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State Estimation Sensitivity Analysis
Roberto Ḿınguez, and Antonio J. Conejo,Fellow, IEEE

Abstract— Within energy management systems, state estima-
tion is a key function for building a network real-time model,
which is a quasi-static mathematical representation of the current
conditions in an interconnected network. The obtained model
is dependent on the assumptions, and sensitivity analysis can
be used to show how measurement schemes, transmission line
modeling and other parameters affect the quality of the state
estimation solution. This paper provides expressions to compute
all these sensitivities, and an example and a case study are used
to illustrate them.

Index Terms— Energy management system, Least square esti-
mation, Power system state estimation, Sensitivity analysis.

NOTATION

The main notation used throughout the paper is stated below
for quick reference. Other symbols are defined as required in
the text.

A. State variables

vi Voltage magnitude at busi.
θi Voltage angle at busi.

B. Dependent variables

Pi Active power injection at busi.
Qi Reactive power injection at busi.
Pij Active power flow from busi to busj.
Qij Reactive power flow from busi to busj.

C. Vectors

y Vector of state variables.
x Vector of variables.
a Data vector.

D. Functions

J(·) Quadratic measurement error function.

E. Measurements

vm
i Voltage magnitude measurement at busi.

Pm
i Active power injection measurement at busi.

Qm
i Reactive power injection measurement at busi.

Pm
ij Active power flow measurement from busi to j.

Qm
ij Reactive power flow measurement from busi to j.
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F. Weighting factors

wV
i Weighting factor for voltage measurement at busi.

wP
i Weighting factor for active power injection measure-

ment at busi.
wQ

i Weighting factor for reactive power injection mea-
surement at busi.

wP
ij Weighting factor for active power flow measurement

from busi to j.
wQ

ij Weighting factor for reactive power flow measure-
ment from busi to j.

G. Physical limits

Pmax
i Maximum active power generation at busi.

Qmax
i Maximum reactive power generation at busi.

Pmin
i Minimum active power generation at busi.

Qmin
i Minimum reactive power generation at busi.

H. Constants

xe Vector of variable estimates.
ytrue Vector of state variable true values.
Yij Elementij of the network admittance matrix,Y .
Gij Real part ofYij .
Bij Imaginary part ofYij .
bs
ij Total shunt susceptance of theπ equivalent model

of the line connecting nodesi and j.

I. Sets

Ωi Set of buses adjacent to busi.
Ω0 Set of transit nodes associated with zero injections.
ΩV Set of buses with available voltage magnitude mea-

surements.
ΩPc

Sets of buses with available active power injection
measurements, where subindexc = g, d, b refers to
only generation, only demand and both.

ΩQc
Sets of buses with available reactive power injection
measurements, where subindexc = g, d, b refers to
only generation, only demand and both.

ΩPF
Set of lines with available active power flow mea-
surements.

ΩQF
Set of lines with available reactive power flow
measurements.

ΩI Set of active inequality constraints.

J. Numbers

n Number of variables.
ns Number of state variables.
m Number of measurements.
l Number of equality constraints.
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p Number of the elements of data vectora.
r Number of inequality constraints.
rΩI

Cardinality ofΩI , i.e., the number of active inequal-
ity constraints.

K. Indices

i, j, k Indices used for buses, lines, and equality and in-
equality constraints.

L. Operators

∇x Gradient or Jacobian with respect tox.
∇xx Hessian with respect tox.
∇xa Hessian with respect tox anda.

It should be noted that a variable, function or parameter
written in bold without index is a vector form representing
the corresponding quantities. For example, the symbolθ

represents the vector of bus voltage angles.

I. I NTRODUCTION

A. Motivation

Owing to the complexities of operating large, interconnected
networks, electric companies use modern Energy Management
System (EMS). The purpose of an EMS is to monitor, con-
trol, and optimize the transmission and generation facilities
with advanced computer technologies. The aim of the state
estimation (SE) function is to obtain the best estimate of the
current system state processing a set of real-time redundant
measurements and network parameters available in the EMS
database. The performance of the state estimator, therefore,
depends on the accuracy of the measurements as well as on
the parameters of the network model. The measurements are
subject to noise or errors in the metering system and the com-
munication process. Network parameters such as impedances
or shunt susceptances of transmission lines may be incorrect
as a result of inaccurate manufacturing provided data, errors in
calibration, etc. In addition, due to the potential lack of field
information, transformer tap positions may be erroneous. All
these types of errors can severely impact the quality of the
estimate provided by the state estimator. Thus, a fundamental
question arises: How the estimation changes as measurements
and parameters change? Answering rigorously this questionis
the subject and novel contribution of this paper.

B. Aim

We analyze changes in the estimated state variables and the
estimation error with respect to different constants, suchas
measurements, measurement weights and network parameters.
Changes in the state estimation as data marginally vary provide
insight on the characteristics of the estimate of the current
system state. This analysis is useful to assess the relevance for
the estimation of each constant (measurement, measurement
weight or parameter). However, note that sensitivities provide
information for small changes, not for large changes.

C. Literature review

The problem of sensitivity analysis in nonlinear program-
ming has been discussed by several authors, as, for example,
[1]-[4]. In the derivations below, we use results reported in [2]
and [4], based on differentiation of the Karush-Kuhn-Tucker
conditions.

Concerning state estimation, pioneering paper [5], published
in the seventies, clearly defines the problem addressed in this
paper and points out its relevance. However, the proposed
approach is based on numerical finite differences and therefore
its scope is rather limited with respect to the technique
advocated in this paper. The trajectory sensitivity analysis [6]
is laterally related with the methodology proposed in this paper
as well as paper [7] that addresses sensitivities of the residuals
with respect to branch flows.

An application of sensitivity analysis within the context of
an optimal power flow is carried out in [8]. The work in [8]
provides a sensitivity analysis of market clearing prices (dual
variables) with respect to economical constants and parameters
using the sensitivity methodology described in [2] and [4].
The methodology developed in this paper applies the same
sensitivity methodology as [8] but to a quite different problem:
state estimation; particularly, it derives and discuss sensitivities
of the error (objective function) and optimal estimates (primal
variables) with respect to physical constants. Some preliminary
results on state estimation sensitivity can be found in [9].

Background on state estimation can be found, for instance,
in [10] and [11].

D. Paper organization

This paper is organized as follows. Section II provides the
considered state estimation formulation. Section III presents
the analytical expression used to compute the sensitivities.
Section IV gives results from an illustrative example to demon-
strate the functioning of the expressions derived. SectionV
gives results from a case study based on the IEEE Reliability
Test System [12]. Section VI provides some relevant conclu-
sions.

II. STATE ESTIMATION FORMULATION

Consider the nonlinear measurement model:

z = h(ytrue) + e, (1)

wherez is the vector of measurements,ytrue is the true state
vector,h is a nonlinear function vector relating measurements
to states, ande is the measurement error vector. There arem
measurements andns state variables,ns < m.

In general, the state estimation problem can be formulated
as an optimization problem including equality and inequality
constraints as:

minimize
x

J(x,a) subject to

{

c(x,a) = 0 : λ

g(x,a) ≤ 0 : µ,
(2)

where x ∈ IRn, a ∈ IRp, J(x) is a scalar function of the
estimation error,c(x,a) = (c1(x,a), . . . , cℓ(x,a))T are the
equality constraints representingexact pseudo-measurements
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(zero injections) and power flow quantities (dependent vari-
ables),g(x,a) = (g1(x,a),. . ., gr(x,a))T are inequality con-
straints normally used to represent physical operating limits in
the network, andλ andµ are the Lagrange multiplier vectors
for equality and inequality constraints, respectively.

Note that nodal voltages and angles are considered as state
variables. Power flows in branches are dependent variables and
can be determined from the state variables.

For the derivation of the proposed state estimation sensi-
tivity analysis, the weighted least squares (WLS) error with
its associated hypothesis [13] is considered as the objective
function. We use this objective function for illustration pur-
poses. However, different objective functions including more
robust estimators could be used and the method to be presented
would remain valid. The only condition for this method to be
applied is that the problem has to be stated as an optimization
problem, and its solution must hold the KKT conditions [14].

The weighted measurement quadratic error function is:

J(x,a) =
∑

i∈ΩV

wV
i (vm

i − vi)
2

+
∑

i∈ΩPc

wP
i (Pm

i − Pi)
2 +

∑

i∈ΩQc

wQ
i (Qm

i − Qi)
2

+
∑

(i,j)∈ΩPF

wP
ij(P

m
ij − Pij)

2 +
∑

(i,j)∈ΩQF

wQ
ij(Q

m
ij − Qij)

2.

(3)
Active and reactive power injections and flows are included

as equality constraints:

Pi = vi

∑

j∈Ωi

vj (Gij cos(θi − θj) + Bij sin(θi − θj)) ,

i ∈ {ΩPg
∪ ΩPd

∪ ΩPb
∪ Ω0}. (4)

Qi = vi

∑

j∈Ωi

vj (Gij sin(θi − θj) − Bij cos(θi − θj)) ,

i ∈ {ΩPg
∪ ΩPd

∪ ΩPb
∪ Ω0}. (5)

Pij = vivj(Gij cos(θi − θj) + Bij sin(θi − θj))

−Gijv
2
i , (i, j) ∈ ΩPF

. (6)

Qij = vivj(Gij sin(θi − θj) − Bij cos(θi − θj))

+v2
i (Bij − bs

ij/2), (i, j) ∈ ΩQF
. (7)

For the sake of simplicity shunt elements are not considered
in (4)-(7).

Virtual measurements are modeled as explicit constraints in
the estimation problem asPi = 0 andQi = 0, i ∈ Ω0.

Additionally, physical limits, such as minimum and max-
imum reactive power generation and angle extreme values,
can also be enforced as inequality constraints to improve the
representation:

Pmin
i ≤ Pi ≤ Pmax

i , i ∈ ΩPg
(8)

Qmin
i ≤ Qi ≤ Qmax

i , i ∈ ΩPg
(9)

θmin ≤ θ ≤ θmax, (10)

where constraints (8), (9) and (10) are bounds on active
power injections, reactive power injections, and voltage angles,
respectively. Usually, the angle extreme values are taken as
(−π,+π).

Note that vectorx includes all variables (v, θ, P , Q,
P F , QF ) and vectora could include all data (wV , vm,wP ,
P m, wQ, Qm, wPF , P m

F , wQF , Qm
F ,G, B, bs, P max,

P min, Qmax, Qmin, θmin, θmax). Note that the subscript F
indicates flow quantity. Equality constraints include (4)-(7) and
inequality constraints (8)-(10).

Considering the above formulation it is possible to evaluate
the derivatives:

∂Pi

∂a
; i ∈ ΩP ,

∂Qi

∂a
, i ∈ ΩQ,

∂Pij

∂a
; (i, j) ∈ ΩPF

,
∂Qij

∂a
, (i, j) ∈ ΩQF

.

(11)

In general, we develop analytical expressions to compute
the sensitivities ∂J

∂a and ∂x
∂a , that is, the sensitivities of

the estimation error and the estimates with respect to the
data, respectively. Nevertheless, any other sensitivity can be
obtained using the procedure described in Section III.

III. G ENERAL SENSITIVITY EXPRESSIONS

A. Optimality Conditions

Considering appropriate regularity assumption1 (see [14]
or [15]) on problem (3)-(10) at its optimal solution
(xe,λ∗,µ∗, J∗), the Karush-Kuhn-Tucker (KKT) first order
optimality conditions are:

∇xJ(xe,a) +

ℓ
∑

k=1

λ∗

k ∇xck(xe,a)

+

r
∑

j=1

µ∗

j ∇xgj(x
e,a) = 0 (12)

ck(xe,a) = 0, k = 1, 2, . . . , ℓ (13)

gj(x
e,a) ≤ 0, j = 1, 2, . . . , r (14)

µ∗

j gj(x
e,a) = 0, j = 1, 2, . . . , r (15)

µ∗

j ≥ 0, j = 1, 2, . . . , r . (16)

Conditions (13)-(14) arethe primal feasibility conditions,
conditions (15) are thecomplementary slackness conditions,
and conditions (16) impose the nonnegativity of the multipliers
of the inequality constraints, and are referred to as thedual
feasibility conditions.

Unlike common practice in state estimation, the proposed al-
gorithm is directly based on solving an optimization problem.
We advocate this approach due to the versatility, efficiency
and robustness of currently available optimization software.
We emphasize that the available optimization codes efficiently
account for sparsity and possible numerical ill-conditioning.
Nevertheless, the solution of the estimation problem could
be obtained using any of the available direct methods in
the literature [13]. As the proposed sensitivity analysis needs
information about the dual problem, the only previous step
to the sensitivity study is to obtain the dual variables solving
the linear system of equations constituted by equations (12),
(15) and (16). If regularity conditions hold the solution ofthis
system of equations is unique.

1For a given optimization problem, regularity entails that thegradient
vectors of the binding constraints at a solution are linearly independent.
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B. Feasible Perturbation

To obtain sensitivity equations, we perturb or modifyxe, a,
λ∗, µ∗, J∗ in such a way that the KKT conditions still hold
[4]. Thus, to obtain the sensitivity equations we differentiate
the objective functionJ(x,a) and the optimality conditions
(12)-(16), as follows:

[∇xJ(xe,a)]
T

dx + [∇aJ(xe,a)]
T

da − dJ = 0 (17)
[

∇xxJ(xe,a)+

ℓ
∑

k=1

λ∗

k∇xxck(xe,a) +

rΩI
∑

j=1

µ∗

j∇xxgj(x
e,a)



 dx +

[

∇xaJ(xe,a) +

ℓ
∑

k=1

λ∗

k∇xack(xe,a) +

rΩI
∑

j=1

µ∗

j∇xagj(x
e,a)



 da +

∇xc(xe,a)dλ + ∇xg(xe,a)dµ = 0 (18)

[∇xc(xe,a)]T dx + [∇ac(xe,a)]T da = 0 (19)

[∇xgj(x
e,a)]T dx + [∇agj(x

e,a)]T da = 0

if µ∗

j 6= 0, j ∈ ΩI , (20)

where all the matrices are evaluated at the optimal solution,
xe, λ∗, µ∗, J∗. It should be noted that the derivation above
is based on results reported in [4].

Once an optimal solution of the estimation problem is
known, binding inequality constraints are considered equality
constraints and non-binding ones are disregarded. Note that
this is appropriate as our analysis is just local. We assume local
convexity around an optimal solution, which might not implya
globally optimal solution. Note also that inequality constraints
(8)-(10) have generally a small influence in the solution of
the state estimation problems and the associated sensitivities
as equality constraints (4)-(7) tightly condition that solution.
Inequality constraints merely enforce that physical limits are
not slightly violated and therefore they can be included or not
in the formulation.

Considering binding inequality constraints as equality con-
straints, the linear system of equations (17)-(20) can be
expressed in matrix form as follows:











Fx | Fa | 0 | −1

Fxx | Fxa | CT
x | 0

Cx | Ca | 0 | 0



















dx

da

dλ

dJ









= 0, (21)

where the vectors and submatrices in (21) are defined in
Appendix I.

C. Sensitivity Expressions

To compute sensitivities with respect to the components of
the data vectora, system (21) can be written as

U [ dx dλ dJ ]
T

= S da , (22)

where the matricesU andS are

U =







Fx | 0 | −1

Fxx | CT
x | 0

Cx | 0 | 0






(23)

ST = − [ Fa Fxa Ca ] (24)

and therefore
[

dx dλ dJ
]T

= U−1S da . (25)

Replacingda by thep-dimensional identity matrixI in (25)
the matrix with all derivatives with respect to data is obtained

[

∂x

∂a

∂λ

∂a

∂J

∂a

]T

= U−1S . (26)

Expression (26) allows deriving sensitivities of the vari-
ables, the multipliers (dual variables) and the objective func-
tion with respect to all parameters.

Considering matrices

Hx =

[

Fxx | CT
x

Cx | 0

]

andHa =

[

Fxa

Ca

]

,

whereHx is symmetrical, expression (26) can be solved as
follows:

[

∂x

∂a

∂λ

∂a

]T

= −H−1
x Ha (27)

∂J

∂a
= Fa + Fx

∂x

∂a
. (28)

It should be noted that matricesU and Hx are generally
invertible as power flow equations (4)-(7) and binding physical
limits (8)-(10) are regular, non-degenerated constraints. More-
over, extensive numerical experiments show a good numerical
behaviour of matricesU and Hx for the state estimation
problem, provided that the state is observable and regardless
of the number of measurements. Note also that matricesU

and Hx are highly sparse as a result of the sparsity of its
building blocks (see (23)) and it is easily factorized using
sparse-oriented LU algorithms.

IV. I LLUSTRATIVE EXAMPLE

A. Description

The 6-bus power system depicted in Fig. 1 is considered
in this section [16]. The data for this system is provided in
Appendix II.

The measurement configuration shown in Fig. 1 provides
a measurement redundancy ratio of1.82 (measurements are
given in Appendix II). Measurements are synthetically gener-
ated by adding randomly generated gaussian errors to the true
values.

For simplicity, only two different values for the standard
deviations of the measurements are used:0.01 for voltage
measurements and0.02 for flow and injection measurements.
These values correspond to weights of 10000 and 2500,
respectively.

This example includes generating buses (ΩPg
= {1, 2, 3}),

demand buses (ΩPd
= {4, 5, 6}), but no transit buses (Ω0 = ∅).



SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS 5

Bus 3

(GENCO 2)

Bus 2
(GENCO 3)

(ESCO 3)

(ESCO 1)

(ESCO 2)

Bus 4

Bus 5

(GENCO 1)

Bus 1

Bus 6

Active power injection

Voltage Active power flow

Reactive power flow

Fig. 1. Six-bus system and available meters.

The WLS state estimation problem (3)-(10) is solved for
this example and the results obtained reported and discussed
below.

The optimal error provided by the state estimator isJ(xe) ≈
8.71 holding theχ2-test for bad data detection with a confi-
dence probability of 95%:J(xe) < χ2

9,0.95 =⇒ 8.13 < 16.92.
Table I provides the measurements, the true values and the
estimates of the state variables.

TABLE I

OPTIMAL ESTIMATION SOLUTION

Bus vm
i vtrue

i ve
i θtrue

i θe
i

# (p.u.) (p.u.) (p.u.) (rad) (rad)
1 1.097 1.100 1.095 0.000 0.000
2 1.103 1.100 1.096 -0.047 -0.047
3 1.102 1.098 1.094 -0.091 -0.094
4 1.000 1.018 1.014 -0.090 -0.090
5 0.999 1.006 0.999 -0.121 -0.123
6 1.024 1.034 1.029 -0.128 -0.130

B. Sensitivities of the estimation error

1) Sensitivities of the estimation error with respect to volt-
age measurements and active power injection measurements,
respectively, are provided in the matrix below (units are
1/puV and1/puMW, respectively):

[

∂J∗

∂vm
i

∂J∗

∂Pm
i

]

=













−83.51686 13.74085
52.56376 37.94881

182.90047 −75.92968
−61.89823 –
−71.10769 –
−9.10143 –













,

where subscripti refers to rows (buses) and the symbol “−”
means that the corresponding measurement does not exist.
Note also that these results coincide with the ones obtained
using the analytical expressions:

∂J(x)

∂vm
i

= 2wV
i (vm

i − vi); i ∈ ΩV , (29)

and the analogous ones for the active power injection.
The observations below are pertinent: a) The estimation

error is more sensitive to voltage measurements than to power
injection measurements. This is in accordance with the hypoth-
esis that establishes a smaller standard deviation for voltage
measurements. b) The highest sensitivities are associatedwith
bus 3. This fact is not obvious and demonstrates the added
value of the proposed analysis, which allows us to better
comprehend estimation results.

It should be noted that in order to compare sensitivities
with respect to different parameters the normalized sensitivity
|xi|

∂J
∂xi

should be used.
2) Sensitivities of the estimation error with respect to active

and reactive power flow measurements are shown in the matrix
below (units are1/puMW and1/puMVAr, respectively):

[

∂J∗

∂Pm
ij

∂J∗

∂Qm
ij

]

=























1.22457 21.12468
26.45085 –

−31.01097 –
−51.48155 3.97837
−61.60584 –
115.68962 –
−55.78377 –
−195.836 –

−57.27579 –























(1, 2)
(1, 4)
(1, 5)
(2, 3)
(2, 4)
(2, 5)
(2, 6)
(3, 5)
(3, 6)

.

Parentheses on the right hand side of the matrix represent
lines. Observe that the sensitivities with respect to active power
flow measurements in lines connected to bus 5 present high
absolute values, which leads to the (non obvious) conclusion
that the measurements related to bus 5 play a critical role in
the estimation.

Note that these results coincide with the ones obtained using
the analytical expressions:

∂J(x)

∂Pm
ij

= 2wPF

i (Pm
ij − Pij); (i, j) ∈ ΩPF (30)

and the analogous ones for the reactive power flow measure-
ments.

3) Sensitivity of the estimation error with respect to the
reactances and shunt susceptances of the lines are provided
below (units are1/puΩ and1/puS, respectively):

[

∂J∗

∂xij

∂J∗

∂bs
ij

]

=





























−33.4275 12.8047
125.9441 0
−31.6880 0
−61.2126 2.4082

−208.6190 0
207.1907 0
−48.6960 0

−160.6123 0
53.7817 0

0 0
0 0





























(1, 2)
(1, 4)
(1, 5)
(2, 3)
(2, 4)
(2, 5)
(2, 6)
(3, 5)
(3, 6)
(4, 5)
(5, 6)

.

Sensitivities with respect to line reactances and shunt sus-
ceptances are obtained from sensitivities with respect to the
elements of the admittance matrix (Y ) using the chain rule
as stated in Appendix III. Note the significant dependency
of the estimation error with respect to reactancesx2,4 and
x2,5. Note the these reactances are related to bus 2. Note also
that the sensitivities with respect to reactancesx45 and x56

are zero because the objective function does not include flow
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measurements pertaining to lines(4, 5) and (5, 6) and there-
fore reactancesx4,5 and x5,6 appear neither in the objective
function nor in the constraints of the estimation problem.

4) Sensitivities of the estimation error with respect to power
injection lower bounds are provided in the vector below (units
are1/puMW)

[

∂J∗

dPmin
i

]T

= [ 0 0 141.6671 ] ; i ∈ ΩPg
.

Note that the first two elements are zero because the
estimated (active power) generations for the generators in
buses 1 and 2 are between their respective bounds, whereas
for the generator in bus 3 the sensitivity is different from zero
because the estimate of the (active power) generation equals
its lower bound.

5) Analytical expressions to compute the sensitivities of the
error function with respect to weights are available. For the
voltage measurement weights the expressions are:

∂J(x)

∂wV
i

= (vm
i − vi)

2; i ∈ ΩV . (31)

Analogous expressions exist for the remaining weights. Note
that results obtained by (31) coincide with the ones provided
by the proposed method.

C. Sensitivities of voltage estimates

1) Sensitivities of the voltage estimates with respect to the
voltage measurements are shown below:

[

∂ve
i

∂vm
j

]

=













0.39803 0.29362 0.23857 0.04877 0.00866 0.01503
0.29362 0.32345 0.26178 0.07214 0.02217 0.01842
0.23857 0.26178 0.37505 0.05458 0.04309 0.01083
0.04877 0.07214 0.05458 0.79484 0.03464 0.00814
0.00866 0.02217 0.04309 0.03464 0.91172 −0.01697
0.01503 0.01842 0.01083 0.00814 −0.01697 0.96873













,

where subscripti refers to rows while subscriptj refers to
columns. The following observations are pertinent: a) the
matrix is dimensionless, symmetric and diagonally dominant,
and b) it is full as all voltage estimates change as any voltage
measurement change occurs. Numerical experiments show that
the matrix above becomes less diagonal dominant as the
number of measurements increases.

2) Sensitivities of the voltage estimate in bus 4 (a load
bus) with respect to active and reactive power injection mea-
surements are provided below (units arepuV/puMW and
puV/puMVAr, respectively):

[

∂ve
4

∂Pm
ij

∂ve
4

∂Qm
ij

]

=























−0.08763 0.00670
0.13440 –

−0.04860 –
−0.00011 0.01836
−0.09036 –

0.01499 –
0.00362 –
0.01592 –

−0.01596 –























(1, 2)
(1, 4)
(1, 5)
(2, 3)
(2, 4)
(2, 5)
(2, 6)
(3, 5)
(3, 6)

.

Lines are indicated in parentheses at the right hand side of the
matrix.

Observe that the highest sensitivity corresponds to the
active power flow measurement (1,4). Note also the significant
influence of the reactive power flow measurement (2,3).

3) Sensitivities of the voltage estimates with respect to
active power injection measurements are provided below (units
arepuV/puMW):

[

∂ve
i

∂Pm
j

]

=













0.01067 −0.00867 0
−0.00697 0.00195 0
−0.00766 −0.00249 0
−0.00183 0.01219 0

0.00537 −0.00295 0
0.00020 −0.00109 0













, i ∈ ΩPg
,

where subscripti refers to rows and subscriptj refers to
columns.

It should be noted that the sensitivities of all voltage
estimates with respect to the power injection measurement in
bus 3 are zero because the estimate of the power injection in
that bus is equal to its lower limit.

4) Sensitivities of the voltage estimates with respect to line
reactances are provided below (units arepuV/puΩ):

[

∂ve
i

∂xjk

]T

=





























−0.039 0.080 0.070−0.080−0.025 0.001
−0.101−0.146−0.110 0.420−0.070−0.016

0.007−0.030−0.048−0.093 0.146 0.018
−0.018−0.019 0.018−0.000−0.024 0.040

0.177 0.254 0.193−0.729 0.117 0.028
−0.035−0.021−0.041 0.034 0.040 0.017

0.082 0.010 0.060 0.044−0.092−0.175
0.031 0.044 0.081 0.032−0.154−0.028

−0.090−0.109−0.066−0.048 0.100 0.192
0 0 0 0 0 0
0 0 0 0 0 0





























(1, 2)
(1, 4)
(1, 5)
(2, 3)
(2, 4)
(2, 5)
(2, 6)
(3, 5)
(3, 6)
(4, 5)
(5, 6)

,

where subscripti refers to columns and lines are indicated in
parentheses at the right hand side of the matrix.

Observe that for the last three buses, the highest absolute
value sensitivity is associated with one of the lines connected
to that bus, i.e.,x24 for node 4,x35 for node 5, andx36 for
node 6. However, for the first three buses, the highest absolute
value sensitivity is associated with the reactance of line(2, 4).

Note also that the sensitivities of the voltage estimates with
respect to the reactances of lines (4,5) and (5,6) are null
because no measurement pertaining these lines are considered
in the objective function and constraints of the estimation
problem.

5) Sensitivities of the voltage estimates with respect to line
shunt susceptances of lines(1, 2) and (2, 3) are (units are
puV/puS):
[

∂ve
i

∂bs
jk

]T

=
[

0.0656−0.0382−0.03140.0040 0.0001−0.0018
0.0344 0.0390−0.07790.0111−0.0098 0.0015

]

(1, 2)
(2, 3)

.

Note that these lines are selected because reactive power
flow measurements are available for them. Sensitivities with
respect to the remaining line shunt susceptances are null.

6) The sensitivities of the voltage estimates with respect
to the active power injection lower bounds are shown in the
matrix below (units arepuV/puMW):

[

∂ve
i

∂Pmin
j

]

=













0 0 0.00189
0 0 0.00720
0 0 0.01493
0 0 0.00846
0 0 −0.01672
0 0 −0.01467













, i ∈ ΩPg
,

wherei refers to rows andj to columns.
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Fig. 3. Sensitivity ∂ve
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Illustrative Example with 100 simulations.

Bus 5 presents the highest absolute value sensitivity. Note
also that generators 1 and 2 work at their (active power gen-
eration) lower bounds, being their corresponding sensitivities
null.

7) Finally, it should be noted that all absolute value sensi-
tivities of the voltage estimates with respect to measurement
weights are lower than10−5.

D. Statistical Analysis

The proposed method allows obtaining the sensitivities
pertaining to a given measurement scenario, the one that
materializes. These sensitivities can be used to make on-line
decisions. Nevertheless, different scenarios of measurements
can be randomly generated and the sensitivities obtained for
each measurement scenario used for off-line analysis. An
example of statistical analysis is provided below.

For 100 different measurement scenarios, the sensitivities
of the voltage estimate at bus 4 with respect to voltage mea-
surement at that bus, the sensitivities of the voltage estimate at
bus 4 with respect to the line reactance connecting buses 2 and
4, and the sensitivities of the voltage estimate at bus 1 with
respect to line shunt susceptance of line(1, 2), respectively,
are obtained and an statistical analysis is performed. In Figs. 2,
3 and 4, respectively, the histograms and PDF fits for the three
sensitivity distributions are shown.

Note that the behavior of each distribution is Gaussian.
Note also that the mean values of the sensitivity distributions
and the corresponding sensitivities obtained using the exact
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400

600

800

P
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F

ϑ
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b121 
s

Fig. 4. Sensitivity∂ve
1
/∂bs

12
histogram and normal PDF fit for the Illustrative

Example with 100 simulations.

measurements are very similar, i.e.,

E

{

∂ve
4

∂vm
4

}

= 0.7983,
∂ve

4

∂vm
4

∣

∣

∣

∣

tm

= 0.7981

E

{

∂ve
4

∂x24

}

= −0.6284,
∂ve

4

∂x24

∣

∣

∣

∣

tm

= −0.6267

E

{

∂ve
1

∂bs
12

}

= 0.06546,
∂ve

1

∂bs
12

∣

∣

∣

∣

tm

= 0.06550.

(32)

where|tm indicates that measurements equal to the true values
are used.

V. CASE STUDY

A. Data

A case study based on the IEEE RTS, depicted in Fig. 5,
is briefly presented and discussed in this section. Topology,
generator and line data can be found in [12] (Fig. 1 and Tables
9 and 12, respectively, of that reference).

The measurement configuration shown in Fig. 5 provides
a measurement redundancy ratio of1.6. Measurements are
synthetically generated by adding randomly generated errors
to the true values.

The optimal error provided by the estimator isJ(xe) ≈ 40.5
holding theχ2-test for bad data detection with a confidence
probability of 95%:J(xe) < χ2

28,0.95 =⇒ 40.5 < 41.34.
In this case study the sets corresponding to zero injec-

tion, only generation, only demand, and both (generation and
demand) are, respectively,Ω0 = {11, 12, 17, 24}, ΩPg

=
{21, 22, 23}, ΩPd

= {3, 4, 5, 6, 8, 9, 10, 14, 19, 20} andΩPb
=

{1, 2, 7, 13, 15, 16, 18}.
Standard deviation values for measurements are identical

to those used in the example (Section IV). Note that in the
buses with both generation and demand, the power injection
is obtained as the difference between generation and demand.
As the sum of two independent normal random variables is
normal with a variance equal to the sum of the variances of
the two random variables, the power injection weights related
to generation plus demand buses are:

wP
i =

1

(0.02)2 + (0.02)2
= 1250; i ∈ ΩPb

.

The sparse structure of matricesU and Hx for this case
study is shown in Fig. 6. MatrixHx is obtained deleting the
first row and the last column ofU .
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Fig. 5. IEEE 24-Bus Reliability Test System [12] and available meters in
the system.

B. Results

A selection of the results obtained is described and dis-
cussed below.

1) Fig. 7 provides the sensitivities of the estimation error
with respect to voltage measurements (units are1/puV). Note
that the highest sensitivities correspond to buses 15, 22 and
13. Positive sensitivities correspond to measurements higher
than their corresponding estimates while negative ones to
measurements lower than their corresponding estimates.

2) Sensitivity of the estimation error with respect to the line
reactances and shunt susceptances are shown in Fig. 8 (units
are1/puΩ and1/puS, respectively). Note that each element in
the abscissa axis is associated with a line using the following
correspondence:

1 ( 1, 2) 2 ( 1, 3) 3 ( 1, 5) 4 ( 2, 4) 5 ( 2, 6) 6 ( 3, 9)
7 ( 3,24) 8 ( 4, 9) 9 ( 5,10) 10 ( 6,10) 11 ( 7, 8) 12 ( 8, 9)
13 ( 8,10) 14 ( 9,11) 15 ( 9,12) 16 (10,11) 17 (10,12) 18 (11,13)
19 (11,14) 20 (12,13) 21 (12,23) 22 (13,23) 23 (14,16) 24 (15,16)
25 (15,21) 26 (15,24) 27 (16,17) 28 (16,19) 29 (17,18) 30 (17,22)
31 (18,21) 32 (19,20) 33 (20,23) 34 (21,22)

The highest sensitivities of the estimation error with respect
to the reactance parameters correspond to lines(15, 21),
(16, 17) and (14, 16). The highest sensitivities of the estima-
tion error with respect to the shunt susceptances correspond
to lines (19, 20), (21, 22), (13, 23) and (15, 21). Note the
different order of magnitudes of the sensitivities with respect
to the reactances and the shunt susceptances, respectively.

3) Sensitivities of the voltage estimate at bus 11 (a transit
node) with respect to voltage measurements are shown in
Fig. 9 (dimensionless). The highest sensitivities correspond

0 50 100 150
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20
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80

100

120

140

160

nz = 1335

Fig. 6. Sparse structure of matrixU for the 24-bus test system.nz is the
number of nonzero elements.
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Fig. 7. Sensitivities∂J∗/∂vm
i for the 24-bus test system.

to measurements in buses 14 and 11, respectively. Note that
generation bus 14 is directly connected to bus 11.

4) Sensitivities of the voltage estimate at bus 7 (a peripheral
bus) with respect to active power flow measurements are
shown in Fig. 10 (units arepuV/puMW). Note that each
element in the abscisas axis is associated with a line measure-
ment using the following correspondence:

1 ( 1, 2) 2 ( 1, 3) 3 ( 1, 5) 4 ( 2, 4) 5 ( 2, 6)
6 ( 7, 8) 7 (13,23) 8 (15,16) 9 (15,21) 10 (15,24)
11 (16,17) 12 (16,19) 13 (18,21) 14 (21,22) 15 ( 2, 1)
16 (16,15) 17 (21,15) 18 (21,18) 19 (22,21) 20 (23,13)

As expected, the highest sensitivity corresponds to flow
(7, 8) because line (7,8) is connected to the network only
through bus 8.

5) Sensitivities of the voltage estimates at bus 11 with
respect to reactances and shunt susceptances of the lines
are shown in Figs. 11 (a) and (b) (units arepuV/puΩ and
puV/puS, respectively). Note that the highest values in Fig. 11
(a) correspond to the reactance of the lines(15, 21), (16, 17)
and(14, 16), whereas in Fig. 11 (b) correspond to line (13,23)
and the lines adjacent to bus 11, which are equal.

6) Sensitivities of the active power flow estimate in line
(15, 16) (a typical line) with respect to the reactances of the
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Fig. 9. Sensitivities∂ve
11

/∂vm
i for the 24-bus test system.

lines are shown in Fig. 12 (units arepuMW/puΩ). Note that
the highest sensitivities occur for lines (15,21), (16,17), (17,18)
and (18,21), respectively.

VI. CONCLUSION

Within a state estimation framework, this paper provides
simple analytical expressions to compute sensitivities ofthe
estimation error and the estimates with respect to changes
in measurements, bounds, weights and line parameters. The
method is useful to increase the confidence in a state estima-
tion model and its estimates. It has the following advantages:
1) the method provide information about the most influential
measurements, and 2) it allows to know how important are the
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ij for the 24-bus test system.
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Fig. 12. Sensitivities∂P e
15,16/∂xij for the 24-bus test system.

values of different parameters (measurements, weights, line
parameters and bounds) in the estimation process.

An example and a case study are used to illustrate the
sensitivity formulas derived. Extensive numerical simulation
proved the validity and relevance of these sensitivity expres-
sions, which have been validated through finite difference
simulations.

It should be noted that calculating sensitivities of the
estimation error and estimates with respect to transformer
tap positions and topology changes constitute the subject of
future work. Particularly, note that both tap positions and
topology changes need to be modeled through discrete not
continuous variables, which highly complicates a rigorous
sensitivity analysis.
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APPENDIX I
FEASIBLE PERTURBATION MATRICES

Vectors and submatrices in (21) required for obtaining the
sensitivities are defined below (dimensions in parenthesis)

Fx(1×n) = [∇xJ(xe,a)]
T (33)

Fa(1×p) = (∇aJ(xe,a))
T (34)

Fxx(n×n) = ∇xxJ(xe,a)

+

ℓ+rΩI
∑

k=1

λ∗

k∇xxck(xe,a) (35)

Fxa(n×p) = ∇xaJ(xe,a)

+

ℓ+rΩI
∑

k=1

λ∗

k∇xack(xe,a) (36)

Cx((ℓ+rΩI
)×n) = [∇xc(xe,a)]

T (37)

Ca((ℓ+rΩI
)×p) = [∇ac(xe,a)]

T
. (38)

APPENDIX II
DATA FOR THE SIX -BUS SYSTEM

Data are provided in Tables II, III and IV. Voltage magni-
tudes throughout the network should be between 1.1 and 0.9
p.u. No reactive power generating limits are considered. As
it is customary, the considered three-phase power base is 100
MVA.

TABLE II

GENERATOR DATA AND RESULTS

Bus P true

i P m
i P e

i Pmax

i Pmin

i

i (p.u. MW)
1 1.325 1.317 1.314 1.325 1.125
2 1.606 1.625 1.618 1.650 1.400
3 0.600 0.585 0.600 0.800 0.600

TABLE III

ACTIVE AND REACTIVE POWER FLOWS

From P true

ij P m
ij P e

ij Qtrue

ij Qm
ij Qe

ij

To (p.u. MW) (p.u. MVAr)
1- 2 0.231 0.231 0.231 -0.131 -0.125 -0.129
1- 4 0.584 0.566 0.561 – – –
1- 5 0.509 0.516 0.522 – – –
2- 3 0.205 0.191 0.202 -0.064 -0.041 -0.041
2- 4 0.746 0.737 0.749 – – –
2- 5 0.352 0.390 0.367 – – –
2- 6 0.529 0.515 0.526 – – –
3- 5 0.256 0.230 0.269 – – –
3- 6 0.547 0.520 0.531 – – –

APPENDIX III
DERIVATIVES WITH RESPECT TOPHYSICAL L INE

PARAMETERS

In order to simplify the mathematical formulation of the
state estimation problem, constraints (4)-(7) are expressed in
terms of the network admittance matrixY = G + jB. And
consequently, the sensitivities obtained are related to the real

TABLE IV

L INE DATA

Line From rij xij bs
ij

# To (p.u.) (p.u.) (p.u.)
1 1-2 0.10 0.20 0.04
2 1-4 0.05 0.20 0.04
3 1-5 0.08 0.30 0.06
4 2-3 0.05 0.25 0.06
5 2-4 0.05 0.10 0.02
6 2-5 0.10 0.30 0.04
7 2-6 0.07 0.20 0.05
8 3-5 0.12 0.26 0.05
9 3-6 0.02 0.10 0.02
10 4-5 0.2 0.40 0.08
11 5-6 0.10 0.30 0.06

and the imaginary parts of the admittance matrix,Gij andBij ,
respectively. If the sensitivities with respect to the physical
parameters of the lines, resistances (rij) and reactances (xij),
are required, the chain rule must be used as indicated below.

Terms of the admittance matrix are related to the line
resistances and reactances as:

Gij =
−rij

r2
ij + x2

ij

, Bij =
xij

r2
ij + x2

ij

, ∀i ∀j ∈ Ωi, (39)

and

Gii = −
∑

j

Gij , Bii =
∑

j

(

−Bij + bs
ij/2

)

, ∀i. (40)

Let u be the variable for which the partial derivatives are
looked for. The sensitivities of the variableu with respect to
the resistances (rij) can be obtained using the chain rule as
follows:

∂u

∂rij

=
∂Gij

∂rij

(

∂u

∂Gij

+
∂u

∂Gii

∂Gii

∂Gij

+
∂u

∂Gjj

∂Gjj

∂Gij

)

+
∂Bij

∂rij

(

∂u

∂Bij

+
∂u

∂Bii

∂Bii

∂Bij

+
∂u

∂Bjj

∂Bjj

∂Bij

)

=
∂Gij

∂rij

(

∂u

∂Gij

−
∂u

∂Gii

−
∂u

∂Gjj

)

+
∂Bij

∂rij

(

∂u

∂Bij

−
∂u

∂Bii

−
∂u

∂Bjj

)

,∀i ∀j ∈ Ωi.

(41)
From (39) the derivatives of the admittance matrix terms

with respect to resistances (rij) can be obtained as follows:

∂Gij

∂rij

=
r2
ij − x2

ij

(r2
ij + x2

ij)
2
,

∂Bij

∂rij

=
−2rijxij

(r2
ij + x2

ij)
2
, (42)

whereas from (40),∂Gii

∂Gij
= ∂Bii

∂Bij
= −1.

The terms between parenthesis in equation (41), i.e., the
partial derivatives with respect to the elements of the admit-
tance matrix, are the ones obtained in the method proposed in
this paper.

Analogously, the sensitivities of the variableu with respect
to reactances (xij) can be obtained as:

∂u

∂xij

=
∂Gij

∂xij

(

∂u

∂Gij

−
∂u

∂Gii

−
∂u

∂Gjj

)

+
∂Bij

∂xij

(

∂u

∂Bij

−
∂u

∂Bii

−
∂u

∂Bjj

)

,∀i ∀j ∈ Ωi,

(43)
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where the derivatives of the admittance matrix terms with
respect to reactances (xij) can be obtained from (39) as
follows:

∂Gij

∂xij

=
2rijxij

(r2
ij + x2

ij)
2
,

∂Bij

∂xij

=
r2
ij − x2

ij

(r2
ij + x2

ij)
2
. (44)

If the sensitivities of variableu with respect to the shunt
susceptances (bs

ij) are sought for, the following expressions
should be used:

∂u

∂bs
ij

=
∂u

∂bs
ij

∣

∣

∣

∣

∣

0

+
∂u

∂Bii

∂Bii

∂bs
ij

+
∂u

∂Bjj

∂Bjj

∂bs
ij

=
∂u

∂bs
ij

∣

∣

∣

∣

∣

0

+
∂u

∂Bii

1

2
+

∂u

∂Bjj

1

2
,∀i ∀j ∈ Ωi,

(45)

where ∂u
∂bs

ij

∣

∣

∣

0
are the derivatives obtained using the proposed

method. Note also that due to (40),∂Bii

∂bs
ij

=
∂Bjj

∂bs
ij

= 1
2 .
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[8] A. Conejo, E. Castillo, R. Ḿınguez, and F. Milano, “Locational marginal
price sensitivities,”IEEE Transactions on Power Systems, vol. 20, no. 4,
pp. 2026–2033, November 2005.

[9] R. Mı́nguez and A. J. Conejo, “State estimation sensitivity analysis,” in
Proc. 13th IEEE Mediterranean Electrotechnical Conference (MELE-
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