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Abstract

The prediction of drifting object trajectories in coastal areas is a complex prob-
lem plague of uncertainties. This problem is usually solved simulating the possible
trajectories based on wind and currents numerical and/or instrumental data in real
time, which are incorporated into Lagrangian trajectory models. However, both data
and Lagrangian models are approximations of reality and when comparing trajec-
tory data collected from drifter exercises with respect to Lagrangian models results,
they differ considerably. This paper introduces a stochastic Lagrangian trajectory
model that allows quantifying the uncertainties related to: i) the wind and currents
numerical and/or instrumental data, and ii) the Lagrangian trajectory model. These
uncertainties are accounted for within the model through random model parame-
ters. The quantification of these uncertainties consists in an estimation problem,
where the parameters of the probability distribution functions of the random vari-
ables are estimated based on drifter exercise data. Particularly, it is assumed that
estimated parameters maximize the likelihood of our model to reproduce the trajec-
tories from the exercise. Once the probability distribution parameters are estimated,
they can be used to simulate different trajectories, obtaining location probability
density functions at different times. The advantage of this method is that it allows:
i) site specific calibration, and ii) comparing uncertainties related to different wind
and currents predictive tools. The proposed method is applied to data collected
during the DRIFTER Project (eranet AMPERA, VI Programa Marco), showing
very good predictive skills.
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1 Introduction

The transport of objects and substances by surface currents, wind, wave fields
and turbulence, commonly referred to as drift, is very important from the
human perspective for solving problems such as, forecasting the evolution of
oil spills, tracking of elements which may be a threat to maritime safety, search-
and-rescue of humans and/or ships, backtracking looking for ships responsible
of illicit flushing of ballast tanks, etc.

Models for drifting objects are quite complex (Spaulding et al., 1992; Beegle-
Krause, 1999; Daniel et al., 2003; Castanedo et al., 2006). There are two main
reasons: i) they involve different interacting processes which are difficult to
reproduce, and ii) the difficulties of determining the current status of the
object itself and the ocean. Note that the movement of the drifting object is
induced by variables such as, winds, currents, and waves acting on the object,
and thus the importante on the knowledge of these parameters.

An additional challenge when predicting the drift of objects on the sea surface
is how to account for the uncertainties inherent in almost all aspects of the
problem (Hackett et al., 2005):

(1) Most formulations are based on empirical parameterizations, and approx-
imations of the hydrodynamical laws.

(2) Wind, wave and current data used to drive the model are subject to
a great amount of uncertainty. Note that weather forecasts have good
predictive skill for periods up to 3-4 days, which degrades gradually as
time goes by.

(3) The orientation of the object with regard to the local wind direction.
Whether the object drifts to the left or to the right of the wind cannot
be known in advance and unless more is known about the object we must
assign equal probability to the two outcomes.

The best way of accounting for uncertainty is using an stochastic framework.
The relevant parameters are considered random variables and their uncer-
tainty is quantified in terms of a probability distribution function. Thus, using
Monte Carlo method (Rubinstein, 1981) it is possible to simulate multiple tra-
jectories, getting a cloud of candidate locations for the drifting object. These
locations allow identifying the evolution of the most likely positions of the
drifting object in time. A discussion of more advanced stochastic methods can
be found in Griffa (1996) and Berloff and McWilliams (2002). Obviously, i) the
choice of the initial random model parameters, ii) their distribution, and iii)
their parameter estimation is of paramount importance, affecting the future
search area seriously.

The advantage of dealing with uncertainty when predicting the drift of objects
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is that simple models, representing the most important physical processes, may
be used instead of complex and sophisticated models. In these cases, the ap-
propriate definition of the uncertainty is more important than the complexity
of the model itself, and they may provide equally or better results.

Several studies have been carried out in the literature to take into account
the different sources of uncertainty in the trajectory simulations. An attempt
to quantify and calculate the uncertainties of a predictive model for oil spill
trajectories is given in Sebastião and Guedes Soares (2006), for coastal zones,
and Sebastião and Guedes Soares (2007), for open sea. Note that in both
articles the same stochastic model is proposed, predicting the uncertainty of
the oil spill trajectory from the uncertainties of the input parameters. The
model considers the output as a function of the random variables, i.e. input
parameters, and calculates the standard deviation of the output results as a
function of the standard deviation of the input parameters.

Rixen and Ferreira-Coelho (2007) developed a methodology to forecast at
short time scale Lagrangian drifts from combined atmospheric and ocean op-
erational models and local observations using linear and nonlinear statistics.
In that work, the authors propose a method to solve the surface drift problem
using linear and non-linear regression techniques, namely neural networks and
genetic algorithms. Rixen et al. (2008) apply the methodology in the Adri-
atic Sea and discuss the performance of the hyper-ensembles and the individ-
ual models by analyzing associated uncertainties and probability distribution
maps for drifter positions.

Abascal et al. (2009b) introduce a methodology to calibrate a Lagragian tra-
jectory model by means of an automatic method. The aim of their work is to
find the optimal values of the model coefficients that minimize the differences
between numerical and actual trajectories provided by drifter observations. In
that work, the authors show the importance of obtaining the best agreement
model coefficients for the study area in order to provide the most accurate tra-
jectory simulations. In a later study, Abascal et al. (2009a) propose a method-
ology to optimize the transport model performance and to calculate the search
area of the predicted positions. In their methodology, the transport model is
calibrated by means of a global optimization algorithm, which allows obtain-
ing the optimal model parameters and their corresponding 95% confidence
intervals. Subsequently, the calibration results are used to compute the buoy
trajectory using Monte Carlo simulation. Finally, the 95% confidence areas
are determined by means of a bivariate kernel estimator. The methodology is
applied and validated using data from drifting buoys.

Previous models present several deficiencies. In the model proposed by Se-
bastião and Guedes Soares (2006, 2007):
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• The random model parameters are assumed to be normally distributed, i.e.
mean and standard deviation parameters are enough to define the proba-
bility distribution. And it is difficult to relax that assumption.

• It uses a first-order Taylor series expansion around the expected trajec-
tory, which is a non-linear function of the input parameters. Note that the
method proposed by Sebastião and Guedes Soares (2006, 2007) is a partic-
ular instance, i.e. the simplest, of point-estimate methods. These methods
approximate the description of the statistical properties of the output ran-
dom variables of a problem using commonly available information on the
random behavior of input variables, such as their first statistical moments
(e.g., mean, variance and skewness) (Rosenblueth, 1975; Harr, 1989; Hong,
1998; Morales and Pérez-Ruiz, 2007).

• The standard deviations used are not based on data for the particular loca-
tion. They are selected by introducing different perturbations on the mean
values, which are based on estimates from other stochastic approaches.

The model by Rixen and Ferreira-Coelho (2007); Rixen et al. (2008) quantifies
the uncertainty related to different ensembles using complex nonlinear regres-
sion models which must be solved through neuronal networks and genetic
algorithms. These makes the model fuzzy and difficult to implement.

Regarding the models proposed by Abascal et al. (2009b,a):

• The parameters are assumed to follow different probability distribution
functions and there are several model parameters, which are calibrated by
minimizing the differences between numerical and actual trajectories pro-
vided by drifter observations. Note that the parameter calibration problem
and the estimation of the probability distribution parameters, which are
usually taken from other studies, are decoupled.

• The calibration consist of a least squares estimation problem, that corre-
sponds to the maximum likelihood estimates only if the parameters are
normally distributed, which is not the case.

• The 95% confidence intervals from Monte Carlo simulations still do not
contain the actual trajectories, showing that the uncertainty is not properly
modeled.

This paper tries to solve all these shortcomings for those situations where there
exist available historical information about drifting object trajectories. Thus,
the aim of the paper is threefold: i) to present a simple but realistic stochastic
Lagrangian model for trajectory evolution, ii) to estimate the random model
parameters based on data from drifter exercises, so that estimated parameters
maximize the likelihood of our model to reproduce the trajectories from the
exercise, and iii) to obtain, based on Monte Carlo simulations, the location
probability density functions of the drifter object at different times.
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The rest of the paper is organized as follows. Section 2 i) presents the stochas-
tic Lagrangian model for trajectory evolution, ii) provides the description of
the estimation method based on the maximum likelihood principle, and iii)
analyses the study of temporal correlation between random model parame-
ters. In Section 3, the Monte Carlo simulation method including temporal
autocorrelation is explained. In section 4, the model, estimation and simula-
tions are applied using data from the “DRIFTER Project” (eranet AMPERA,
VI Programa Marco). Finally, Section 5 provides some relevant conclusions.

2 Stochastic Lagrangian model

A drifting object on the sea surface moves due to the net result of several forces
(water currents, atmospheric wind, wave motion, and turbulence dispersion).
This movement is governed by the diffusion and advection transport equation
in Lagrangian form, i.e.:

dx

dt
= U a(x, t) + U s(x, t), (1)

where x = (x, y) is the positioning vector, and U a and U s are advection
and diffusion velocity vectors, respectively. Note that both positioning and
velocities are time t dependent processes.

The advection velocity U a can be expressed as a linear combination of surface
currents (Ekman drift, baroclinic motion, tidal and inertial currents), leeway
velocity due to wind, and Stokes drift induced by waves:

U a(x, t) = UC(x, t) + CDUW (x, t) + CHUH(x, t), (2)

where UC is the surface current velocity vector, UW is the wind velocity
at 10 meters height, and UH is wave-induced Stokes drift velocity. CD and
CH correspond to the leeway and Stokes coefficients, respectively. Note that
traditionally, the advection term is assumed to be deterministic, where the
optimal parameters CD and CH are between 3-3.5% (ASCE, 1996) and 0.05-
1.5% (Castanedo et al., 2006). However, in this paper, coefficients CD and
CH are assumed to be normally distributed random variables with parameters
(µCD

, σ2
CD

) and (µCH
, σ2

CH
), respectively.

In addition, the diffusive velocity U s is also assumed to be stochastic. There
are two random spreading components: longitudinal DL and transversal DT .
These components are related to the direction of the advection velocity U a.
Assuming that the angle between the advection velocity and the abscissas axis
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is γ, the velocity U s in the reference coordinate system is given by:

U s =




cos γ − sin γ

sin γ cos γ







DL

DT


 , (3)

where both DL and DT are normally distributed random variables with pa-
rameters (µDL

, σ2
DL

) and (µDT
, σ2

DT
), respectively.

2.1 Numerical scheme

Note that the equation (1) governs the response and movement of the drift-
ing object. The evolution of the location is obtained solving this ordinary
differential equation (ODE) under the following assumptions:

(1) The initial location of the drifting object is known (initial condition).
(2) Currents, wind speeds and waves information is given at regular time

intervals ∆t.

The selected numerical method to solve (1) is the first-order Euler method,
where the location of the drifting object is defined as:

xt = xt−1 + ∆t [U a(xt−1) + U s(xt−1)]

= xt−1 + ∆t
[
UC(xt−1) + Ct−1

D UW (xt−1) + . . .

Ct−1
H UH(xt−1) + U s(xt−1)

]
; t = 1, . . . , nt,

(4)

where xt is the location of the drifting object at time t, U a(xt), U s(xt),
UC(xt), UW (xt), and UH(xt) are, respectively, the advection, the diffusion,
the surface current, the wind at 10 meters height, and the Stokes drift velocities
at the location of the object at time t, i.e. xt. Parameters Ct

D and Ct
H are

the leeway and Stokes coefficients at the location of the object at time t,
respectively, and nt is the number of time intervals considered. Using (3), the
diffusion velocity can be expressed as:

U s(xt−1) =




cos (γt−1) − sin (γt−1)

sin (γt−1) cos (γt−1)







Dt−1
L

Dt−1
T


 , (5)

where γt−1 is the direction angle of the advection velocity U a(xt−1), and Dt
L

and Dt
T are the longitudinal and transversal diffusion velocities at the location

of the object at time t.
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Note that Ct
D, Ct

H , Dt
L, and Dt

T are random model variables, which we assume
that follow a normal distribution with parameters (µCD

, σ2
CD

), (µCH
, σ2

CH
),

(µDL
, σ2

DL
) and (µDT

, σ2
DT

), respectively. An advantage of the proposed proce-
dure is that alternative distributions, such as log-normal, uniform, etc. could
be used instead. Note also that these random model parameters also account,
implicitly, for the uncertainties of the numerical scheme. However, alternative
formulations including more complex parameterizations or numerical schemes
are possible. The adequacy of the model must be established based on the
estimation results, which should follow the selected probability distribution
hypothesis.

2.2 The Maximum Likelihood Method

The maximum likelihood method is based on maximizing the likelihood of an
observed sample, and it can be used to derive point and interval parameter
estimates.

In this particular case, the observed sample corresponds to the trajectories
obtained from a drifter exercise, or from the evolution of an oil spill using
satellite images, etc. We assume that the random probability distribution pa-
rameters (µCD

, σ2
CD

), (µCH
, σ2

CH
), (µDL

, σ2
DL

) and (µDT
, σ2

DT
) are estimated so

that, using Euler approach (4), the likelihood of the model to reproduce the
given trajectories is maximized.

Being nd the number of drifting objects, and assuming that: i) the ran-
dom model variables are independent, and ii) the locations of the i-th object
xi

t; t = 0, . . . , nt, i = 0, . . . , nd at different times are given, the mean and stan-
dard deviation parameters θ = (µCD

, σCD
, µCH

, σCH
, µDL

, σDL
, µDT

, σDT
)T

can be estimated using the loglikelihood function by solving the following
optimization problem:

Maximize
θ, C i,t

D , C i,t
H , Di,t

L , Di,t
T





nt∑

t=1

nd∑

i=1

log
[
fCD

(Ci,t
D ; θ)

]
+

nt∑

t=1

nd∑

i=1

log
[
fCH

(Ci,t
H ; θ)

]
+

nt∑

t=1

nd∑

i=1

log
[
fDL

(Di,t
L ; θ)

]
+

nt∑

t=1

nd∑

i=1

log
[
fDT

(Di,t
T ; θ)

]





(6)

subject to

xi
t − xi

t−1 = ∆t
[
U a(x

i
t−1) + U s(x

i
t−1)

]
; t = 1, . . . , nt; i = 1, . . . , nd (7)

U a(x
i
t−1) = UC(xi

t−1) + Ci,t−1
D UW (xi

t−1) + Ci,t−1
H UH(xi

t−1); ∀t; ∀i (8)
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Fig. 1. Graphical interpretation of the estimated values of the random variables and
constraints (7)-(10), which allow reproducing the given trajectory.

γi
t−1 = arctan

(
U i

ay

U i
ax

)
; t = 1, . . . , nt; i = 1, . . . , nd (9)

U s(x
i
t−1) =




cos
(
γi

t−1

)
− sin

(
γi

t−1

)

sin
(
γi

t−1

)
cos

(
γi

t−1

)







Di,t−1
L

Di,t−1
T


 ; ∀t; ∀i (10)

σCD
> 0 (11)

σCH
> 0 (12)

σDL
> 0 (13)

σDT
> 0, (14)

where fCD
, fCH

, fDL
and fDT

are the probability density functions of the
corresponding random variables, and xi

t are the data locations related to the
ith trajectory (drifting object). Note that problem (6)-(14) differs from the
traditional maximum likelihood formulation because the actual values of the
random variables are unknown and must be obtained from the trajectory
equations (7)-(10). The optimal value obtained from solving problem (6)-(14),
i.e. θ̂, is the maximum likelihood estimate (MLE) of θ. In addition, the most
likely values of the random variables (Ĉi,t

D , Ĉi,t
H , D̂i,t

L , D̂i,t
T ; t = 0, . . . , nt−1; i =

0, . . . , nd) are also obtained. These values represent the values of the random
variables which allows reproducing the given trajectory with maximum proba-
bility. In Figure 1, the graphical interpretation of the variables and constraints
(7)-(10), related to the Euler method, is illustrated.

Observe that the maximization of the log-likelihood function can be done using
any of the available solvers for nonlinear programming subject to constraints
and bounds on variables, for instance, solver MINOS (Murtagh and Saunders,
1998) under GAMS (Brooke et al., 1998) which allows for upper and lower
bounds on parameters to be estimated and dealing with nonlinear equality
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constraints, and uses a reduced-gradient algorithm (Wolfe, 1963) combined
with the quasi-Newton algorithm given in Murtagh and Saunders (1978), or
the Trust Region Reflective Algorithm under Matlab (Coleman and Li, 1994,
1996), also capable of dealing with nonlinear equality constraints and upper
and lower bounds through the function fmincon.

The advantage of using the maximum likelihood method is that all consistent
solutions are asymptotically normally distributed, that is,

θ̂ → Nk

(
θ̂, Σ ˆθ

)
, (15)

where Nk

(
θ̂, Σ ˆθ

)
denotes the k-dimensional normal distribution with mean

vector θ̂ and covariance matrix Σ ˆθ
. The covariance matrix Σθ̂ is the inverse

of the Fisher information matrix, Iθ, whose (r, j)th element is given by

irj = − ∂2`(θ|x)

∂θr∂θj

∣∣∣∣∣
θ=θ̂

. (16)

In addition, the probability density functions may correspond to any kind of
random variable distribution, such as normal, lognormal, uniform, exponential,
etc. For this particular case, we assume normal random variables:

fX(x) =
1√

2πσ2
e
−
(x− µ)2

2σ2 . (17)

The main advantage of this method is that it allows the calculation of the prob-
ability distribution parameters based on observed data. This feature makes it
appropriate for comparing different wind, wave and current prediction tech-
nologies. Note, for instance, that we could solve (6)-(14) using different current
information UC(xt) sources, such as numerical forecasting modelling or HF
radar measurements. The method provides a rationale criterion for comparing
their performance.

2.3 Temporal dependence

The parameter estimation method presented in the previous section assumes
temporal independence related to the random variables Ci,t

D , Ci,t
H , Di,t

L , and Di,t
T .

We advocate this approach due to its simplicity and practical performance.
However, the most likely values of the random variables, i.e. Ĉi,t

D , Ĉi,t
H , D̂i,t

L , D̂i,t
T

may hide a temporal dependency structure which could be further explored
after the parameter estimation.
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Autoregressive moving average ARMA(p, q) processes are time dependent mod-
els specially suitable to explore temporal dependencies. These models can be
mathematically expressed as

yt =
p∑

j=1

φjyt−j + εt −
q∑

j=1

θjεt−j (18)

with p autoregressive parameters φ1, φ2, . . ., φp, and q moving average param-
eters θ1, θ2, . . ., θq. The term εt in equation (18) stands for an uncorrelated
normal stochastic process with mean zero and variance σ2

ε , and is also un-
correlated with yt−1, yt−2, . . . , yt−p. Stochastic process εt is also referred to as
white noise, innovation term, or error term.

Observe in (18) that yt boils down to a linear combination of white noises, and
as such, the marginal distribution associated with the stochastic process Y
is necessarily normal. In order to preserve the original marginal distribution
associated with the random model variables while making use of the modeling
capability of the ARMA models, new stochastic process, Z , with a standard
normal marginal distribution is defined through the following transformation
(Liu and Der Kiureghian, 1986):

Z = Φ−1 [FY (Y )] , (19)

where FY is the cumulative distribution function (CDF) of the marginal dis-
tribution associated with the original stochastic process Y and Φ(·) is the
cumulative distribution function of the standard normal random variable.

Thus, the stochastic temporal dependence of the random variables Ct
D, Ct

H ,
Dt

L, Dt
T is reproduced using transformation (19) and the following univariate

ARMA models:

zCD
t =

pCD∑

j=1

φCD
j zCD

t−j + εCD
t −

qCD∑

j=1

θCD
j εCD

t−j (20)

zCH
t =

pCH∑

j=1

φCH
j zCH

t−j + εCH
t −

qCH∑

j=1

θCH
j εCH

t−j (21)

zDL
t =

pDL∑

j=1

φDL
j zDL

t−j + εDL
t −

qDL∑

j=1

θDL
j εDL

t−j (22)

zDT
t =

pDT∑

j=1

φDT
j zDT

t−j + εDT
t −

qDT∑

j=1

θDT
j εDT

t−j. (23)

One advantage of this kind of models is that well-known and computationally
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efficient univariate modeling procedures can be employed to estimate model
parameters in (20)-(23). Note also that residuals are uncorrelated E[εCD

t εCD
t−j] =

0, E[εCH
t εCH

t−j] = 0, E[εDL
t εDL

t−j] = 0 and E[εDT
t εDT

t−j] = 0.

The standard protocol for model selection and parameter estimation can be
found in Box et al. (1994).

Once the model parameters in (20)-(23) are estimated, it is possible to repro-
duce not only the marginal distribution related to the random model variables,
but also its temporal dependency. This characteristic is used afterwards for
the simulation of new trajectories.

2.4 Hypothesis testing

The model proposed in this paper has the advantage that it can be combined
with any kind of probability density function. For this reason, once the param-
eter estimation processes given in subsections 2.2 and 2.3 are accomplished, it
is very important to run different statistical hypothesis tests to check whether
the selected distributions were appropriate or not. In this particular case we
use the following tests:

• Related to the marginal probability distribution function selected for the
random model variables, a one-sample Kolmogorov-Smirnov test (Massey
(1951)) is performed. This test compares for a given significance level α
the transformed values zCD

t , zCH
t , zDL

t , zDT
t using (19) with respect to a

standard normal distribution. The null hypothesis is that the samples follow
a standard normal distribution.

• Analogously to the previous case, we perform a one-sample Kolmogorov-
Smirnov test for residuals divided by their standard deviation estimates.
The null hypothesis is that they follow a standard normal distribution.

• Related to the temporal dependence of the stochastic variables, the following
tests and diagnostic plots are selected:

(1) Sample autocorrelation and partial autocorrelation functions related to
the transformed values zCD

t , zCH
t , zDL

t , zDT
t . These plots help deciding the

orders p and q of the ARMA processes.
(2) Sample autocorrelation and partial autocorrelation functions related to

the estimated residuals εCD
t , εCH

t , εDL
t , εDT

t . Since the residuals are sup-
posed to be uncorrelated, these values should be within the confidence
bounds.

(3) To further explore the residuals independence hypothesis, the Ljung-Box
lack-of-fit hypothesis test (Brockwell and Davis, 1991) for model misiden-
tification is applied. This test indicates the acceptance or not of the null
hypothesis that the model fit is adequate (no serial correlation at the
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corresponding element of Lags).

Additional or alternative tests for those selected above could be applied. Note
that in case any of those tests allow rejecting the null hypothesis with a given
significance level, the probability distribution assumptions must be revisited
before being acceptable for simulation purposes.

3 Monte Carlo trajectory simulation

Once the relevant parameters of the model are estimated, it is possible to
use the Monte Carlo method (Rubinstein, 1981) in conjunction with the joint
probability distribution function and the temporal dependency model pre-
sented in the previous section, to simulate multiple trajectories, getting a
cloud of candidate locations for the drifting object.

In this section, the procedure to generate those trajectories is described step
by step.

Algorithm 3.1 (Trajectory simulation).

Input: Maximum likelihood estimated parameters θ̂, the estimates of the
ARMA models defined in (20)-(23) and the standard deviation of the cor-
responding residuals, i.e. σCD

ε , σCH
ε , σDL

ε , σDT
ε , the initial location of the

drifting object x0, the Euler time step ∆t, the predicted velocity currents
and finally, the number of trajectories ns and time steps ts to be simulated.

Step 1: Initialization. Set the iteration counter to ν = 1 and go to Step 2.
Step 2: Error simulation. Simulate the vectors ε̃CD , ε̃CH , ε̃DL , ε̃DT of di-

mensions ts× 1 composed by independent normal random errors with stan-
dard deviations σCD

ε , σCH
ε , σDL

ε , σDT
ε , respectively. Note that the tilde refers

to simulated values.
Step 3: ARMA. Use those simulated errors in the ARMA models given in

(20)-(23) obtaining the vectors z̃CD , z̃CH , z̃DL , and z̃DT .
Step 4: Inverse transformation. Get the simulated values of the random

model variables, i.e. C̃D, C̃H , D̃L, and D̃T , using the inverse of transfor-
mation (19).

Step 5: Trajectory generation. Reproduce the simulated trajectory through
the Euler method given in (4). Update the iteration counter ν → ν + 1, if
ν ≤ ns go to Step 2 otherwise the trajectory simulation process concludes.

12



 54’  51’    8oW 
 48.00’ 

 45’  42’   9’ 

 10’ 

 11’ 

  42oN 
 12.00’ 

 13’ 

 14’ 

 15’ 

 16’ 

 20’    9oW  40’  20’    8oW  40’ 

  42oN 

 20’ 

 40’ 

  43oN 

 20’ 

Fig. 2. Study area and buoys trajectories. The black circle represents the buoys de-
ployment. The buoys trajectories span from September 14th 9:30 UTC to September
15th 17:00 UTC approximately.

4 Case study: application to drifting buoys

The methodology has been applied to simulate the trajectory of drifting
buoys in the Bay of Vigo (Galicia, Spain) (see Figure 2). Data used were
collected during an exercise developed within the framework of the aforemen-
tioned DRIFTER project (AMPERA, ERA-net VI European Framework Pro-
gramme). As part of the project, several sets of experiments were carried out
by INTECMAR (Instituto Tecnológico para el Control del Medio Marino de
Galicia) in order to study the influence of ocean-meteorological conditions and
buoys features on the drifting trajectory (http://www.intecmar.org/drifter/).
During one of these exercises a set of 13 buoys were released in the Bay of
Vigo (Galicia, Spain) between September 14th 2010 and September 15th 2010
(Allen-Perkins et al., 2010). All the buoys provided a 15 minute sampling rate
of their positions.

In this paper we only analyze three of the thirteen trajectories. Figure 2 shows
the study area and the path followed by the buoys used for the present study.
We consider two different time periods:

(1) From September 14th 2010 at 09:30:00 to September 14th 2010 at 15:45:00
in 15 minute intervals. This period is used for the parameter estimation
processes.
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Fig. 3. Typical surface current map provided by the high-resolution Bay of Vigo
coastal HF radar system of the University of Vigo. The radar site locations are
indicated by solid black circles

(2) From September 14th 2010 at 15:45:00 to September 14th 2010 at 22:00:00.
This period is used for validation, checking how the simulated trajectories
contain the actual buoy trajectories.

The trajectories were simulated using, as forcing of the stochastic model, sur-
face currents measured by HF radar currents. Previous studies showed that
buoy trajectories analyzed in this work could be simulated using only HF
radar currents as forcing (Abascal et al., 2011a,b).

HF radar surface currents were provided by the high-resolution HF radar
network at the Bay of Vigo owned and operated by University of Vigo (Varela,
2010). The HF radar network consists of two CODAR systems which provided
30 min surface currents at 400 m horizontal resolution in the Bay of Vigo. A
typical total vector plot for this system is shown in Figure 3. During the radar
exercise, there was a problem with the power supply which led to a gap in
the total surface currents for the period between September 14th 2010 22:30
and September 15th 2010 08:00 UTC. This fact prevents us from using all the
trajectory information at our disposal.

14



Table 1
Maximum likelihood estimates and 95% confidence intervals of the DT and DL

random variable probability distributions.

Parameter Lower bound Mean Upper bound

µ̂DT
(m/s) 0.0092542 0.0182416 0.0272290

σ̂DT
(m/s) 0.0271324 0.0373128 0.0474932

µ̂DL
(m/s) 0.0044360 0.0107911 0.0171461

σ̂DL
(m/s) 0.0350671 0.0422657 0.0494643

4.1 Parameter estimation process

The first step consists in estimating the parameters of the longitudinal DL

and transversal DT random diffusive components. Note that no information
about winds and waves was used. This is a subject for further research.

The maximum likelihood estimates using the three trajectory data from Septem-
ber 14th 2010 at 09:30:00 to September 14th 2010 at 15:45:00 are given in
Table 1. Note that only the probability distribution parameters related to the
variables DT and DL, respectively, are provided. The units are in meters per
second. An interesting result is the magnitude of the standard deviations re-
lated to the transversal and longitudinal diffusion velocities, which are similar
(0.037 versus 0.042) and assuming a 15 minute time interval it corresponds to
≈ 36 meters of diffusion uncertainties. This result is not consistent with the
traditional assumption that the longitudinal diffusion uncertainty is one order
of magnitude higher than the transversal diffusion uncertainty.

In Figure 4, the three trajectories used for the MLE parameter estimation pro-
cess, labeled as Data 1, 2, and 3, respectively, are shown (black and gray scale
circle marker specifiers). In addition, the trajectories obtained considering only
the current velocity, labeled as deterministic trajectories, are also shown. Note
that the MLE estimation process provides the values of the random variables
D̂T and D̂L which allows reproducing the data trajectories. Note that these
trajectories are plotted using red, blue and green circle marker specifiers, re-
spectively, and they coincide with the trajectory data. This is the target of
the proposed parameter estimation method.

In order to check the normal random marginal probability distributions as-
sumed for both DT and DL random variables, we transform D̂T and D̂L using
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Fig. 4. Selected trajectories for the MLE estimation problem, and deterministic and
final MLE trajectories.

(19), which in this case becomes:

ẑDT =
D̂T − µ̂DT

σ̂DT

ẑDL =
D̂L − µ̂DL

σ̂DL

,

(24)

and, afterwards, we apply the one-sample Kolmogorov-Smirnov test with 0.05
significance level for both samples. Note that the p-values obtained are 0.1791
and 0.41992, respectively, so that the null hypothesis that both samples fol-
low a standard normal distribution is accepted. In addition, Figure 5 shows
the histograms and normal probability plots of the maximum likelihood esti-
mates D̂t

T and D̂t
L, which present good agreement with respect to the normal

distributions.

4.2 Temporal dependence

To further investigate the possible temporal dependence on the stochastic
processes related to the variables Dt

T and Dt
L, the autocorrelation and partial

autocorrelation functions related to the maximum likelihood values of the
random variables ẑDT

t (panels above) and ẑDL
t (panels below) are shown in

Figure 6.

Note that in both processes the autocorrelation function decays gradually,
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Fig. 5. Histograms and normal probability plots of the maximum likelihood val-
ues of the random variables D̂t

T (left panels) and D̂t
L (right panels), which allows

reproducing the data trajectories.

and there is just one partial autocorrelation coefficient at lag 1 clearly outside
the 95% confidence bands. This indicates that the processes are very likely
to correspond to moving autoregressive processes of order one. Fitting both
ARMA(1, 0) models to the times series ẑDT and ẑDL , the following parameter
estimates are obtained: φ̂DT

1 = −0.7059 and φ̂DL
1 = −0.6624. The standard

deviation estimates of the residuals are σ̂DT
ε = 0.71791 and σ̂DL

ε = 0.71771, re-
spectively. The p-values obtained from the one-sample Kolmogorov-Smirnov
test over the samples ε̂DT /σ̂DT

ε and ε̂DL/σ̂DL
ε are, respectively, 0.42726 and

0.10540, so that the null hypothesis that both samples follow a standard nor-
mal distribution is accepted.

Figures 7 and 8 show, respectively, the autocorrelation and partial autocorrela-
tion functions, the normal probability plots, and the histograms related to the
ARMA residuals. Note that in both cases the autocorrelation and partial au-
tocorrelation functions for different time lags are within the confidence bands,
confirming that the residuals are uncorrelated. Finally, the Ljung-Box lack-of-
fit hypothesis test considering the null hypothesis that no serial correlation at
the lags 1, 2, 3, 4, and 5 exist has been applied on the residual samples. The
p-values obtained for a 5% significance level are (0.55443, 0.55359, 0.59565,
0.60598, 0.72131) for the transversal residuals, and (0.93430, 0.79786, 0.92803,
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Fig. 6. Autocorrelation and partial autocorrelation functions related to the maxi-
mum likelihood values of the random variables ẑDT

t (panels above) and ẑDL
t (panels

below), which allows reproducing the data trajectories.

0.97716, 0.79897) for the longitudinal residuals. Note that since in all cases
the p-values are higher than the significance level 0.05, the null hypothesis is
accepted.

4.3 Simulation and validation results

Once the model parameter estimates are obtained and the probability distri-
bution hypothesis are tested, the next step encompasses the validation of the
simulation procedure proposed in Section 3.

Initially, we produce 10000 simulated trajectories total using algorithm 3.1,
starting from the three known positions at 15:45:00 September 14th 2010, to
the locations at 22:00:00 September 14th 2010. The cloud of locations of the
simulated trajectories for each of the three buoys are shown in Figure 9.a, i.e.
the red, blue and green dots labeled as SIM 1, SIM 2 and SIM 3, respectively.
Besides the simulated trajectories, the true trajectories (DATA 1, DATA 2 and
DATA 3) and the simulated ones (BESTSIM 1, BESTSIM 2 and BESTSIM
3), which are the closest to the true ones, are also shown. The proximity
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Fig. 7. Autocorrelation and partial autocorrelation functions, normal probability
plot and histogram of the residuals εDT obtained after fitting an ARMA(1, 0) model
given by (23).

measure is calculated using the Euclidean distance between simulated and data
trajectories. Note that both deterministic and MLE trajectories correspond to
those in Figure 4.

For analyzing the three trajectories more in detail, Figures 9.a, b and c, show
the actual trajectories and the contour plots related to the density of points,
respectively. The higher the contour value is for each location, the higher
the likelihood of the corresponding buoy to go through the location. For this
reason they are called “likelihood contour plots”. Note that the actual buoy
trajectories are in the areas where the model predicted that buoy is likely to go
through. These contour plots were constructed merging the information given
by the 25 simulated locations for each of the 10000 simulated trajectories.

If instead of using all the information, we use the information related to a
particular time step, we can obtain the likelihood contour plot of the location
at a given time, as shown in Figures 10.a, b and c. Note that these contour
plots could be rescaled to represent probabilities, however the contour values
would take very low values. From these results, the following observations are
pertinent:
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Fig. 8. Autocorrelation and partial autocorrelation functions, normal probability
plot and histogram of the residuals εDL obtained after fitting an ARMA(1, 0) model
given by (22).

(1) The actual trajectory at that time is between the bounds given by the blue
dashed line square, which represents the area where there are simulated
values. This means that the model covers the actual final location.

(2) The final value is not close to the most likely positions indicated by the
contour plot. This could be due to the effects not taking into account,
such as leeway velocities due to wind and Stokes drift induced by waves,
which may have changed with respect to those during the parameter
estimation period.

To further explore the simulation method, we produce additional 10000 sim-
ulated trajectories total using algorithm 3.1, starting from the three known
positions at the beginning of the buoy exercise at 09:30:00 September 14th
2010 until 22:00:00 September 14th 2010. Analogous results as those in Fig-
ure 9 are shown in Figure 11.

Note that for the three trajectories, the true values labeled as DATA 1, DATA
2 and DATA 3, are all within the 1000 likelihood contours, and the trajectories
during the parameter estimation period (up to 15:45:00 September 14th 2010)
are within the 2500 likelihood contours. This result is reasonable since the
true trajectories are the maximum likelihood estimates of the corresponding
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Fig. 9. 10000 simulated trajectories from 15:45:00 September 14th 2010 to 22:00:00
September 14th 2010.

model, and the uncertainty increases when the model is used to forecast.

The increment in uncertainty is also observed in Figure 12, where contour plots
of the locations at two different times are shown. First time corresponds to
the end of the parameter estimation period, i.e. 15:45:00 September 14th 2010,
and the second, to the end of the forecasting period, i.e. 22:00:00 September
14th 2010. Note that the contours increase the diffusion area for the second
time. Observe also that the true locations for each buoy and time are within
the simulated likelihood contours, which proves the good performance of the
proposed methodology.

5 Conclusions

This paper presents an stochastic Lagrangian trajectory model for drifting
objects in the ocean. The proposed method has the following advantages:

(1) It allows including different sources of uncertainty by means of their prob-
ability density functions.

(2) The parameters of the selected distributions are estimated using the max-
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Fig. 10. Likelihood contour plots of the simulated trajectories at 22:00:00 September
14th 2010.

imum likelihood method. Particularly, the estimates maximize the likeli-
hood of the model to reproduce the trajectory data.

(3) It allows incorporating the temporal autocorrelation of the random vari-
ables involved, through simple ARMA models.
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Fig. 11. 10000 simulated trajectories from 9:30:00 September 14th 2010 to 22:00:00
September 14th 2010.

(4) The proposed method provides a rationale criterion for uncertainty quan-
tification. This characteristic is specially useful to compare the effective-
ness of different wave climate (currents, winds, waves, etc.) forecasting
methods.

(5) In addition, a simple algorithm to simulate different trajectories is given.
The simulated trajectories allows calculating the probability density func-
tions (likelihood contour plots) of the locations at different times.

Summarizing, this method constitutes a coherent, simple, and easy to im-
plement stochastic framework to deal with drifting trajectories in the ocean,
which is further reinforced by the results obtained from the DRIFTER Project
case study. The proposed methodology sets the methodological framework for
new applications and further studies, such as, the proposal of more complex
probabilistic models, including wind and wave information, or selection of
the best model using the Akaike Information Criterion (AIC)(Akaike, 1973),
which establishes a compromise between obtaining a good fit and using a
simple model.
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Fig. 12. Likelihood contour plots of the simulated trajectories at: i) 15:45:00 Septem-
ber 14th 2010 and ii) 22:00:00 September 14th 2010.
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pp. 267–281.

Allen-Perkins, S., Montero, P., Ayensa, G., 2010. Testing and application of
buoys to follow up spills. In: Drifter Workshop. Vigo (Spain).

ASCE, 1996. State-of-the-art review of modeling transport and fate of oil
spills. J. Hydraul. Eng. 122 (11), 594–609.

Beegle-Krause, C., 1999. GNOME: NOAA’s next-generation spill trajectory
model. In: OCEANS ’99 MTS/IEEE. Riding the Crest into the 21st Century.
Vol. 3. pp. 1262–1266.

Berloff, P. S., McWilliams, J. C., march 2002. Material transport in oceanic
gyres. Part II: Hierarchy of stochastic models. J. Phys. Oceanogr. 32, 797–
830.

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., 1994. Time Series Analysis:
Forecasting and Control. Prentice-Hall International, New Jersey, NJ.

Brockwell, P. J., Davis, R. A., 1991. Time series: Theory and methods, 2nd
Edition. Springer-Verlag, New York, NY.

Brooke, A., Kendrick, D., Meeraus, A., Raman, R., 1998. GAMS: A user’s
guide. GAMS Development Corporation, Washington.

Castanedo, S., Medina, R., Losada, I. J., Vidal, C., Mendez, F. J., Osorio, A.,

25



A, J. J., Puente, A., 2006. The Prestige oil spill in Cantabria (Bay of Biscay).
Part I: Operational forecasting system for quick response, risk assessment
and protection of natural resources. J. Coast. Res. 22 (6), 1474–1489.

Coleman, T. F., Li, Y., 1994. On the convergence of reflective newton meth-
ods for large-scale nonlinear minimization subject to bounds. Mathematical
Programming 67 (2), 189–224.

Coleman, T. F., Li, Y., 1996. An interior, trust region approach for nonlinear
minimization subject to bounds. SIAM Journal on Optimization 6, 418–445.

Daniel, P., Marty, F., Josse, P., Skandrani, C., Benshila, R., 2003. Improvement
of drift calculation in Mothy operational oil spill prediction system. In:
Proceedings of the 2003 International Oil Spill Conference. Washington,
D.C.

Griffa, A., 1996. Stochastic modelling in physical oceanography. In: Adler, R.,
Muller, P., Rozovskii, B. (Eds.), Applications of stochastic particle models
to oceanographic problems. Birkhauser, Boston, pp. 113–128.

Hackett, B., Breivik, O., Wettre, C., 2005. Forecasting the drift of objects
and substances in the ocean. In: Chassignet, E. P., Verron, J. (Eds.), Ocean
Weather Forecasting: An Integrated View of Oceanography. Springer, pp.
507–523.

Harr, M. E., 1989. Probabilistic estimates for multivariate analysis. Appl.
Math. Model. 13 (5), 313–318.

Hong, H. P., 1998. An efficient point estimate method for probabilistic analysis.
Reliab. Eng. Syst. Saf. 59, 261–267.

Liu, P.-L., Der Kiureghian, A., 1986. Multivariate distribution models with
prescribed marginals and covariances. Probabilistic Engineering Mechanics
1 (2), 105–112.

Massey, F. J., 1951. The kolmogorov-smirnov test for goodness of fit. Journal
of the American Statistical Association 46 (253), 68–78.
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