ : ω. (31)

Because constraints (31) involve the data in their right hand sides, and the dual
variables ω are the sensitivities of the objective function value to changes in
the constraints right hand side terms, the desired sensitivities can be obtained
by printing the values of the corresponding dual variables. In other words, the
values of the dual variables associated with the constraints in (31), give how
much the objective function changes with a very small unit increase in the
corresponding data parameter.

This method can be applied to every optimization problem, either master or
subproblem, but for the total expected cost problem. In this case sensitivities

13



must be obtained using the chain rule analogously as in (18):

∂Cto

∂η
=

∂c(d̄, η̃,ψ)

∂η
+

∂cpf
(β)

∂β
ωT . (32)

where ω is the dual variable associated with constraint (31) included in the
subproblem (8)-(11).

4 APPLICATIONS

These methods have been successfully applied to different civil engineering
works, such as:

(1) A bridge crane design, retaining walls designed to hold back soil where
abrupt changes in ground elevation occur, a composite beam design, and
design of rubble-mound breakwaters, all of them minimizing the construc-
tion cost using the failure-probability safety-factor method [19,18,45].

(2) A composite breakwater design based on minimizing initial/construction
costs subject to yearly failure rate bounds for all failure modes [20].

(3) A composite breakwater design based on minimizing the total expected
cost during the lifetime of the structure [21]

(4) An application of decomposition techniques for solving the inverse relia-
bility problem [39].

In what follows a brief description of how the proposed methods for the
reliability-based optimization of a rubblemound breakwater considering over-
topping failure can be used, is described.

Consider the construction of a rubblemound breakwater (see Figure 2) to
protect a harbor area from high waves during storms. The crest must be high
enough to prevent the intrusion of sea water into the harbor by overtopping.
For simplicity, only overtopping failure is considered.

The goal is to compare an optimal design of the breakwater based on the
different proposed methods.

The construction Cco and insurance cost Cin functions are: Cco = ccvc + cava,
and Cin = 5000+1.25×106PD2

f , respectively, where vc and va are the concrete
and armor volumes, respectively, cc and ca are the respective construction
costs per unit volume, and PD

f is the probability of overtopping failure during
the design sea state for a given breakwater lifetime, D.
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Fig. 2. Parameterized rubblemound breakwater used in the example.

With this approximation, overtopping (failure) occurs whenever the difference
between the maximum excursion of water over the slope, Ru, called wave run-
up, exceeds the freeboard Fc, i. e., if Fc − Ru < 0.

The set of variables and parameters involved in this problem can be par-
titioned into the subsets shown in Section 2: optimization design variables
d = {Fc, tan αs} whose values must be selected by the optimization proce-
dure that in this case are considered deterministic. Non-optimization design
variables η = {Au, Bu, Dwl, g,H, T, cc, ca}, which are used as data. In this set
the only random variables considered are the wave height H and period T .
Au and Bu are given coefficients depending on the armor units to calculate
run-up, Dwl is the design water level, and g is the gravity constant. The ran-
dom model parameters κ = {Hs, T̄ , dst} define the random variability of the
wave height and period within the design sea state, where Hs is the significant
wave height, T̄ is the mean period, and dst is the duration of a sea state. The
non-basic variables set is as follows ψ = {Ir, va, vc, Cco, Cin, Ru, L, d}, where Ir

is the Iribarren number, L is the wave length and d is the caisson height.

For a rubblemound breakwater of slope tanαs and freeboard Fc (see Figure
2), the most general reliability based design problem (3)-(7) consists of:

Minimize
Fc, tan αs

Cto = ccvc + cava + 5000 + 1.25 × 106PD2

f

subject to

Fc/Ru ≥F 0 (33)

PD
f ≤P 0

f , (34)
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Fc = 2 + d (35)

vc = 10d (36)

va =
1

2
(Dwl + 2)

(

46+Dwl+
Dwl + 2

tan αs

)

(37)

Ru

H̃
= Au

(

1 − eBuIr
)

(38)

Ir =
tan αs
√

H̃/L
(39)

(

2π

T̃

)2

= g
2π

L
tanh

2πDwl

L
(40)

Pf = Φ(−β) (41)

PD
f = 1 − (1 − Pf)

(dst/T̄ ) (42)

1/5≤ tan αs ≤ 1/2 (43)

where constraints (33) and (34) correspond to (4) and (5), respectively. Note
that (34) is written in terms of failure probabilities. Constraints (35)-(42) cor-
respond to (6), and (43) corresponds to the geometric constraint (7). The ran-
dom variable values for this particular problem are equal to the characteristic
values H̃ = 1.8Hs and T̃ = 1.1T̄ . (38) is the equation, based on experiments,
which allows the run-up Ru to be evaluated, and Ir is the Iribarren number
given by (39) . Note that L is the wave length obtained from the dispersion
equation (40). The objective of this problem is to minimize the total expected
cost during lifetime fulfilling the reliability constraints given in terms of global
safety-factors (33) and reliability indexes (probabilities of failure) (34).

Alternatively, the designer must be interested in minimizing the construction
cost fulfilling the reliability constraints given in terms of global safety-factors
(33) and reliability indexes (probabilities of failure) (34), i.e., problem (12),
(4)-(7). In this case the objective function of the previous problem is replaced
by

Minimize
Fc, tan αs

Cco = ccvc + cava .

The last option considered corresponds to the minimization of the total ex-
pected cost during lifetime (15), (6)-(7). Note that the global safety-factor and
reliability constraints (33) and (34) and equations (38)-(40) needed to calcu-
late the run-up for given characteristic values of the random variables are
removed from this model. The objective of this problem is to get the values
of the design variables that minimize the total expected cost, and, therefore,
the optimal probability of failure is obtained as well.

In both models Pf is the probability of overtopping failure due to a single
wave, N = dst/T̄ is the mean number of waves during the design sea state for
lifetime D, and dst is its duration. These probabilities are obtained through
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the reliability index β solving the following optimization problem:

minimize
H,T

β =
√

z2
1 + z2

2 ,

subject to

Ru

H
= Au

(

1 − eBuIr
)

(44)

Ir =
tan αs
√

H/L
(45)

(

2π

T

)2

= g
2π

L
tanh

2πDwl

L
(46)

Φ(z1) = 1 − e−2(H/Hs)2 (47)

Φ(z2) = 1 − e−0.675(T/T̄ )4 (48)

Fc = Ru, (49)

where (44)-(46) correspond to (11). The basic random variables in this problem
are H and T , which are assumed to be independent; note that actual values
are used instead of characteristic values. The corresponding Rosenblatt trans-
formation (10) is given by (47)-(48) where z1 and z2 are independent standard
normal random variables, and (49) is the limit state equation forcing strict
failure.

Assuming the following values for the variables and parameters involved:

Dwl = 20 m; Au = 1.05; Bu = −0.67; cc = 60 $/m3;

ca = 2.4 $/m3; g = 9.81 m/s2; Hs = 5 m; T̄ = 10 s;

dst = 1 h; P 0
f = 0.001; F 0 = 1.2; ε = 10−3,

where ε is the tolerance, and using the methods proposed in Sections 2.1, 2.2
and 2.3, the above problems are solved.

The optimization problem has been solved using solver CONOPT [46] under
the General Algebraic Modeling System (GAMS) [47], which is a high-level
modeling system for mathematical programming and optimization. It consists
of a language compiler and a stable of integrated high-performance solvers.
GAMS is tailored for complex, large scale modeling applications, and makes
it possible to build large maintainable models that can be adapted quickly to
new situations.

The solution for all models is provided in Table 1. The failure-probability
safety-factor method converges in 8 iterations within the admissible tolerance.
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Table 1
Solution of the three different models for the illustrative example.

Iterations Fc tan αs β Pf PD
f F error

Mixed approach

16 5.971 0.239 4.680 1.46 × 10−6 5.26 × 10−4 1.303 8 × 10−4

Failure-probability safety-factor method

8 5.903 0.240 4.546 2.78 × 10−6 1 × 10−3 1.342 4 × 10−4

Expected cost

18 5.959 0.239 4.681 1.46 × 10−6 5.26 × 10−4 – 1 × 10−3

Note that the probability of failure during lifetime coincides with the max-
imum required tolerance P 0

f = 0.001, which means that constraint (34) is
active, whereas the value of the global safety-factor is F = 1.342, i.e., con-
straint (33) is inactive. This means that the reliability-based constraint is
more restrictive than the classical safety-factor equation. Construction cost is
C∗

co = $6508.29.

The solution that minimizes the total expected cost is C∗

co = $6552.85, C∗

in =
$5034.55, and C∗

to = $11587.41. Variable values are also provided in Table 1,
where the following optimal reliability values are obtained β∗ = 4.681; P ∗

f =
1.46 × 10−6 and PD

f
∗

= 5.26 × 10−4. Note that this design provides higher
construction costs, which implies lower probabilities of failure. In Figure 3 the
evolution of the lower and upper bound during the iterative process up to 15
iterations is shown. Note that bounds converge to the optimal solution in 18
iterations within the admissible tolerance.

The mixed approach provides almost the same values as the minimization of
the total expected cost because the additional constraints related to the lower
bounds on global safety-factors and reliability indexes are not active. To get
the same result, tolerance must be decreased.

With respect to the sensitivity analysis, the sensitivities of the reliability index
due to overtopping with respect the freeboard and the slope angle are:

Failure-probability safety-factor method:

∂β
∂Fc

= 1.70; ∂β
∂ tan αs

= −28.76; Fc
∂β
∂Fc

= 10.07; tan αs
∂β

∂ tan αs
= −6.89,

Total expected cost:

∂β
∂Fc

= 1.93; ∂β
∂ tan αs

= −32.84; Fc
∂β
∂Fc

= 11.51; tan αs
∂β

∂ tan αs
= −7.83,

(50)
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Fig. 3. Evolution of the objective function upper and lower bounds.

where the last two ones in every row are relative sensitivities. Note that on
increasing the freeboard Fc, the reliability index increases and the probabil-
ity of failure decreases, whereas on increasing the slope tanαs the reliability
index decreases and the probability of overtopping increases. Note also that
the probability of overtopping is more sensitive to the freeboard because the
relative sensitivity is higher.

The reliability of the solution given by the failure-probability safety-factor
method is more sensitive with respect to the slope angle and less sensitive with
respect to the freeboard than the total expected minimization solution because
the corresponding relative sensitivities are higher and lower, respectively.

With respect to cost sensitivities, the sensitivity of the construction cost with
respect to the reliability index lower bound for failure-probability safety-factor
method design is ∂Cco

∂β0
= 351.838, which means that one unit increase in the

reliability index lower bound β0 (lower probability of failure) increases the
construction cost by $351.838. The derivative of the total expected cost with
respect to the design water level using (32) is ∂Cto

∂Dwl

= 356.02, i.e., if the de-
sign water level is increased by 1 meter, the total expected cost increases by
$356.02.

5 CONCLUSIONS

In this paper a useful methodology has been presented which provides a ra-
tional and systematic procedure for automatic and optimal design of several
reliability-based optimization problems using decomposition techniques. The
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method is ideal for a sensitivity analysis, which can be easily performed by
transforming the input parameters into auxiliary variables, which are set to
their associated actual values.

Some additional advantages of the proposed method are:

(1) The method can be easily implemented using standard optimization frame-
works, such as GAMS, for example.

(2) It can be applied to different types of problems such as linear, non-linear,
mixed-integer problems. The designer merely needs to choose the ade-
quate optimization algorithm.

(3) The failure-probability safety-factor method for engineering design pro-
vides a double way of safety control, safety-factors and failure probabili-
ties, and interesting calibration possibilities for the classic and probability-
based designs.

(4) Since safety-factors and probabilities of failure are dealt with, the method
enables there to be communication between classical and probability-
based designers.

(5) The proposed method takes full advantage of the optimization packages,
in the sense that:
(a) It makes the solution of huge problems possible without the need to

be an expert in optimization techniques.
(b) The constraints need not be written in terms of the design variables.

Auxiliary or intermediate variables can be used.
(c) The cost function and the constraints need not be written in explicit

form, i.e. auxiliary variables and equations can be used to facilitate
the statement of the problem.

(d) The failure region need not be written in terms of the normalized
(transformed) variables. The transformation equation, in direct or
inverse form, is sufficient.

(e) The responsibility for iterative methods is given to the optimization
software.

(6) Sensitivity values are given, for free, if one converts the data values into
artificial variables, by printing the values of the dual problem.

(7) It leads to an automatic, optimal and designer independent design, i.e.,
the values of the design variables are given, not by the engineer, but by
the optimization process itself. Note that this statement does not mean
that engineering judgement is not needed anymore; on the contrary, it is
extremely important in order to establish the appropriate constraints on
the models.

(8) It makes a specific code calibration for each work being designed possible.

The proposed methods can be improved by using importance sampling and
SORMS (see Rackwitz [48], derKiureghian at al. [49]), which is the aim of
future research by the authors. Additionally, further research must be done
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regarding system reliability evaluations. Approximate methods, using the in-
formation contained in the solutions of the decoupled problems, such us those
proposed by [50] and [51], seem to be plausible alternatives for the coming
future.
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A Approximating Hyperplane Convergence Analysis

Problem (12), (4)-(7) can be reformulated in a simpler manner as follows:

minimize
x

f(x) (A.1)

subject to

hi(x) = 0; i = 1, . . . , ℓ (A.2)

gi(x)≤ 0; i = 1, . . . ,m, (A.3)

where x = (x1, . . . , xn)T is the vector of the decision variables, f : IRn → IR is
the objective function, and h : IRn → IRℓ and g : IRn → IRm are equality and
inequality constraints, respectively. Note that g(x) = (g1(x), . . . , gm(x))T are
the inequality constraints representing the reliability index bounds the evalu-
ation of which requires the solution of an optimization problem per constraint
(subproblems).

Considering that problem (A.1)-(A.3) is feasible and that the functions in-
volved are doubly continuously differentiable. The first-order KKT optimality
conditions for problem (A.1)-(A.3) require a primal solution x and two La-
grange multiplier vectors λ and µ associated with the equality and inequality
constraints, respectively, such that:

L(x,λ,µ) = ∇f(x) + λT∇h(x) + µT∇g(x) = 0 (A.4)

h(x) = 0 (A.5)

21



g(x)≤0 (A.6)

g(x)µT = 0 (A.7)

µ≥0. (A.8)

The Newton-Raphson method can be used to solve this system of equations,
establishing the first-order condition that equates the gradient to zero. Starting
from initial values xk, λk and µk, the search directions are obtained iteratively
solving the following system of equations:

∇2Lk(x− xk) + λT∇h(xk) + µT∇g(xk) =−∇f(xk) (A.9)

∇h(xk)(x− xk) =−h(xk) (A.10)

µi[gi(xk) + ∇gi(xk)
T (x− xk)] = 0; ∀i (A.11)

µ≥0. (A.12)

It can be shown [37] that if x∗, λ∗ and µ∗ is a regular KKT solution to the
original problem (A.1)-(A.3) satisfying the second-order sufficiency conditions
and if xk, λk and µk is initialized sufficiently close to the optimal solution,
then the foregoing iterative process will converge to the optimal solution.

If all the functions involved in the original problem (A.1)-(A.3) and their
gradients could be evaluated explicitly at every Newton step, the optimal so-
lution would be attained by iteratively solving system (A.9)-(A.12). However,
constraints g(xk) and ∇g(xk) at a given point xk are calculated by solv-
ing the subproblems (FORM), which are optimization problems themselves.
Then, the convergence values xk+1 satisfying (A.9)-(A.12) for fixed values of
g(xk) and ∇g(xk) are obtained solving the original problem but replacing
(A.3) by a linear approximation g(xk) + ∇g(xk)

T (x − xk), in this case the
convergence is achieved using an optimization algorithm. Equivalently, system
(A.9)-(A.12) could be solved iteratively for fixed values of g(xk) and ∇g(xk)
without re-evaluating this values at every Newton step.

For the new values of the variables xk+1, which are the optimal solution of
problem (A.1)-(A.3) but replacing (A.3) by a linear approximation, and solv-
ing the subproblems calculates a new linear approximation, i.e. g(xk+1) +
∇g(xk+1)

T (x−xk+1). Thus, the original problem using the new linear approx-
imation of the inequality constraints is solved, which is equivalent to getting
values such that they satisfy the system of equations:

∇2Lk+1(x− xk+1) + λT∇h(xk+1) + µT∇g(xk+1) =−∇f(xk+1) (A.13)

∇h(xk+1)(x− xk+1) = 0 (A.14)

µi[gi(xk+1) + ∇gi(xk+1)
T (x− xk+1)] = 0; ∀i (A.15)

µ≥0. (A.16)
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Solving the sequence of system of equations (A.9)-(A.12), (A.13)-(A.16) and
so on, is equivalent to solving the system of equations (A.9)-(A.12) where at
every Newton step the inequality constraints and their gradients are calculated
by solving the subproblems. If problem (A.1)-(A.3) is feasible and has a KKT
solution the approximate hyperplane algorithm converges to the same solution.

Note that extremely demanding reliability bounds, which are not physically
possible to fulfil, can potentially make problem (A.9)-(A.12) infeasible.

B Benders Decomposition Convergence Analysis

Problem (15), (6)-(7) can be reformulated in a simpler manner as follows:

minimize
x

f(x) (B.1)

subject to

hi(x) = 0; i = 1, . . . , ℓ (B.2)

gi(x)≤ 0; i = 1, . . . ,m, (B.3)

where x = (x1, . . . , xn)T is the vector of the decision variables, f : IRn → IR
is the objective function, and h : IRn → IRℓ and g : IRn → IRm.

In this case the objective function (B.1) cannot be straightforwardly evaluated
as it involves solving inner optimization problems. The master problem at
iteration k is:

Minimize
α,x

α (B.4)

subject to

α≥f(xk) + λT
k (x− xk); k ∈ K (B.5)

hi(x) = 0; i = 1, . . . , ℓ (B.6)

gi(x)≤ 0; i = 1, . . . ,m, (B.7)

where λk = ∇f(xk).

By definition, f(x) is convex if and only if f(y) ≥ f(x)+∇f(x)T (y−x) holds
for all x, y ∈ domainf(x). This condition is equivalent to constraint (B.5),
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then if k → ∞ this constraint reproduces exactly the original objective func-
tion in the optimal solution neighborhood, which means that both problems
are equivalent if and only if function f(x) is convex in the feasibility domain
defined by (B.2)-(B.3). In that case the original problem (B.1)-(B.3) and the
master problem (B.4)-(B.7) are equivalent and converge to the same solution.
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