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Abstract In the last decades, several tools for managing risks in competitive mar-
kets, such as the conditional value-at-risk, have been developed. These techniques
are applied in stochastic programming models primarily based on scenarios and/or
finite sampling, which in case of large-scale models increase considerably their size
according to the number of scenarios, sometimes resulting in intractable problems.
This shortcoming is solved in the literature using i) scenario reduction methods,
and/or ii) speeding up optimization techniques. However, when reducing the num-
ber of scenarios, part of the stochastic information is lost. In this paper, an iterative
scheme is proposed to get the solution of a stochastic problem representing the
stochastic processes via a set of scenarios and/or finite sampling, and modeling
risk via conditional value-at-risk. This iterative approach relies on the fact that the
solution of a stochastic programming problem optimizing the conditional value-at
risk only depends on the scenarios on the upper tail of the loss distribution. Thus,
the solution of the stochastic problem is obtained by solving, within an iterative
scheme, problems with a reduced number of scenarios (subproblems). This strat-
egy results in an important reduction in the computational burden for large-scale
problems, while keeping all the stochastic information embedded in the original
set of scenarios. In addition, each subproblem can be solved using speeding-up
optimization techniques. The proposed method is very easy to implement and, as
numerical results show, the reduction in computing time can be dramatic, and
more pronounced as the number of initial scenarios or samples increases.
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1 Introduction

Stochastic programming (Birge and Louveaux, 1997) is a framework for modeling
problems that involve uncertainty. Since real world almost invariably includes un-
certain parameters, the discipline of stochastic programming has grown and broad-
ened to cover a wide range of applications. In this stochastic framework different
risk measures, such as the Conditional Value-at-Risk (CVaR) (Rockafellar and Uryasev,
2000, 2002; Krokhmal et al, 2002), have been developed to lessen the danger to
which the decision maker is exposed because of uncertainty.

Many problems of optimization under uncertainty involve discontinuos dis-
tributions, where discrete probabilities come out from scenario models or finite
sampling of random variables. This is the type of problem considered in this pa-
per.

The use of CVaR with discrete loss distributions based on scenarios and/or
finite sampling, takes advantage of Rockafellar and Uryasev (2002) results, who
proposed a scenario-based method to optimize portfolios using linear or nonsmooth
programming techniques.

A key step to apply this finite sampling stochastic approach is scenario genera-
tion. There exist several approaches to generate sets of scenarios based on different
principles. A survey of the most common methods is provided in Dupačová et al
(2000). Sampling from historical time series or from statistical models is a pop-
ular and easy way to generate data scenarios, see for example Olsson and Soder
(2004) or Eichhorn et al (2005). A method based on the target/moment-matching
principle can be found in Høyland et al (2003) and Høyland and Wallace (2001).
Heitsch and Römisch (2009a) and Pflug (2001) provide a method based on prob-
ability metric approximations.

However, the number of scenarios needed to represent the actual stochastic
processes can be very large and general-purposes algorithms and software can: i)
fail on optimizing the portfolio, ii) being too time consuming, or iii) result in in-
tractable problems, even using the approach proposed by Rockafellar and Uryasev
(2002). To solve this shortcoming, two different alternatives exist in the literature:
i) scenario reduction techniques, and/or ii) speeding up optimization algorithms.

Scenario reduction techniques concentrate on decreasing the number of sce-
narios to control model complexity while preserving the degree of approxima-
tion. Methods for two-stage stochastic programs can be found in Dupačová et al
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(2003) and Heitsch and Römisch (2003). Techniques developed in those two pa-
pers were improved in Heitsch and Römisch (2007), extended to mixed-integer
models in Henrion et al (2008, 2009), and extended to multistage stochastic pro-
grams in Heitsch and Römisch (2009b) and Gröwe-Kuska et al (2003). The idea
behind these methodologies is to compute the best approximation of the underlying
discrete probability distribution using concepts of stability theory (Heitsch et al,
2006). A scenario reduction technique applied to electricity problems can be found
in Pineda and Conejo (2010). Since the CVaR level is based on the tail of the
loss distribution, we need to ensure that no information is lost in this portion of
the distribution after scenario reduction. However, the main drawback of scenario
reduction techniques is the inevitable loss of part of the stochastic information
contained in the original set of scenarios, which may alter the CVaR level.

In addition to methods for reducing scenarios, there is another research trend
focused on speeding up CVaR-optimization. Techniques based on cutting plane al-
gorithms in a decomposition scheme have been proposed in, e.g., Künzi-Bay and Mayer
(2006); Ahmed (2006); Fábián (2008); Fábián and Vesprémi (2008).

This paper proposes a simple and efficient iterative method to solve stochastic
programming problems with the following properties:

1. Risk is modeled via the CVaR, where stochastic variables only affect the ob-
jective function.

2. They are based on scenarios or finite sampling.

The main characteristics of the iterative method are:

1. The loss of the stochastic information contained in scenarios is avoided.
2. They can be used with speeding-up CVaR optimization algorithms.

The proposed method achieves a significant reduction on the computational
time required to solve large-scale stochastic problems, while keeping the stochastic
information given by all scenarios. This is particularly advantageous for those
problems whose solution may be tedious using existing solvers, or even intractable
due to memory limitations.

The methodology relies on the fact that the optimal solution of a stochastic
problem optimizing CVaR only depends on scenarios on the upper tail of the loss
distribution, which are considered as active scenarios. Since we do not know in
advance which scenarios are active at the optimal solution, an iterative approach
is presented where the active set is updated iteratively until the optimal solution
is attained.

Since in economic, management science and other contexts, when dealing with
loss distributions, it is common to consider high confidence levels α = 0.9, α = 0.95
or α = 0.99, a reduced number of active scenarios representing approximately 10,
5 and 1% of the probability distribution function, respectively, are required to
achieve the optimal solution. This is the main reason why numerical simulations
show that computational time reduction can be dramatic, and more pronounced
as the number of initial scenarios or finite samplings increase.

The rest of the paper is organized as follows. Section 2 presents i) the model
structure of the optimal risk-management problem considered in this paper, ii) how
to model it using CVaR and the approach proposed by Rockafellar and Uryasev
(2002) based on scenarios or finite sampling, and iii) an extension for getting the
efficient frontier. Section 3 describes the iterative reduction technique and discusses
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convergence issues, which are illustrated in Section 4 with a simple and clarifying
example. In contrast, Section 5 provides the results of a realistic case study based
on the self-scheduling problem of a power producer, highlighting the goodness of
the proposed methodology. Finally, in Section 6 some relevant conclusions are duly
drawn. Mathematical formulation of the case study is presented in Appendix A.

2 Optimal risk-management problem

The mathematical structure of the studied stochastic programming model can be
defined as follows:

Minimize
x

q (f(x, y)) , (2.1)

subject to

h(x) = 0 (2.2)

g(x) ≤ 0, (2.3)

where x ∈ IRn is the vector including the decision variables, y ∈ IRm is the
stochastic parameter vector including all random parameters involved, f(x, y) is
the objective function representing losses, and h(x) and g(x) represent equality
and inequality constraints that must be satisfied. Note that f(x, y), h(x) and g(x)
might be nonlinear functions and x might include integer variables.

Due to the stochastic nature of y, the objective function f(x, y) is a random
variable whose probability distribution function depends on the probability dis-
tribution functions of the random parameters y, and the values of the decision
variables x. And since a random variable cannot be minimized, the objective func-
tion is replaced by a risk measure given by the functional q (f(x, y)).

Note that in this paper we only consider stochastic variables affecting the
objective function. The applicability of the proposed method to stochastic variables
affecting constraints is a subject for further research.

2.1 Conditional Value-at-Risk (CVaR) based on finite sampling

A possible risk measure widely used in current regulations for finance business
is the percentile of the loss distribution. An example of this kind of measures is
the Value-at-Risk at the α (0.9, 0.95 or 0.99) confidence level, so called α-VaR.
An alternative to VaR, also included within the type of percentile risk measures
(Krokhmal et al (2002)), is the Conditional Value-at-Risk (CVaR), which quanti-
fies the expected losses associated with the upper tail of the loss distribution. CVaR
has gained popularity in real-life applications, specially in financial and economic
decision making problems (see e.g. Conejo et al (2008), Jabr (2005), Lim et al
(2010) or Mı́nguez et al (2011)), because it preserves linear programming solvabil-
ity and overcomes some of the drawbacks of other possible risk measures, such as
VaR. CVaR constitutes a measure of risk with significant advantages over VaR
being a coherent risk measure in the sense of Artzner et al (1999), and taking into
account the extremely high losses that may occur, albeit at low probabilities, in
the tail of the loss distribution.
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The advantage of using CVaR is the possibility of using the formula derived
by Rockafellar and Uryasev (2002), which allows the characterization of α-VaR
(ηα(x)) and α-CVaR (φα(x)) for models based on scenarios and finite sampling.
Thus, problem (2.1)–(2.3) replacing the objective function by using the CVaR
concept becomes:

Minimize
x, ηα

ηα +
1

1− α
E

{
[f(x, y)− ηα]

+
}

, (2.4)

subject to (2.2)–(2.3), where E{·} is the expected value operator, [a]+ = a for
a > 0 and [a]+ = 0 for a ≤ 0. For the particular case in which discrete probabil-
ities pi are associated with scenario models yi; ∀i ∈ N , equation (2.4) becomes
(Rockafellar and Uryasev, 2000, 2002):

Minimize
x, ηα

ηα +
1

1− α

∑

∀i∈N
pi [f(x, yi)− ηα]

+
. (2.5)

Since the probability is concentrated in finitely many points yi, the distribution of
the loss zi = f(x, yi) for a given x is likewise concentrated in finitely many points.
Assuming that those losses are ordered as z1 < z2 < z3 < . . . < zN , where N is the
cardinality of set N , the α-VaR (ηα(x)) of the loss is given by ziα

such that the
index position iα holds the following condition:

iα−1∑

i=1

pi < α ≤
iα∑

i=1

pi. (2.6)

Proof of this statement is given in Rockafellar and Uryasev (2002).
Finally, the linearization formula proposed by Rockafellar and Uryasev (2002)

remains valid, and the original problem (2.1)–(2.3) is approximated as follows:

Minimize
x, ηα, ui

ηα +
1

(1− α)

∑

∀i∈N
piui , (2.7)

subject to

h(x) = 0 (2.8)

g(x) ≤ 0 (2.9)

ui ≥ f(x, yi)− ηα; ∀i ∈ N (2.10)

ui ≥ 0; ∀i ∈ N , (2.11)

where ui; ∀i ∈ N are auxiliary variables. Note that problem (2.7)–(2.11) is linear
assuming that i) constraints (2.8)–(2.9) are linear, ii) function f(x, yi); ∀i ∈ N is
linear with respect to x, and iii) x ∈ IRm.

The computational advantages shown by the linearization formula proposed
by Rockafellar and Uryasev (2002) and the simplicity on its implementation has
tempted practitioners to apply formulation (2.7)–(2.11) to more general problems
rather than linear programming formulations. The drawback is that it is not clear
how it is affected by non-convexities and/or non-linearities of g and/or h, or in-
tegrality of x. Although this problem is relevant and may constitute a subject for
specific research, it is out of the scope of this paper. The aim of this paper is to
present an alternative solution approach for problem (2.7)–(2.11), and not to set
under what conditions it converges.
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Remark 2.1 The iterative method proposed in this paper to solve problem (2.7)–
(2.11) requires this problem to converge to a unique solution. If this is not the case,
the iterative algorithm may converge to a different solution or may not converge,
and it becomes an heuristic procedure.

2.2 Different formulations for the efficient frontier

Dealing with CVaR for solving stochastic programming problems has the addi-
tional advantage that it can be used as a risk metric for counter-balance the
expected profit and risk as follows:

1. Minimizing some function of expected profit and risk.
2. Minimizing risk conditional on a minimum expected profit.
3. Minimizing the negative expected profit including a constraint on the maxi-

mum allowed risk.

Krokhmal et al (2002) proved that under certain regularity conditions, the
three problems above are equivalent and generate the same efficient frontier. For
this reason, and in order to extend the applicability of the proposed methodology
to these problems, an extension of the proposed approach is given to solve the
following stochastic optimization problem:

Minimize
x

φα(x)− δE{pr(x, y)} , (2.12)

subject to

h(x) = 0 (2.13)

g(x) ≤ 0, (2.14)

where φα(x) corresponds to the objective function in equation (2.7), pr(x, y) is a
function representing profit, and δ > 0 is a positive constant to counter balance
the negative expected profit and the risk using α-CVaR. Note that the approach
given for problem (2.12)–(2.14) could be easily extended for solving any of the
three stochastic programming problems cited above.

The main reason to also take into consideration this problem structure is the
interest shown by practitioners, especially on the power system economics commu-
nity, which use the objective function given in (2.12) to make decisions bearing in
mind profit versus risk (see, for example, Conejo et al (2008); Carrión et al (2009);
Zhang and Wang (2009); Hatami et al (2011)). One concern for that community is
the large amount of scenarios and variables required to pose realistic case studies,
thus requiring techniques to speeding up and/or making tractable the solution of
their problems. This fact persuades us to extend the possible application of the
iterative approach presented in this paper to solve problem (2.12)–(2.14).

3 Iterative Reduction Technique

Let consider the problem (2.7)–(2.11) and assume that the optimal solution is
unique (according to remark 2.1) and corresponds to x∗ and η∗α. With this in-
formation, given a scenarios set N , scenarios can be classified into two different
subsets:
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• Active scenarios (AS): Scenarios placed to the right-hand side of η∗α, that is,

zi = f(x, yi) ≥ η∗α; ∀i ∈ NAS, (3.1)

where NAS ⊂ N is the subset of active scenarios.
• Inactive scenarios (IS): Scenarios placed to the left-hand side of η∗α, that is,

zi = f(x, yi) < η∗α; ∀i ∈ NIS, (3.2)

where |NAS|+ |NIS| = N , and according to expression (2.6) the number of active
scenarios is equal to iβ = N − iα + 1. Note that iβ is the index position associated
with the α-VaR (ηα) but starting counting scenarios from higher to lower losses.
Condition (2.6), using this new index, becomes:

iβ−1∑

i=1

pi ≤ 1− α <

iβ∑

i=1

pi. (3.3)

We advocate the use of this expression for computational convenience.
Note also that auxiliary variables ui are equal to zero if the loss of scenario i

(zi = f(x, yi)) is lower than ηα, and otherwise are equal to the difference between
the loss of the corresponding scenario (zi = f(x, yi)) and ηα. This is represented
in Figure 3.1.

1−α

ui > 0 
uj+1 = 0

uj = 0
ui+1 > 0

η zi zi+1 zj zj+1 f (x,y)

Probability

density

function

α

Fig. 3.1 Graphical representation of auxiliary variable ui.

Proposition 3.1 Given a set of scenarios N ≡ {yi; i = 1, . . . , N}, and assuming

that the active set NAS from the optimal solution of problem (2.7)–(2.11) is known,

the optimal solution of the problem:

Minimize
x, ηα, ui

ηα +
1

(1− α)

∑

∀i∈NAS

piui , (3.4)

subject to

h(x) = 0 (3.5)

g(x) ≤ 0 (3.6)

ui ≥ f(x, yi)− ηα; ∀i ∈ NAS (3.7)

ui ≥ 0; ∀i ∈ NAS, (3.8)
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coincides with the optimal solution of problem (2.7)–(2.11).

Proof Both problems have the same constraints, because inactive constraints ui ≥
f(x, yi) − ηα; ∀i ∈ NIS may be removed from (2.10). In addition, the objective
function (2.7) does not change because ui = 0; ∀i ∈ NIS. Therefore the optimal
solutions of both problems coincide.

The advantage of using (3.4)–(3.8) instead of (2.7)–(2.11) is that the size of
the problem in terms of number of variables and constraints becomes smaller.
Assuming equally likely scenarios, i.e. pi = 1/N ; ∀i ∈ N , and according to (3.3),
the upper bound of the maximum number of active scenarios is:

iβ < (1− α)N + 1, (3.9)

which implies that the higher the confidence level α, the lower the number of
active scenarios. This condition may represent an important reduction in terms of
variables, constraints, and complexity.

We can conclude that if the set of active scenarios were known in advance, the
decision-making problem could be solved reducing the number of variables and
constraints of the program considerably, which would result in a drastic reduction
in the computational burden. However, we do not know in advance the active
scenario set at the optimal solution. An iterative approach is presented to solve
this shortcoming.

3.1 Sequential procedure

The functioning of the proposed algorithm is based the following sequential pro-
cedure (for a given iteration ν):

1. Given subset N (ν)
AS taken from the initial scenario set N with minimum cardi-

nality, and so that
∑

∀i∈N (ν)
AS

pi ≥ b(1− α), and |N (ν)
AS | = N (ν) ≤ N, (3.10)

where b > 1 is a given constant.

2. Solve subproblem (3.4)–(3.8) using N (ν)
AS , obtaining the optimal solution for

the given subset, i.e, x(ν), η
(ν)
α .

3. If losses for each scenario from subset N (ν)
AS are ordered as z

(ν)
1 < z

(ν)
2 < z

(ν)
3 <

. . . < z
(ν)

N(ν) , then η
(ν)
α corresponds to z

(ν)

i
(ν)
α

, which is associated with the index

position i
(ν)
α holding condition (2.6). In addition, the index related to (3.3)

corresponds to i
(ν)
β = N (ν) − i

(ν)
α + 1.

4. Given x(ν), the ordered losses from set N are z
(ν′)
1 < z

(ν′)
2 < z

(ν′)
3 < . . . < z

(ν′)
N .

The loss value z
(ν)

i
(ν)
α

corresponds to position i
(ν′)
α within this new ordered list.

According to (2.6) the true confidence level γ is between the following bounds:

i(ν
′)

α −1∑

i=1

pi < γ ≤
i(ν
′)

α∑

i=1

pi. (3.11)
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Analogously, i
(ν′)
β = N − i

(ν′)
α + 1, and according to (3.3) the true significance

level (1− γ) is between the following bounds:

i
(ν′)
β −1∑

i=1

pi ≤ 1− γ <

i
(ν′)
β∑

i=1

pi. (3.12)

3.2 Convergence issues

An advantage of the proposed sequential procedure is that it is possible to detect,
if the optimal solution of the original problem (2.7)–(2.11) has been achieved. This
is based on the following proposition.

Proposition 3.2 Let consider x(j) as the j-th subproblem solution within the iterative

process, which is based on subset N (j)
AS . The value-at-risk η

(j)
α is associated with the i

(j)
β

position from the ordered (descending order) loss subsample list and holding condition

(3.3). The solution x(j), η
(j)
α corresponds to the optimal solution of the original problem

(2.7)–(2.11) iff the position related to η
(j)
α in the ordered (descending order) sample list

considering all scenarios, i.e. i
(j′)
β , remains unaltered, i.e. i

(j′)
β = i

(j)
β .

Proof According to (3.3), the solution of subproblem (3.4)–(3.8) considering N (j)
AS

holds the following condition:

i
(j)
β −1∑

i=1

pi ≤ 1− α <

i
(j)
β∑

i=1

pi. (3.13)

If considering all scenarios, the position related to η
(j)
α within the loss ordered

(descending order) list remains unchanged, condition (3.12) also remains valid and
so that γ = α. Thus, according to (3.11):

i(j
′)

α −1∑

i=1

pi < α ≤
i(j
′)

α∑

i=1

pi. (3.14)

Note that (3.14) coincides with expression (2.6), which is the condition of
problem (2.7)–(2.11) fulfilled at the optimum, l.q.q.d.

Another important issue is the proof of convergence of the iterative method.

Proposition 3.3 Considering that problem (2.7)–(2.11) converges to a unique solu-

tion, convergence of the sequential procedure explained in the previous section can be

achieved using the following rules of thumb:

1. Constant b satisfies b > 1 because otherwise subproblems are unbounded, i.e. ηα →
∞.

2. The smaller is the b-value, the smaller is the number of scenarios, which in turn

reduces the complexity of the subproblems and increases computational efficiency.

However, the b-value must be large enough so that the true significance bounds

given by (3.12) decrease between consecutive iterations, otherwise the value of the

parameter b must be increased.
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Proof Note that according to the proof of proposition 3.2, the optimal solution of
the original problem is achieved if significance level (1−γ) in (3.12) decreases until
it equals to 1−α. Since the b-value is increased whenever the significant level does
not decrease, in the worst case scenario the b-value would increase until reaching
its maximum posible value bmax = 1/(1 − α). This case considers all scenarios,
which under assumption that problem (2.7)–(2.11) converges to a unique solution,
it ensures convergence, l.q.q.d.

The drawback of the proposed procedure is that we have not found proof
of convergence of the iterative process in terms of what is the appropriate b-
value selection. However, this is not a problem from the practical point of view
because we propose a heuristic procedure for b-value selection and updating. In
addition, the method does not ensure reducing computational time, especially for
small-size problems, however, numerical simulations indicate that the heuristic
procedure achieves convergence with an important reduction on model complexity
and computational time for large-size problems.

Note that the main idea of the algorithm is to look for, within an iterative
scheme, the region in the random variable subspace defined by scenarios and de-
cision variables, related to the upper tail of the loss distribution. For this reason,
in case the bounds (3.12) do not decrease between consecutive iterations, it means
that there is no enough information embedded in the selected subset to focus on
the area of interest.

3.3 Iterative algorithm

In this section, the iterative algorithm including the heuristic procedure for b-
value selection and updating is presented. The corresponding algorithm proceeds
as follows:

Algorithm 3.1 (Iterative reduction method).

Input: Target confidence level α, set N of scenarios, objective function and con-
straints.

Step 1: Initialization. Set parameter b = 2. Initialize the iteration counter ν =
1, set the reference significance level to CL(ν) = ∞ and select randomly an

scenario subset N (ν)
AS ⊂ N holding (3.10).

Step 2: Sequential procedure At each iteration, repeat the sequential procedure
given in subsection 3.1.

Step 3: Convergence checking. If i
(ν′)
β = i

(ν)
β the optimal solution of the origi-

nal problem has been found, go to Step 5, otherwise check if the true upper
confidence bound decreases with respect to CL(ν) between consecutive itera-

tions, i.e.
∑i

(ν)′
β

i=1 pi < CL(ν). If it decreases then update the reference signifi-

cance bound CL(ν+1) =
∑i

(ν′)
β

i=1 pi and go to Step 4, otherwise increase b-value
(b = b + ∆b) and continue in Step 4.
Note that a ∆b value of 0.5 has been shown to be appropriate for practical
cases.
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Step 4: Update the subset of active scenarios. Given the ordered losses list con-
sidering all scenarios, update iteration counter ν → ν + 1 and select as new

subset N (ν)
AS the minimum number of scenarios on the right tail of the loss

distribution so that
∑
∀i∈N (ν)

AS
pi ≥ b(1− α). Continue in Step 2.

Step 5: Output. The optimal decision variable values correspond to x(ν).

ut
Figure 3.2 shows the flow chart of this algorithm.

START.

Input

STEP 1. 

Initialization

STEP 2. Sequencial

procedure

STEP 4. Update the 

subset of active

scenarios

  
i     = i     

Has CL   
decreased?

b = b + ∆b

NO

YES

NO

STEP 3. Convergence checking

ν = ν + 1β β
(ν)(ν')

YES

(ν)

STEP 5.

Output

Fig. 3.2 Flow chart of the algorithm.

Note that depending on the problem structure, the calculation of the objective
function for each scenario, after subproblem solution x(ν) is obtained, may require
different solution approaches, e.g.:

• One-stage stochastic programming problems: They require the evaluation of a
given function.

• Two-stage stochastic programming problems: They require solving an opti-
mization problem involving only the considered scenario and assuming that
first-stage decision variables are fixed to the optimal values x(ν) obtained at
the corresponding iteration.
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3.4 Application to different stochastic programming formulations

So far, the development of the iterative procedure has been applied on stochastic
programming problems focused on the minimization of the CVaR. However, to
counter-balance risk versus profit, an extension of the algorithm is presented. The
aim is to solve problem (2.12)–(2.14), where the objective function is equal to:

φα(x)− δE{pr(x, y)}. (3.15)

Note that this objective function constitutes a linear combination between
CVaR and expected profit. Parameter δ > 0 is a weighting constant controlling
risk positioning.

The main concern for solving problem (2.12)–(2.14) within the proposed iter-
ative scheme is that the expected profit calculation requires all scenarios, which
does not allow the application of the reduction technique. For this reason, in this
paper we propose to solve the following approximation of the original problem
(2.12)–(2.14):

Minimize
x

φα(x)− δpr(x, ȳ) , (3.16)

subject to (2.13)–(2.14). Note that the expected value of the profit has been re-
placed by a central value pr(x, ȳ) of the profit distribution, substituting the ran-
dom variables with their expected values (ȳ). This approximation is based on a
Multivariate Taylor series of the profit function around the point pr(x, ȳ):

pr(x, y) = pr(x, ȳ) +
∞∑

i=1

1

i!

∂ipr(x, y)

∂yi

∣∣∣∣∣
ȳ

(y − ȳ)i, (3.17)

and it corresponds to a first order approximation. Thus, this central value coincides
with the expected value of (3.17) if the objective function depends linearly on y,
otherwise it is an approximation. The goodness of this approach strongly depends
on the type of profit function, and it has to be established for each particular case.
Nonetheless, once its degree of approximation is established, it may be acceptable
for practical purposes. Especially since it may represent an important reduction
on computational time for large problems while keeping an acceptable degree of
accuracy. Note also that, once the optimal decision variables x∗ are known, the dif-
ference between pr(x, ȳ) and E{pr(x, y)} can be easily calculated to check whether
it is acceptable or not.

Furthermore, using Jensen inequality, it is known that if profit function pr is
convex with respect to y then φα(x)− δpr(x, ȳ) ≥ φα(x)− δE{pr(x, y)}.

4 Illustrative Example

In order to illustrate the functioning of the method and the graphical interpreta-
tion of the iterative process, a simple example with only two decision variables is
presented below.

Consider an energy producer seeking to establish a market bidding strategy
for a two-hour time horizon, where prices at every hour are uncorrelated nor-
mal random variables (λt ∼ N(µλt

, σ2
λt

)) with the following distributions λ1 ∼
N(14, 82) $/MW and λ2 ∼ N(7, 12) $/MW, respectively.
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The producer decides to minimize his losses using the CVaR for a α = 0.95
confidence level, i.e. minimize φ0.95, as follows:

minimize
x1, x2

φ0.95 = q(−λ1x1 − λ2x2) , (4.1)

subject to

x1 + x2 = 1, (4.2)

where xt is the production at hour t, and q(·) represents α-CVaR. The optimal
solution of problem (4.1)–(4.2) is x∗1 = 0.0725 MW, x∗2 = 0.927 MW, η∗0.95 =
−$5.71 and φ∗0.95 = −$5.25.

Assuming that the discrete approach is used, we sample from the corresponding
probability distribution functions 1000 scenarios of prices, and use Rockafellar and Uryasev
(2002) formulation given by (2.7)–(2.11). This one-stage stochastic programming
problem is formulated as the linear programming problem shown below:

minimize
x1, x2

ηα +
1

(1− 0.95)1000

1000∑

i=1

ui , (4.3)

subject to

x1 + x2 = 1 (4.4)

ui ≥ −(λ1ix1 + λ2ix2)− ηα; i = 1, . . . , 1000 (4.5)

ui ≥ 0; i = 1, . . . , 1000, (4.6)

where λ1i and λ2i represent, respectively, the prices λ1 and λ2 for scenario i.
The optimal solution of problem (4.3)–(4.6) with one particular sample is x∗1 =

0.061 MW, x∗2 = 0.939 MW, η0.95 = −$5.694, and φ0.95 = −$5.293. The solution is
depicted in Figure 4.1, where scenarios whose losses are lower than η0.95 (inactive
scenarios) are depicted in medium grey color, and those whose losses are upper
or equal (active scenarios) in light grey color. Conditions (2.6) and (3.3) at the
optimum become:

0.949 < 0.95 ≤ 0.951; and 0.049 ≤ 0.05 < 0.051. (4.7)

Note that the lower and upper significance bounds are inconsistent assuming
equally likely scenarios. However, the problem uses equally likely scenarios asso-
ciated with the input random variables y, but the optimal solution has two losses
of the same quantity and equal to η0.95. Both are associated with strictly active
scenarios shown in Figure 4.1 (light gray circles with black contours). Note that
strictly active scenarios are active scenarios satisfying inequality (3.1) as an equal-
ity. These losses merge into one unique loss-scenario with probability 0.002, which
explains (4.7).

The above problem has also been solved using the iterative reduction technique
presented in Section 3 with a b-value equal to 2 and ∆b = 0.5. The algorithm
converges to the optimal solution in 6 iterations. Table 4.1 provides the evolution
of the production variables (x1, x2), the value-at-risk (ηα), the conditional value-
at-risk (φα), the reference significance level (CL), the lower and upper bounds of
1 minus the true confidence level ((1 − α)lo, (1 − α)up) for the subproblem, the
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Fig. 4.1 Graphical illustration of the solution of the illustrative example considering 1000
scenarios.

lower and upper bounds of 1 minus the true significance level ((1−γ)lo, (1−γ)up),
the index position related to the value-at risk from the ordered loss subsample list

(i
(ν)
β ), the index position from the ordered loss list considering all scenarios (i

(ν′)
β ),

and the b-value. Note that 1 minus the true confidence level upper bound increases
at iteration 3 and thus the b-value is increased to 2.5. At iteration 4, 1 minus the
true confidence level upper bound decreases with respect to the previous iteration,
but this value is still higher with respect to the reference confidence level (CL)
obtained at iteration 2. Therefore, the b-value is increased again at iteration 4
in order to accelerate convergence. Note also that the optimal solution obtained
by the iterative algorithm corresponds to the solution of the problem considering
all scenarios. The evolution of the algorithm is illustrated in Figure 4.2. In this

figure, scenarios whose losses are lower than η
(ν)
0.95 (inactive scenarios) are depicted

in medium grey color, those scenarios whose losses are upper or equal to η
(ν)
0.95

(active scenarios) are depicted in light grey color, and those scenarios belonging
to the scenario subset at iteration ν are depicted in black color.

Besides the 1000 scenario case, this example has also been solved for an in-
creasing number of scenarios and considering a confidence level α of 0.95. For the
iterative algorithm, b is equal to 2, and problems considering 1000, 10000, 20000,
50000 and 100000 scenarios converge in 6, 6, 10, 12 and 10 iterations, respectively.
We have solved 100 simulation cases for each problem to get statistically sound
conclusions. Table 4.2 provides the mean and standard deviation value of compu-
tational time required the get the solution considering all scenarios (second and
third columns) and using the iterative algorithm (fourth and fifth columns). Note
that reported times in the example includes the building and the resolution of
the model. For the computational simulations, we have used simplex algorithm
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ν x1 [MW] x2 [MW] ηα [$] φα [$] CL (1− α)lo (1− α)up (1− γ)lo (1− γ)up i
(ν)
β i

(ν′)
β b

1 0.194 0.806 -8.386 -6.552 Inf 0.502 0.504 0.049 0.051 50 503 2

2 0.000 1.000 -6.164 -5.528 0.504 0.199 0.200 0.050 0.051 51 200 2

3 1.000 0.000 -14.380 -7.002 0.200 0.502 0.503 0.049 0.051 50 503 2

4 0.000 1.000 -6.531 -5.944 0.200 0.318 0.319 0.050 0.051 51 319 2.5

5 0.095 0.905 -5.898 -5.317 0.200 0.065 0.067 0.049 0.051 50 66 3

6 0.061 0.939 -5.694 -5.293 0.067 0.049 0.051 0.049 0.051 50 50 3

Table 4.1 Evolution of the iterative reduction algorithm for the illustrative example.

(Matlab function “linprog”) on a Linux-based server with one processor clocking
at 2.3 GHz and 8 GB of RAM.

Scenarios
All scenarios Iterative Alg.

µ σ µ σ

1000 0.19 0.003 0.23 0.083

10000 22.72 0.04 8.48 1.95

20000 70.60 0.06 34.60 6.51

50000 789.55 0.66 272.12 57.75

100000 8575.30 100.40 1187.02 343.86

Table 4.2 Computational time [s] for different number of scenarios in the illustrative example.

From results given in Table 4.2 the following observations are pertinent:

1. The iterative algorithm improves efficiency with respect to the approach using
all scenarios above a minimum number of scenarios, which for this particular
case is around 10000. The efficiency increases as the number of scenarios also
increases.

2. Although both methods attain the same solution, the iterative approach does
not guarantee the reduction on computational time with respect to the method
considering all scenarios. This is the case for the 1000 scenarios problem, where
the iterative approach is slower.

5 Self-Scheduling Case Study

In order to show the performance of the method using a realistic case study, let
consider the self-scheduling problem of a power producer.

Electric energy can be traded in a pool market and through bilateral contracts.
The pool consists of a day-ahead market while the bilateral contracts allows trading
electricity up to one year ahead. The bilateral contracts present a lower average
price than the pool but involve reduced volatility. Thus, it allows hedging against
the financial risk inherent in pool price volatility (see Conejo et al, 2008).

A power producer needs to define its involvement in both the pool market and
through bilateral contracts so that its loss is minimized or, equivalently, its profit
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Fig. 4.2 Graphical illustration of the iterative reduction algorithm for the illustrative example
considering 1000 scenarios.

is maximized, within a particular risk level based on loss or profit volatility, respec-
tively. The producer decides how much power to sell through bilateral contracts at
a fixed price spanning the time horizon, and for each period of the time horizon,
it decides how much power to sell in the pool. This problem is mathematically
formulated as a two-stage stochastic programming problem with recourse and un-



Iterative Scenario Based Reduction Technique for Stochastic Optimization 17

der rather general assumptions (Birge and Louveaux, 1997) can be equivalently
expressed as the following nonlinear mixed-integer programming problem:

Minimize
xP

ti, x
C

q

( NT∑

t=1

N∑

i=1

(
−λtix

P
ti + cti

)
− λCxCNT

)

−δE

{ NT∑

t=1

N∑

i=1

(
λtix

P
ti − cti

)
+ λCxCNT

}
, (5.1)

subject to

(xP
ti, x

C) ∈ Π, (5.2)

where q(·) represents the conditional value-at-risk of the random loss objective
function (negative of profits), E{·} represents the expected value of the random
profit objective function, δ is non-negative weighting factor enforcing the tradeoff
between expected profit and risk, xC is the power sold through bilateral contracts
(first-stage optimization variable), xP

ti is the power sold in the pool during period t

and scenario i (second-stage optimization variables), λti is the pool price in period
t and scenario i (stochastic parameters), λC is the bilateral contracts price, cti is
the total production cost during period t and scenario i, Π is the feasible operating
region of the producer, NT is the number of considered time periods, and N is the
number of considered scenarios, i.e cardinality of set N .

The objective function (5.1) represents the tradeoff between risk, using CVaR,
and expected profit. The profit of the producer is computed as the revenues ob-
tained from selling energy in the pool, minus the total production cost of the
producer plus the revenues obtained from the energy sold through bilateral con-
tracts, which results in a nonlinear function. Constraint (5.2) represents operation
constraints. A detailed formulation of the problem is given in Appendix A.

Data for the power producer are taken from Conejo et al (2004). The futures
market price is taken to be 36 $/MWh. Pool prices are random parameters which
are assumed to be normally distributed with mean λest and covariance matrix V λ

taken from Conejo et al (2004). Scenarios are synthetically simulated sampling
from the joint probability density function.

Modeling pool prices through equiprobable scenarios, the problem (5.1)–(5.2)
using CVaR as a measure of risk and replacing the expected value of the profit by
the profit considering expected values of random variables, becomes:

Minimize
xP

ti, x̄
P
t , xC

ηα +
1

(1− α)N

N∑

i=1

ui − δ




NT∑

t=1

(
λ̄tx̄

P
t − c̄t

)
+ λCxCNT


 , (5.3)

subject to

(xP
ti, x̄

P
t , xC) ∈ Π (5.4)

ui ≥



NT∑

t=1

(
−λtix

P
ti + ct

)
− λCxCNT


− ηα; ∀i ∈ N (5.5)

ui ≥ 0; ∀i ∈ N , (5.6)
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where λ̄t represents expected value of pool prices, and x̄P
t and c̄t represent the

power sold in the pool and the total production cost during period t, respectively,
considering the expected value of pool prices.

This self-scheduling problem is a mixed-integer nonlinear programming prob-
lem which is solved using SBB solver under GAMS (GAMS Development Corporation,
2011; Rosenthal, 2008) on a Linux-based server with one processor clocking at 2.3
GHz and 8 GB of RAM.

In order to validate and highlight the advantages of the iterative reduction
algorithm proposed in the paper, the self-scheduling problem is solved for an in-
creasing number of pool prices scenarios considering:

1. Formulation (5.1)–(5.2) considering all scenarios.
2. Formulation (5.3)–(5.6) using the iterative reduction algorithm.

Note that both the problem including all scenarios and subproblems within the
iterative scheme could be solved using speeding-up CVaR optimization techniques,
such as cutting plane methods, or more efficient implementations based on C++
or any other programming language. However, we rather not to use them in order
to show the real gaining achieved using the proposed approach.

The confidence level α considered is 0.95, the initial b-value is equal to 2 , and
weighting factor δ is equal to 2. Note that increasing the b-value will increase the
size of the problem. The optimal solution of the iterative algorithm is attained in 2
iterations for all cases. Table 5.1 provides the Value-at-Risk (ηα), the Conditional
Value-at-Risk (φα), the mean (µP ) and standard deviation (σP ) of the discrete loss
distribution, and the power traded through bilateral contracts for different number
of scenarios, for the problem considering all scenarios (upper part of the table) and
for the iterative reduction algorithm (lower part of the table). Since the profit of
the producer is represented through a nonlinear function, the expected value of the
profit function is replaced by the profit function considering the expected value
of pool prices (see problem (5.3)–(5.6)). This fact provokes that the results of
solving the problem with all scenarios are different to the ones obtained using the
iterative reduction algorithm. These differences in percent are shown in the lower
part of the table in parenthesis. Note that differences in the Value-at-Risk, the
Conditional Value-at-Risk and the mean are negligible, in the standard deviation
are below 1%, and in the power traded through bilateral contracts are below 0.5%.

However, Figure 5.1 shows the mean and standard deviation of the profit func-
tion for different values of parameter δ, which proof that results are equivalent and
both methods provide the same efficient frontier. In the problem solved to get the
efficient frontier, we consider: i) the confidence level α = 0.99, ii) the initial b-value
equal to 2, and iii) 100 scenarios. Note that this efficient frontier explains why
results from Table 5.1 are slightly different, because those results were obtained
using the same δ-value, however same solutions could be achieved by using slightly
different δ-values.

Table 5.2 provides the size of the problem considering i) all scenarios, and
ii) the iterative reduction algorithm. This table includes the number of equations
(neq), the number of continuos variables (ncv) and the number of discrete variables
(ndv) of the corresponding models. Note the considerable reduction in the size of
the problem when the iterative algorithm is used, which improves tractability.

In order to check the advantages of the iterative reduction technique proposed
in the paper in terms of computational burden, the self-scheduling problem is
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Global problem considering all scenarios

Scen. ηα [$] φα [$] µP [$] σP [$] pC [MW]

10 -30476.21 -30476.21 -31096.41 431.80 190.36

50 -30482.84 -30422.79 -31129.00 394.13 191.90

100 -30478.76 -30435.24 -31210.32 397.35 190.57

150 -30518.13 -30436.36 -31221.96 390.94 190.46

200 -30531.89 -30457.46 -31231.91 397.59 190.24

300 -30557.44 -30461.75 -31175.00 379.72 190.49

Iterative reduction algorithm

Scen. ηα [$] (%) φα [$] (%) µP [$] (%) σP [$] (%) pC [MW] (%)

10 -30478.39 (0.007) -30478.39 (0.007) -31095.21 (-0.004) 429.47 (-0.54) 190.82 (0.24)

50 -30484.40 (0.005) -30425.23 (0.008) -31127.68 (-0.004) 392.17 (-0.50) 192.34 (0.23)

100 -30479.88 (0.004) -30436.69 (0.005) -31209.56 (-0.002) 396.17 (-0.30) 190.83 (0.14)

150 -30517.73 (-0.001) -30435.98 (-0.001) -31222.15 (0.0006) 391.24 (0.08) 190.39 (-0.04)

200 -30533.77 (0.006) -30458.61 (0.004) -31231.31 (-0.002) 396.67 (-0.23) 190.44 (0.11)

300 -30559.81 (0.007) -30466.04 (0.014) -31172.49 (-0.008) 376.22 (-0.92) 191.33 (0.44)

Table 5.1 Results of the case study for different number of pool prices scenarios (α = 0.95,
b = 2).
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Fig. 5.1 Efficient frontier for different δ-values (α=0.99, b=2 and 100 scenarios).

solved for different values of the confidence level (0.9, 0.95 and 0.99), and for an
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Scenarios
neq ncv ndv

Global Iterative Global Iterative Global Iterative

10 1821 629 1115 420 96 96

50 8621 1309 5075 816 96 96

100 17121 2159 10025 1311 96 96

150 25621 3009 14975 1806 96 96

200 34121 3859 19925 2301 96 96

300 51121 5559 29825 3291 96 96

Table 5.2 Size of the problem for different number of scenarios (α = 0.95, b = 2).

increasing number of pool prices scenarios (from 10 to 300 scenarios). For the
iterative algorithm, b value is equal to 2 and δ is equal to 2 for all the problems.

Table 5.3 provides the computational time required to get the optimal solution
considering i) all scenarios and ii) the iterative reduction algorithm. We make
note that for all cases the iterative algorithm gets the solution in 2 iterations
and reduces considerably the computational time with respect to the approach
including all scenarios. Besides, the reduction in time tends to increase as the
number of scenarios and the confidence level increase, achieving a saving of up to
99% (140 times faster) in the computational time required to solve the problem
with α = 0.99 and 300 scenarios. Finally, Figure 5.2 represents the evolution of
the computational time for increasing number of scenarios and considering both
solution methods.

Scenarios
α = 0.9 α = 0.95 α = 0.99

Global Iterative Global Iterative Global Iterative

10 0.28 0.09 0.32 0.16 0.29 0.12

50 5.91 1.54 7.18 0.71 6.33 0.29

100 32.92 5.94 28.91 1.98 19.80 0.47

150 73.563 13.86 55.78 4.15 45.06 0.77

200 141.53 25.41 98.61 6.69 90.76 1.01

300 390.07 71.38 342.51 15.33 257.67 1.78

Table 5.3 Computational time [min] for different number of scenarios and α values.

6 Conclusions

This paper proposes an iterative method for solving stochastic programming prob-
lems based on scenarios and considering CVaR as the measure of risk. This iterative
approach allows obtaining the solution of the stochastic problem solving, within
an iterative scheme, problems with a reduced number of scenarios. This strategy
improves substantially computational efficiency for large-scale problems.

An example related to a power producer trading in a day-ahead electricity
market is used for the purpose of illustration. In addition, simulations carried out
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for a case study based on the self-scheduling problem of a power producer show
the advantages of the proposed method, which can be summarized as follows:

1. The probability information embedded in the original set of scenarios is not
lost. Therefore, the iterative method attains the same solution as the method
considering all scenarios.

2. For each iteration, a problem with a reduced number of scenarios is solved,
resulting in a considerable reduction of the computational time required to get
the optimal solution of the problem.

3. The relative reduction in computational time tends to increase as the number
of scenarios and the confidence level increase. Note that high confidence levels
are commonly used in economics, management science and other stochastic
user contexts.

4. It allows taking advantage of speeding up CVaR-optimization techniques for
the resolution of subproblems.

5. The method is not limited to CVaR optimization. An extension is also given
to counter-balance risk versus expected profit. However, this method is only
equivalent under certain conditions, otherwise it constitutes an alternative and
approximate method.

6. The method is independent platform, and can be used within any mathemati-
cal programming framework. The behavior is always analogous. The iterative
algorithm is slower below a threshold number of scenarios, and increases effi-
ciency above that threshold with respect to the problem including all scenarios.
However, how those differences evolve with respect to the number of scenarios
depends on several factors, such as the solver, the programming language, the
computational resources, etc.

The main drawback of the proposed method is that although a heuristic pro-
cedure has been developed to achieve convergence, it does not assure reduction
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of computational complexity and/or CPU time. However, simulation results show
dramatic reductions in computing time for all cases, which encourage practition-
ers to use the proposed approach for large-scale problems. Nevertheless, further
research must be done on the theoretical aspects related to convergence.

In addition, it would be interesting to analyze the influence of the solution
method used to solve subproblems, on the overall performance of the iterative
procedure. This is also a subject for further research.
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A Mathematical Formulation of the Case Study

The detailed formulation of the self-scheduling problem of a power producer solved in Section
5 is shown below:

Minimize
xG

ti, x
P
ti, x

C, vt, yt, zt

q

( NT∑

t=1

N∑

i=1

(
−λtix

P
ti + CLxG

ti + CQ(xG
ti)

2
)

+

NT∑

t=1

(
CFvt + CSDzt + cSU

t (st)yt

)
− λCxCNT

)

−δE

{ NT∑

t=1

N∑

i=1

(
λtix

P
ti − CLxG

ti − CQ(xG
ti)

2
)

−
NT∑

t=1

(
CFvt + CSDzt + cSU

t (st)yt

)
+ λCxCNT

}
, (A.1)

subject to

xG
ti = xP

ti + xC; t = 1, . . . , NT ; i = 1, . . . , N (A.2)

xG
ti ≥ P vt; t = 1, . . . , NT ; i = 1, . . . , N (A.3)

xG
ti ≤ xmax

ti vt; t = 1, . . . , NT ; i = 1, . . . , N (A.4)

xmax
ti ≤ xG

t−1,i + RUvt + RSUyt; t = 1, . . . , NT ; i = 1, . . . , N (A.5)

xmax
ti ≤ P (vt − zt+1) + RSDzt+1; t = 1, . . . , NT ; i = 1, . . . , N (A.6)

xG
t−1,i ≤ xG

ti + RDvt + RSDzt; t = 1, . . . , NT ; i = 1, . . . , N (A.7)

(st−1 − TU)(vt−1 − vt) ≥ 0; t = 1, . . . , NT (A.8)

(st−1 + TD)(vt − vt−1) ≤ 0; t = 1, . . . , NT (A.9)

yt − zt = vt − vt−1; t = 1, . . . , NT (A.10)

yt + zt ≤ 1; t = 1, . . . , NT (A.11)

vt, yt, zt ∈ {0, 1}; t = 1, . . . , NT . (A.12)

Variable xG
ti is the power generated in period t and scenario i, xP

ti is the power sold in

the pool during period t and scenario i, and xC is the power sold through bilateral contracts.
Binary variables vt, yt and zt represent if unit is committed, is started-up and is shut-down
in period t, respectively. Pool price in period t and scenario i is λti, and λC is the price
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of the bilateral contracts. Variable costs are represented through a quadratic function whose
linear and quadratic coefficients are CL and CQ, respectively. Fixed cost is CF, shut-down
cost is CSD and start-up cost is cSU

t (·), which is a function of the time the unit has been
shutdown in period t, st. Minimum power output of the unit is P and capacity of the unit
is P . Available maximum power output in period t and scenario i is xmax

ti . Ramp-up limit,

ramp-down limit, start-up ramp limit and shut-down ramp limit are RU, RD, RSU and RSD,
respectively. Minimum up and down time of the unit are TU and TD, respectively. The number
of periods unit has been on (+) or off (-) at the end of period t is st. Finally, NT is the number
of considered time periods, and N is the number of considered scenarios.

The objective function (A.1) represents the tradeoff between risk and expected profit. The
profit comprises revenues from selling energy as well as production costs, fixed costs, start-
up costs and shut-down costs. Constraints (A.2) express the power generated by the unit.
Constraints (A.3) state the minimum power that must be produced by the unit. Constraints
(A.4) force the unit to work below its available maximum power output. Constraints (A.5) and
(A.6) state that the available maximum power output at every period depends on ramp rate
limits. Constraints (A.7) limit the power generated at every period depending on ramp rate
limits. Constraints (A.8) and (A.9) enforce feasibility in terms of minimum up and down time
constraints, respectively. Constraints (A.10) and (A.11) preserve the logic of running, start-
up, and shut-down status changes. And finally, constraints (A.12) constitute binary variables
declaration.

Note that additional equations are needed to compute the time the unit has been shutdown
in period t (st) and the number of periods the unit has been on or off at the end of period t (xt).
For sake of clarity these equations are not included in this appendix, but more information of
these expressions can be found in Arroyo and Conejo (2000).
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