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Abstract Autoregressive logistic regression (ALR) mod» 1 Introduction
els have been successfully applied in medical and phar-
macology research fields, and in simple models to analyze The study of atmospheric patterns, weather types or circu-
weather types. The main purpose of this paper is to intso- lation patterns, is a topic deeply studied by climatolagist
duce a general framework to study atmospheric circulatien and it is widely accepted to disaggregate the atmospheric
patterns capable of dealing simultaneously with: seasonal conditions over regions in a certain number of represen-
ity, interannual variability, long-term trends, and audoe- s tative states. This consensus allows simplifying the study
lation of different orders. To show its effectiveness on mod of climate conditions to improve weather predictions and
eling performance, daily atmospheric circulation pattern a better knowledge of the influence produced by anthro-
identified from observed sea level pressure (DSLP) fields pogenic activities on the climate system [15-17,29].
over the Northeastern Atlantic, have been analyzed using  The atmospheric pattern classification can be achieved
this framework. Model predictions are compared with prg- by using either manual or automated methods. Some au-
babilities from the historical database, showing very gogd thors prefer to distinguish between subjective and objec-
fitting diagnostics. In addition, the fitted model is used tp tive methods. Strictly speaking, both classifications are n
simulate the evolution over time of atmospheric circula- equivalent because, although automated methods could be
tion patterns using Monte Carlo method. Simulation rg- regarded as objective, they always include subjective-deci
sults are statistically consistent with respect to theodhist,, sions. Among subjective classification methods and based
ical sequence in terms of i) probability of occurrence of the  on their expertise about the effect of certain circulatiat p
different weather types, ii) transition probabilities @il .. terns, [13] identify up to 29 different large scale weather
persistence. The proposed model constitutes an easyeto-ustypes for Europe. Based on their study, different classifica
and powerful tool for a better understanding of the climate tions have been developed, for instance, [10], [11] and [36]
system. »s among others. To avoid the possible bias induced by sub-
»s jective classification methods, and supported by the incre-
« mentof computational resources, several automated classi
) o . , » fication (clusterization) methods have been developed;whi
Keywords _Autorggresswe logistic regressio@irculation may be divided into 4 main groups according to their math-
Patterns Simulation » ematical fundamentals: i) threshold based (THR), ii) prin-
51 cipal component analysis based (PCA), iii) methods based
2 on leader algorithms (LDR), and iv) optimization methods
53 (OPT). A detailed description of all these methods and their

R. Minguez s« use with European circulation patterns can be found in [29].
Environr_nental Hydraulics Institute, “IH Car_ltab,rig", Uai\,siQad de Once the atmospheric conditions have been reduced to
g:g:gg;::Sgr:fai%e;rg’grgei?sl&ﬁ\larque Cientificoy Tegicb de 5 catalogue of representative states, the next step is to de-
Tel.: +34 942 20 16 16 sz velop numerical models for a better understanding of the
Fax: +34 942 26 63 61 ss Wweather dynamics. An appropriate modeling of weather dy-

E-mail: minguezsr@unican.es s namics is very useful for weather predictions, to study the
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2 Y. Guanche et al.

possible influence of well-known synoptic patterns sueh of the predictors (independent variables or covariates). F

as East Atlantic (EA), North Atlantic Oscillation (NAO),= some regression scenarios, such as the case considered in
Southern Oscillation Index (SOI), etc., as well as to amalyz this paper, this model is not adequate because the response
climate change studying trends in the probability of occus- variableY is categorical and its possible outcomes are as-
rence of weather types, and so on. For example, [33] inves- sociated with each weather typé € {1,2,...,nx} being
tigated long term trends in annual frequencies associatedny: the number of weather types), which are not normally
with weather types, demonstrating the utility of weather distributed. Thus the necessity to dispose of alternaéve r
classification for climate change detection beyond itstshas gression models.

term prognosis capabilities. [26] studied the dynamics,9f  [ogistic regression was originally defined as a tech-
weather types using 1st order Markovian and non-Markoyjamique to model dependent binary responses ([7,3]). The
models, however seasonality is not considered. [19] intto- |ikelihood of the binary dependent outcome is expressed as
duced a seasonal Markov chain model to analyze the weagthehe product of logistic conditional probabilities. [25}ia-
in the central Alps considering three weather types. The duced the capability of dealing with transition probast
transition probabilities are determined using a lineaitlog, using Markov chains, which was further explored by [35]
regression model. [27] implemented a cyclic Markov chain to predict the outcome of the supervised exercise for in-
to introduce the influence of the El Nifio-Southern Oscillg-  termittent claudication, extending the model to polytomou
tion (ENSO). 127 outcomes.

Generalized linear regression, and especially autorsigees Let¥; t = 1,....n be the observation weather type at
logistic regression, has proved to be a promising framework timet, with the following possible outcomase {1, ..., Ny }
for dealing with seasonal Markovian models, and notonly |ated to each weather type. Consideriigt = 1,....n
for atmospheric conditions. Similar models have been ap- y, pe a time-dependent row vector of covariates with di-
plied successfully in medical and pharmacological researc ensions (& ne), i.e. seasonal cycle, NAO, SOI, principal
fields [35,2,30]. The main advantages of autoregressive Jo- «omponents of synoptic circulation, long-term trend, etc.

gistic regression (ALR) are that i) it can be used to model he autoregressive logistic model is stated as follows:
polytomous outcome variables, such as weather types, and

i) standard statistical software can be used for fitting pur .
p)oses gp n ( Prob(Y = i[%_1,...,Y%i—a,Xt) )
The aim of this paper is twofold; firstly, to introduce Prob(% =i¥-1,..., %t-a,Xt)
agtoregresswe logistic regre_ssmn_models in or_der_ to qgal ai + X B; +Z?=1Yt—jV|j§ Vi=1,... nwli#ix
with weather types analysis including: seasonality, exter
nual variability in the form of covariates, long-term trend

and Markov chains; and secondly, to apply this model fo whereai is a constant term anfl; (ne x 1) andy; (j =

I ; a3 1,... d) correspond, for each possible weather type the
the Northeastern Atlantic in order to show its potential fog_r parameter vectors associated with covariatesapavious

analyzing atmospheric conditions and dynamics over tlllilgls weather states, respectively. Note thatorresponds to the

area. Resuilts obtained show how the model is capable of ;o ot he Markov model. The model synthesized in equa-

Sealmg sl;lmultakl]ner?usly t\;wth prgcti|ctorsdre:a;';]edk;[ohd|ﬁgrq4l ftion (1) provides the natural logarithm of the probabiliy r
'me Iscta ©s, V\ét ' caTnh € used o ptr_(ta t'C € be awou;ucl) tio between weather typeand the reference weather type
creulation patterns. ‘1his may constitute a very powerlﬂ i*, conditional on covariateX; and thed previous weather

and easy-to-use tool for climate research. s States, i.e. the odds. The left hand side of equation (1) is

The rest of the paper is organized as follows. Secnorz 2 also known asogit. According to this expression, the con-

provides the description of Autoregressive Logistic Moiqs- ditional probability for anv weather tvpe is given by:
els. In Section 3 the model is applied to the Northeastérn P y y ypeisg y:

Atlantic, interpreting results related to the differentlss,

and checking the model’s performance on transition proba- Prob(Y; =i[¥%_1,...,%_d,Xt) =
bilities and persistence. Finally, Section 4 contains a-sum

mary and discussion on model performance, possible limi- exp(ai +XeBi+ 31 Y VIJ)

tations and further applications. Nt d
> expl ot XeBy+ Y Vi
k=1 =1

148 Note that in order to make parameters unique we im-
Traditional uni- or multivariate linear regression models pose an additional condition, which fixes the parameter val-
assume that responses (dependent variables or outcomeg)es related to the reference weattigarbitrary chosen) to
are normally distributed and centered at a linear functien zero.

1)

s Vi=1, ... Ny

147

2 Autoregressive Logistic Model
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2.1 Description of the parameters 200

201

Since the purpose of this paper is to present a unique model
able to reproduce different weather dynamic charactefis-
tics, including: seasonality, covariates influence, |o@igA 203
trends, and Markov chains; the inclusion of these featuses
in the model (1) will be briefly described in this subsectioss:

— Seasonalityit is known that there is a strong seasonaf-

ity on weather type frequencies, for example, [19] mdd-
eled this effect for the weather in the central Alps. 1
their work the seasonality is introduced in the model&s
an autoregressive term but it could be also introdueed
by adding harmonic factors. Here, the seasonality is:in-
troduced in the model using harmonics as follows: 2w

n° = Bg+ Broos(wt) + BFsin(wt) (T

wherer® represents the seasonality effect onlthggt, t s
is given in yearsfg correspond to annual mean values,
and B3 and B3 are the amplitudes of harmonics,= .,
2m/T is the angular frequency. SinqﬂgS is a constant;
term, it replaces the independent teamyin (1). For this .,
particular case, we choo3eto be defined in years, ang,
thusT = 1 andt is in annual scale. This means, foy
instance, that the time associated with day 45 within
year 2000 is equal to 200045/36525= 20001232.
However, according to the definition of the harmorie
argument\t = 2?"‘), t could be given in days, theh
must be equal to 3685. e
Analogously to Autoregressive Moving Average (ARMA)
models [4], seasonality can also be incorporated troygh
an autoregressive term at lag 365. Details about hovyyto
incorporate this autoregressive component are giver in
the autoregressive or Markov chain parameters descfip-
tion below. o
Covariates: To introduce the effect of different cova
riates, the model is stated as follows: o

B]c_: Ne 233

M =XBC = (X1, X)) | 1 | = ZXaBF, @) 2
C 1= 235

Bnc 236
where i€ is the covariates effect on tHegit, X is a »»
row vector including the values of different cova- 2
riates considered (SOI, NAO, monthly mean sea leyel
pressure anomalies principal components, etc.)Bfnd
is the corresponding parameter vector.
Long-term trends: The long-term trend is a very im2*
portant issue because many authors, such as [12,17,5] ,
perform a linear regression analysis using as predictand
the probabilities of each weather type, and the time as
predictor. However, mathematically speaking, this may
conduct to inconsistencies, such as probabilities outside
the range 0 and 1, which is not possible. To avoid this
shortcoming, we use a linear regression model butfer

213

223

@

4

the logits, being considered as a particular case of co-
variate:

nt =g, (5)

wherer-T represents the long-term trend effect on the
logit, andt is given in years. The parameter represents
the annual rate of change associated with the logarithm
of the probability for each weather type, divided by the
probability of the reference weather type, Hog P_.I

The regression coefficiefi-" is a dimensionless pa-
rameter, which for small values of the coefficient may
be interpreted as the relative change in the o@isiue

|

to a small change in timét. Note that (5) does not
correspond to the typical trend analysis because trends
are analyzed on logits. However, as numerical results
show, this codification provides consistent results on
long-term changes of the weather type probabilities.
Autoregressive or Markov chain: The sequence of at-
mospheric circulation patterns can be described as a
Markov chain. [19] proved that a first order autoregressive
logistic model is appropriate for reproducing the weather
types in the central Alps. This effect can be included in
the model using the following parameterization:

d
R = ZYt_jVj, (6)
=1

wherer™Rd represents the autoregressive effect of order
d on thelogit. The orderd corresponds to the number
of previous states which are considered to influence the
actual weather typey;_; is the weather type on pre-
vious j-states, angj; is the parameter associated with
previousj-state.

Note that each;_j; j =1,...,d in (6) corresponds to

a different weather type, according to the polytomous
character of the variable. In order to facilitate parame-
ter estimation using standard logistic regression tech-
nigues, the autoregressive parts must be transformed
using a contrast matrix, such as the Helmert matrix [35]
so that each covaria¥g_j transforms intaw, —1 dummy
variablesZ!~J. The Helmer contrast matrix for trans-
forming outcome; into the dummy variable row vector

Z' is provided in Table 1. According to this transforma-
tion matrix, equation (6) becomes:

d d n\Mfl i
T=SY =Y 5 Z v )
=1 1 k=1

J:
Regarding seasonality, and according to expression (7),
it can be included in the model as follows:

Nwt—1
1R85 = Y, _365)365 = > Z3%ymeek, (8)
=1

which corresponds to an autoregressive component at
lag 365.
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4 Y. Guanche et al.

Y| Z' (1x (e — 1)) 2o logistic regression applied to weather types is provided in
1 -1 -1 -1 ..-1-1 20 Table 2.
g :i :i :i N ;1 (1) 261 Note that the column associated with the seasonality
. 2 constantternf in (3), which correspondsto a column vec-
: : S x5 tor (1,1,...,1)T, must be included in matrix depending
:th :i :i M’iz ”“"(;3 N 8 8 s« 0N the standard logistic model used. While some of those
Nt |D—1 O 0 ..0 O s models automatically include this constant, others do not.

Table 1 Helmert Contrast Matrix
26 2.3 Parameter estimation

Note that the prize for using standard logistic regressign Parameter estimation is performed using the maximum like-
fitting is an increment on the number of parameters, i. lihood estimator, which requires the definition of the likel
fromdtod x (ny —1). 20 hood function. For a given sequencerofveather typey,

The model can include all these effects adding the léfy- the likelihood function becomes:

its, i.e.1= 1>+ 1€+ -7 + ®, Thus, expression (2) can n Mt . .
1 1 _ _ ull
be expressed as follows: (@YX = tELElPFOt(Yt =¥, Vg X0, (1)

: 22 Where@ is the parameter matrix, and the auxiliary variable
ProlY; =i[Y_1,...,Y%_a, X¢) = x W is equal to:

nexp(n-s‘+71-‘:+71”+ﬂAR) Ni= 1 e ©) [Oify #i.
k;exp(nfur e+ + ) 294 {

205 Note that the likelihood function (11) is the product of
In order to deal with different time-scales within thg  ynivariate logistic functions.

model: annual, monthly and daily; all the parameters to,pe  Animportantissue for the appropriate modeling of weather
included are transformed to the lowest scale considered,. types, is to decide whether the inclusion of a covariate is
daily. Thus, we require a covariate value for each day. This relevant or not. There are several tests and methods to deal
value may be chosen assuming a piecewise constant fncth this problem, such as Akaike's information criteria
tion over the data period (a month for monthly data, a ygar or wald's test. Further information related to logistic re-
for yearly data, and so on), which is the one considetgd gression parameterization and fitting can be found in [8,
in this paper, or using interpolation and/or smoothing tech 32,34].

niques, such as splines. Note that in our case, the samg,Co-  There are several statistical software packages which
variate value keeps constant for the entire month (durjpg are able to solve a polytomous logistic regression fitting
30-31 days). ws  (€.9.SYSTAT, NONMEM), but for this particular case, the func-

a7 tion mnrfit in MATLAB has been used. This function

s estimates the coefficients for the multinomial logistic re-
w0 gression problem taking as input arguments matrxcasd

y from Table 2.

Vi=1,....ny; Vt=1....n. (12)

Tifyy =i

2.2 Data set-up

Once the mathematical modeling is defined, this section*fe-
scribes the data set-up from the practical perspectiveY Let
correspond to the vector of weather types at different times ) .
of dimensionsif x 1), 5o tha € {1,...,nu }. To deal with a1 3 Cas.e study: Weather types in the Northeastern
polytomous variables a matrixof dimensionsi x ny) is ™ Atlantic

constructed as: a3 In the last decade, the availability of long term databases

Vij = {O !f ) # Yt Vj=1,...,nw; Vt=1,....n. (10) =« (reanalysis, in situ measurements, satellite) allows a de-
lif j=" a5 tailed description of the atmospheric and ocean varigbilit

Note that since only one weather type at a time is possi- all over the globe, which include the analysis and study of
ble, z?ﬁlytj =1, vt. The matrixx of dimensions1 x (3+ =z atmospheric patterns. To show the performance of the pro-
nc+1-+dx (nw — 1)) includes all predictors at each ofs posed model, Daily Sea Level Pressure (DSLP) data from
the n observations. Three parameters for seasonality {3), NCEP-NCAR database [20] have been used. The area un-
nc parameters for covariates (4), one parameter for the leng der study corresponds to the Northeastern Atlantic cogerin
termtrend (5), and x (nw — 1) parameters for the autocor latitudes from 25to 65°N and longitudes from 58°W to
relation (7). The general data setup for the autoregressivel5°E. The data record covers 55 years, from 1957 up to
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Autocorrelation

Seasonality ‘ Trend ‘

t Y y Covariates | Lagl [ Lag2 [ Lagd
tt V1| v Yingw | COSWH)  sin(wt) ty X1 Xine | Zid  Zingea | 4x Zigea z Zi -t
2 Y2 | Y21 Yonw | Cogwlz)  sin(wtp) |7 X21 Xane thfll Z{W*l thflz Zéf,y,l thfld Zé}gﬁ,l
ts Y3 |y Yanw | COSWEz) sinwts) | s | Xa1 Xang | 2t - B | D7 Zia z Z
th Yo | Y2 Yn.nut cogwty)  sin(wty) th Xn1 Xn.ne Z;],l Z;fn:‘lm 1 Z;?Lz Z,‘ﬂfm 1 Z:ld Z,'ﬁ{’m 1
Table 2 Data Setup for the Autoregressive Logistic Regressioniegpb Weather Types
WT2
65 =
=
: W
55
50
45
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35
30
25
65
60
55
50
45
40
35
30
25
65
60
55
s 1040
45 1020
40
35 1000
30
55 980

525 45 375 30 225 15 75 0 75 15

Fig. 1 DSLP synoptical patterns associated with the clustednati

2011. Note that NCEP-NCAR data records start in 1948,
however it is accepted by the scientific community that
recorded data up to 1957 is less reliable [21].

337

The first step to apply the proposed method is data cftfs-
tering. However, in order to avoid spatially correlatedvat”
ables that may disturb the clusterization, a principal coffi-
ponents analysis is applied to the daily mean sea level pfés-
sures (DSLP). From this analysis, it turns out that 11 liff-
early independent components represent 95% of the vafia-
bility. 3““

As proposed by several authors, such as [6,9] and [22]
among others, the non-hierarchical K-means algorithm.ds

45 375 30 225 15 75 0 7.

5 15 45 375 30 225 15 75 0 75 15

able to classify multivariate patterns into a previously de
termined number of groups, eliminating any subjectivity in
the classification. To reduce the likelihood of reaching lo-
cal minima with the algorithm, clusterization is repeated a
hundred times, each with a new set of initial cluster cen-
troid positions. The algorithm returns the solution witk th
lowest value for the objective function. In this applicatio
the daily mean sea level pressures corresponding to the 55
years of datar(= 20088 days), represented by 11 principal
components, are classified irmg = 9 groups.

Note that in this particular case we select 9 weather
types for the sake of simplicity, to facilitate the implemmen
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tation, fit and interpretation of the model results. However 3.1 Model Fitting
the selection of the appropriate number of clusters is an
open issue not solved yet. There are authors, such as [19, 6Results obtained from the application of the proposed model
1], that defend the use of a maximum of 10 weather typgs, to the Northeastern Atlantic are described in detail. The
others ([23,5,18]) claim that a higher number of weathgr output given by functiomnrfit is a matrixg of dimen-
types is required to represent the intranriirgerannual varin, -~ sions fip x (nw — 1)) including parameter estimates by the
ations and seasonality appropriately. Being more specific, maximum likelihood method, whene, is the number of
[6] uses only 4 weather types to represent daily precipita- parameters in the model amg, is the number of weather
tion scenarios, [9] classifies into 20 weather types theydail types considered. Note that each weather type has an as-
atmospheric circulation patterns, or for example, [18jsusg sociated parameter except for the reference weather type,
64 weather types to study the extreme wave height variabi- whose parameters are set to zero.
lity. This paper does not solve the problem of establishing  The criteria to choose the final model, i.e. the order
the appropriate number of weather types, which must,be f the auto-regressive component, seasonality, covariate
decided by the user according to his/her experience. But otc_ s hased on statistical significance, in particulangis
due to the facility to implement, fit and interpret model rg;  {he Jikelihood ratio (LR) statistic. This statistical meth
sults might help establishing a rationale criteria for swv , s appropriate to compare nested models by comparing the
this problem. «2 deviance raticADev., which measures the change of fit-
a3 ting quality for two different parameterizations, and the
Figure 1 shows the 9 representative weather types . Qb- chi-square distribution wittAdf = Anp x (ny — 1) de-
tained from the clusterization. For instance, the upper lef grees of freedom. Note than, is the difference in terms
subplot represents a synoptical circulation pattern with,a of number of parameters for both parameterizations. Ba-
low pressure center above the Britannic Islands while the sically, it tries to check if the increment of fitting quality
Azores High remains southwestern the Iberian Peninsyja, induced by increasing the number of parameters is justi-
whereas the upper central subplot shows the Azores Highfied, i.e. does the increment on fitted parameters conduct to
with its center southwest of the United Kingdom. 20 a better model? For instance, assuming a confidence level
o o =95%, if ADev.> x5 54¢ the improvement achieved
Assigning arbitrarily an integer value between 1 and by addingn, additional parameters is significant. This test
nw = 9, for each weather type in Figure 1, we get the time allows to analyze which parameters or covariates are rele-
series of weather typ&§ which is the input for the model«: vant to represent climate dynamics in a particular location

425 In order to evaluate the goodness-of-fit related to the

To fit the data and according to the parameterizatians predictors, several different fits are considered. In T&ble
givenin (3)-(7), long-term trend, seasonality, covasard . up to 7 nested models are compared depending on the pre-
a first order autoregressive Markov chain are included. Eachdictors involved. In this table, the number of parameters
study and location may require a pre-process to selectthe(np), the deviance of the fitting (Dev.), the degrees of free-
parameters to be included according to their influence. Re- dom (df) and the rate of change on deviand®év.) are
lated to covariates, it is worth to mention that Monthly Sea provided. Model 0 is the so-calledull model that only
Level Pressure Anomalies fluctuations (MSLPA) have been takes into account an independent teffg) (Model | adds
considered. These anomalies correspond to monthly devia-the possible influence of seasonality), which according
tions from the 55-year monthly averages, which allows eh- to the increment on deviance with respect to the null model
taining interannual variations. This interannual modolat.s ADev.=7417> )(295%16 is significant, confirming the hy-
can be related to well known synoptic patterns, such as kA, phothesis that there is a seasonality pattern in the occur-
NAO, SOlI, etc. [14], but we preferred to use the principal rence of the different weather types. Motleincludes sea-
components of the anomalies to avoid discrepancies aleutsonality and MSLPA covariatestt 4 7i°), which also pro-
what predictors should be used instead. Nevertheless;:wevide significant information. Modélll is fitted account-
could have used those indices within the analysis. In this ing for seasonality, MSLPA covariates and long-term trend
case, the first 9 principal components of the monthly sea (1°+ ri® + ri*"). In this particular case, the increment on
level pressure anomalies (MSLPA) that explain more than quality fit induced by the inclusion of an additional pa-
96% of the variability are included as covariates. Figure2 rameter, related to long-term trend, is not significant, i.e
shows the spatial modes related to those principal compo-ADev.= 9 < x295%8. ModelslV andV include the influ-
nents. Note, for instance, that the correlation between.the ence of autoregressive terms (Markov Chains, MC) with
first mode and NAO index is = —0.618 and the correla=ss ordersd = 1 andd = 2, respectively 15+ € + -7 +
tion between the second mode and EA synoptic patterris 7°R¢). Note that both autoregressive components are sig-
r =0.482. «s hificant. Additionally, due to the importance of long-term
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EOF 1 (34.5683%) EOF 2 (28.9207%) EOF3 (16.0923%)
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[

. 545 37.530 22515 7.5 0 75 15 45 37.530 22.515 7.5 0 75 15 45 375 30 225 15 75 0 75 15 0

Fig. 2 MSLPA spatial modes related to the Principal Componentsiéiezi as covariates in the model.

changes in the probabilities of occurrence of the differemt standard logistic model used. Using the functiorrfit
weather types, a model that only takes the long term trend this constant is automatically added, thus the null model
into account has also been fitted, mo®él (1*7). This = (a) hasnp = 1 and the model fitted only with the trend (g)
additional factor is statistically significastDev.= 69 > s hasnp = 2.

x295%8, which means that there is a long-term evolution on
the probability of occurrence related to each weather type.

i 2

However, there is an inconsistency with respect to model Mode]  Predictors _ [n,[ df [ Dev. [A Dev|x®osygar
I11, where this factor is not statistically significant. The-rea ? % é 128235 ?g;ig 7417| 26.9
son for this behawour_ls sw_n_ple,_when using covarlate_s, the 4 e 12116060468105 10;14 iég
long-term effects are implicitly included in the covariate 1l s+ +nT  [13/16060068096 2150 837
and there is no reason to include additional effects not ex- IV |+ + nLI + nAgl 2111605345937 “25°7| oo’
plained by those covariates. V|4 4+ T 4 m*|29/1604724561Q

o . .- . 0 Bo 116069485734 155

It is important to point out that deciding which model VI T 2 (16068885667 '

is more appropriate for each case depends on weather dy-
namics knowledge of the user, and its ability to confront Table 3 Fitting diagnostics for different model parameterizagioim-
or contrast its feeling about which physical phenomena is cluding number of parametersy), the deviance of the fitting (Dev.),

. T . the degrees of freedom (df) and the rate of change on deviance
more relevant, with respect to the statistical significaofce (ADev.)
the corresponding fitted model. The main advantage of the
proposed method is that it provides an statistical and ebjec
tive tool for deciding what information is more relevant to

S A If we consider modelV, which accounts for season-
explain climate variability.

s ality, MSLPA covariates, long-term trend and a first order
Note that as said in Section 2.1, the seasonality constantautoregressive component as predictarsH r€ + r-" +

termfBo, which correspondsto a columnvectarl, ..., 1)" w0 m*R), the model has 21 parametens=21=3+nc+ 1+

is automatically included in the model depending on the d x (ny —1) =3+ 9+1+1x 8:i) three for seasonality>,
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i) nine for the MSLPA principal components®, iii) one
for the long-term trendt-"T, and eight for the dummy vari-
ables of the first autoregressive comporeiit.

Once the parameter estimates for the mo@edse known,
the predicted probabilitiep for the multinomial logistic
regression model associated with given predictosafi
be easily calculated. This task can be performed using the
MATLAB function mnrval, which receives as arguments
the estimated parameteé!sand the covariate values Ih
addition, confidence bounds for the predicted probakslitie
related to a given confidence levet & 0.99,0.95,0.90)
can be computed under the assumption of normally dis-
tributed uncertainty. Note that these probabilitigor-
respond to the probability of occurrence for each weather
type according to the predictor values ~

These probabilities allow direct comparison with the
empirical probabilities from the data, and the possibiiity
simulate random sequences of weather types. The graphica

m WT9— Model

H H | i .y

95% CI |

H\HH\HHM i

Ml,; i,

i
Tlﬂ%‘

l -WTI EWVT2mWT3mWT4

1|!
sl

T ‘ i "'lﬂ \'II

Probability

150 200 250

Days
i) Seasonality with harmonics.
0.9
0.8

I 07

comparison between fitted model and observed data can be . 4 I §

done in different time scales, aggregating the probadsliti
of occurrence within a year, year-to-year or for different
values of the covariates (MSLPA).

— SeasonalityTo analyze the importance of seasonality,
Figure 3 shows the comparison of the probabilities of
occurrence for each weather type within a year. Color
bars represent cumulative empirical probabilities, and
black lines represent the same values but given by the
fitted modell, which only accounts for seasonality us-
ing harmonics (panel above in Figure 3), and also us-
ing an autoregressive term at lag 365 (panel below in
Figure 3). For each day within a year the bars repre-
sent cumulative probabilities of occurrence of all the 9
weather types, which are calculated for each day using
the 55 data associated with each year. Note that thete is
a clear seasonal pattern which is captured by the medel
using harmonics, being circulation patterns 4, 7 anek8
the most likely weather types during the summer, while
groups 1, 6 and 9 are more relevant during the winter.
Comparing both ways of accounting for seasonality, the
harmonic (panel above of Figure 3) is capable of repre-
ducing the seasonal behavior better than the autocarre-
lation term at lag 365 (panel below of Figure 3).
This seasonal variation through the years is also shewn
in Figure 4. In this particular case color bars represent
cumulative monthly probabilities. Note that the modse!
(black line) repeats the same pattern all over the years
since we are using fitting results associated with model
I. Analogously to the previous Figure 3, it is observed
a clear seasonal pattern. For example, in the lower part
of the graph it is observed how weather types 1 and
2, mostly related to winter and summer, respectively,

543

change the occurrence probability depending on the sea-

son within the year. The same behavior is observedsin

Probabilit;
=1
o

MM
[

N
'S

e
o)

=
S

e

100 150 200
Days

!
ii) Seasonality with autoregressive term at lag 365

250 300 350

Fig. 3 Model fitting diagnostic plot considering seasonality: $jng
harmonics (Model), and ii) using an autoregressive term at lag 365.

the upper part of the graph related to weather types 3
and 9.

Mean Sea Level Pressure Anomalies (MSLPAMI-
though model reproduces and explains the important
seasonality effect, it can be observed in Figures 3 and 4
that there are important fluctuations and discrepancies
between the empirical data and the model on a daily
and monthly basis, respectively. If mod#® including
seasonality, MSLPA covariates, an autoregressive com-
ponent of orded = 1 and long-term trendr®+ € +
™R+ -T) is considered, results are shown in Fig-
ures 5 and 6 . The fitted model now explains all fluc-
tuations both on the daily and monthly scale.

Note that once the noise on daily and monthly pro-
babilities is explained by those additional factors, the
consideration of seasonality through the 365-lag auto-
regressive model also provides similar diagnostic fitting
plots, i.e. modelV : 15+ n€ + Rt 4 bR = 7ARses

€+ R4 R,
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(W WTI s WT2m WT3 s WT4  WTS mm WT6 s WT788 WTS s WT9— Model |

1
0.8
ﬁ?(lé
S
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S
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0.2
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Time

0
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Fig. 4 Evolution of the monthly probabilities of occurrence dgri20 years and comparison with the seasonal fitted moggack line).

1 o W1 WT2 00 WS TS W”'W“'W“WT*'WT" Model | 559 modellV is capable of reproducing and explaining the
e Yt =t Y i . .
I Hw M HHH” HU‘” L H\MH\UHH MHHH H | =  weather dynamics accurately, both on a daily and monthly
' i \ il ‘ | ‘ s61 basis. Using this model we manage to model atmospheric
“ ‘ ‘1“ i J“, 562 processes on both the short and the long term, using
: U“‘HP " |‘ w‘ “ “ ‘ ”“ \ ”‘ IR a combination of short-term sequencing through auto-
Lo Mr ‘ ' ‘ ”J [L L) (e correlation terms and long-term correlations included
2 I w ’ 565 implicitly through seasonality, covariates and long-term
-l ' L
£ 1! I?'IM \ |1 u “‘ wﬁ iy ‘ , “ ' 566 variations
‘ ‘ ‘” ‘H‘ “"h | \ 567 To further explore the influence of the MSLPA on the
| T i '| | scs occurrence probability for each weather type, Figure 7
i 560 shows the probability of occurrence of each weather
‘ 570 type conditioned to the value of the MSLPA principal
o - ™ - o o . s componentsRC;; i = 1,...,9) included as covariates.
1 Seasonality with harmir s and covariates 572 Color bars represent the cumulative empirical proba-
H H ‘WH‘WHHWH s BT Po ‘HWWW 573 bilities from data, and the black lines are fitted model
‘ Hilhadller| ‘ 574 probabilities.
i m‘ ‘ ‘ \” 575 According to results shown in Figure 7, the presence or
, “‘\ H “““HHH‘MH‘ “ ‘h : ‘\ 576 absence of a weather type may be related with the value
. \ H h ‘ 1 i “ 577 of the PC anomaly. For instance, in the subplot associ-
g M LN h l" H “’ IIIH 578 ated with the first principal component (upper left sub-
2" " ‘ ‘ ‘U w\. ‘J' 'IM H' 579 plot), negative values of the principal component im-
s ““ “ il ‘\H K 1 580 ply an increment on the occurrence of weather types 1
| r I 1t "| ' 581 (red), 6 (maroon) and 9 (grey); while for positive val-
’ 582 ues the most likely weather types are 2 (green), 3 (light
583 blue) and 5 (yellow). On the other hand, for negative
| 584 values of the second principal component, the domi-
! % oS ”’1‘? . ‘f" Days 1 362550 ) _3:)0 0 g nant weather type is the blue one (8), prevailing weather
11) Seasonality with autoregressive term at laj and covariates. e .
N g ¢ - types 1 and 5 for positive values of the PC. Finally, for
Fig. 5 Model fitting diagnostic plot considering modaY: i) using 57 the third principal component, the behavior is different;
harmonics (Model), and ii) using an autoregressive term at lag 36&s the lowest values of this principal component indicate a
589 higher likelihood of weather types 4 and 9, while higher
590 values increase the probability of occurrence of weather

type 3.

Note that according to the low variance explained by
principal component from 4 to 9, we could be tempted
to omit them from the analysis. To check whether these

Itis relevant to point out how the inclusion of MSLP
allows explaining the monthly fluctuations on the pro-
babilities of occurrence associated with the different
weather types (see Figure 6). These results confirm that
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Fig. 7 Evolution of the probabilities of occurrence of each weathe
type conditioned to the principal component value assediatith ¢;;
fitted modellV (black line).

614

615

covariates improve significantly the quality of the fits

we have included the principal components one at a

time, and check the likelihood ratio (LR) statistic. Ta-
ble 4 provides the results from the analysis. Note that Trend'x10-2)[0.09 -0.4 -0.51 -0.48 -1.330.25 —0.07 —0.16
although it is clear that the most relevant information Orrena(x102)[0.24 021 022 020 024 021 019 019

is given by the first three principal components, which
representimportantincrements on deviance, the remain

Wl Gronp | Group 2B Group 3B Group 4 Group 5MGroup 6 Group 71 Group S Group 9— Trends  95% Cl

1960 1965 1970 1975 1980

Fig. 8 Annual probabilities of occurrence for each weather type an
comparison with modeV| fitting results (black line) in the period
1957—2011.

of occurrence for each year (55 data record) associated
with the 9 established weather types. The black line
represents the model fitting (model VI in Table 3). Note
that we do not present results associated with mbdel
because the long term trend is not statisticcally signif-
icant in that model, because long-term effects are im-
plicitly accounted for through the covariates.

WT;, WT; Wiz WTs Wis Wig WT; WTg

_Table 5 Fitting parameters associated with modélincluding long-
term trends, and their corresponding standard error. ¥atukeold are

der COVariat?S_mSO _imprO_Ve the qu_ality o_f the model gagistically significant at 95% confidence level and valmesursive
from an statistical viewpoint. For this particular case, are significant at 90% confidence level.

all principal components are statistically significant on

a 95% confidence level.

Model| df | Dev. |A Dev]x%gs08

0
PCy
PC,
PCs
PCs
PCs
PCs
PCy
PCg
PC,

160694
160688
160680
160672
160664
160654
160648
160644
160632
160624

85736
81308
77429
75137
74912
74790
74729
74650
74551
74533

4428
3879
2292
225
122
61
79
99
18

155
15.5
155
15.5
155
15.5
155
15.5
155

617

618

619

620

621

622

623

624

625

626

627

Table 4 Fitting diagnostics related to the principal componengpas®?®
ciated with MSLPA, including the deviance of the fitting (Dgthe 620

degrees of freedom (df) and the rate of change on deviatide\()

630

631

632

— TrendsFinally, in order to show the possible influence
of along-term trends, results associated with mdtel e

which only accounts for long term trends, are shown
in Figure 8. Color bars represent the annual probability

The parameters for the trends and their corresponding
standard errors are provided in Table 5. Note that sta-
tistically significant trends at 95% confidence levels are
boldfaced, while trends which are statistically signifi-
cant at 90% confidence level are in italics. According
to results given in this table the following observations
are pertinent:

— The reference weather type is weather type num-
ber 9. That is the reason why there is no parameter
related to this case. Note that it is a typical winter
weather type.

— The coefficients may be interpreted as the relative
change in the odds due to a small change in time
ot, i.e. the percentage of change in odds between
weather types 5 and 9 during one year is approxi-
mately equal to -1.33%.

— Weather types 4, 7 and 8, which represent summer
weather types, decrease with respect to type 9. This
means that weather types related to winter are in-
creasing its occurrence probability. This result is



644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

Autoregressive Logistic Regression Applied to Atmosph@&iirculation Patterns

11

consistent with recent studies about the increment
of wave climate severity, which is linked to weather
types during the winter season.

— Note that weather type 1, also typical during winter,
slightly increases the odds with respect to type 9.
Confirming the increment of occurrence related to
winter weather types.

3.2 Monte Carlo Simulations

Simulated

Once the model has been fitted and fhenatrix is ob-
tained, synthetic sequences of weather types can be gen-
erated through Monte Carlo method. In this particular case,
since we require the knowledge of the covariate values dur-
ing the simulation period, 55 years of daily data senes (
20088) are sampled using the original covariates. In order
to obtain statistically sound conclusions according to the
stochastic nature of the process, the simulation is regeate

0.25

0.2f

0.15] *

0.1F .

e Mean :---- 95% CI

0 0.05 0.1 0.15 0.2 025

Empirical

100 times. The results obtained are validated with a three- Fig. 9 Scatter plot of the empirical occurrence probabilitiesoass
fold comparison against the original sequence of weather ated with the weather types versus Monte Carlo simulatisnlte

types: i) occurrence probabilities of WT, ii) transitioropr
ability matrix between WT and iii) persistence analysis of
WT.

— Occurrence Probabilities
The probabilities of occurrence of the 9 groups for the
100 simulations, against the empirical probability of
occurrence from the 55-year sample data, are shown
in Figure 9. Note that results are close to the diagonal,
which demonstrates that the model simulations are ca-
pable of reproducing the probability of occurrence as-
sociated with weather types appropriately.

— Transition Probabilities Matrix
The transition probabilities express the probability of
changing from groupto groupj between consecutive
days. Thus, in the case of having 9 weather types, the
transition matrix T) has dimensions 2 9, and each
cell T j is the probability of changing from weather
typei to weather typeg ([31]). The diagonal of the tran-
sition matrixT corresponds to the probability of stay-
ing in the same group. The transition matrix is calcu-
lated for each of the 100 simulated samples. Figure 10
shows the scatter plot related to the<® = 81 ele-
ments of transition matrix, including its uncertainty due
to the simulation procedure, against the empirical trasn-
sition probabilities obtained from the initial data sets
The model is able to reproduce correctly the transi-
tions between circulation patterns within the sequenge.
In this particular case, the points with probabilities in
the range B — 0.8 are those representing the probabil-
ity of staying in the same group (diagonal of the transi-
tion matrix).

— Persistence Analysis

Simulated

694

695

0.8

0.7 :.

soe
%° o

$2% %

0.4

0.1r

« Mean

95% CI

03

04 05 06 07

Empirical

0.8

Fig. 10 Scatter plot of the empirical transition probabilitiesween
weather types versus Monte Carlo simulation results.

Finally, a persistence analysis is performed over the
simulated samples in order to check the ability of the
model to reproduce weather dynamics. The correct re-
production of the weather types persistence is very im-
portant for many climate related studies, because it may
be related to length of droughts, heat waves, etc. Fig-
ure 11 shows the empirical cumulative distributions of
the persistence associated with each weather type. Note
that the average empirical distribution (green line) is
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0.1+
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Ju—

Fig. 12 Box plot associated with thp-values from the 100 tests for
each weather type.

Probability
o
(9]

b Jo 200 do 200 10 20
Em;iyrsical data a;;sso/ o1 Si?;’ilaﬁons »s predictors implied. The advances with respect to the state-
_ o 95% Cl ——

s Of-the-art can be summarized as follows:
Fig. 11 Empirical cumulative distribution of the persistence toe ©

groups related to: i) historical data and ii) sampled datagislonte — The availability of the model to include autoregressive
Carlo method. 728 components allows the consideration of previous time
729 steps and its influence in the present.
very close to the one related to the historical sampie — The models allows including long-term trends which
data (blue line) for all cases. This blue line stays be- are mathematically consistent, so that the probabilities

tween the 95% confidence intervals (red dotted line) associated with each weather type always range between
related to the 100 simulations. To further analyze the 0 and 1.

performance on persistence from an statistical view- — The proposed model allows to take into account simul-
point, we perform a two-sample Kolmogorov-Smirnoy taneously covariates of different nature, such as MSLPA
([24]) goodness-of-fit hypothesis test between the orig- or autoregressive influence, where the time scales are
inal data and each sampled data. This test allowsde-  completely different.

termining if two different samples come from the same — The capability of the model to deal with nominal clas-
distribution without specifying what that common dis» sifications enhances the physical point of view of the
tribution is. In Figure 12 the box plots associated with problem.

the p-values from the 100 tests for each weather type — The flexibility of the proposed model allows the study
are shown. Note that if thp-value is higher than the of the influence of any change in the covariates due to
significance level (5%) the null hypothesis that both long-term climate variability.

samples come from the same distribution is acceptgd. On the other hand, the proposed methodology presents
Results shown in Figure 12 prove that for most of the

th ist distributions f the Monte C&31 a weakness in relation with the data required for fitting pur-
cases the persistence distriputions from the Monte L.arlo poses, because a long-term data base is needed to correctly
simulation procedure come from the same dlstrlbut|797n study the dynamics of the weather types
as the persistence distribution from the historical data. ' :
For all [t)he weather types the interquartile range (bfffe . Although further research must be done on the appllcal—
box) is above the 5% significance level (red dotted line tion of the proppsed model to study processe_s that are .dl'
" rectly related with weather types, such as marine dynamics

. o 75
These results confirm the capability of the model to e (wave height, storm surge, etc.) or rainfall, this methas pr

. 75
_pr?duce fsynthgt;c sequences of weather types cohe7£§a r'R/ides the appropriate framework to analyze the variability
N term ot persistence. 3 Of circulation patterns for different climate change seena
¢ 10S ([28])
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Fig. 6 Evolution of the monthly probabilities of occurrence dgri20 years and comparison with the seasonal fitted mdtiéblack line).



