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Abstract In recent years, there has been an increasing interest in studying the im-

pacts of climate extremes in different sectors (agriculture, energy, insurance, etc.). In

particular, extreme temperatures and heat waves have had a big impact in European

socioeconomic activities during the last years (e.g. the 2003 heat wave in France). One

of the reasons which makes the scientific community believe in climate change is that

the prevalence and severity of extremes is changing, thus giving rise to more severe im-

pacts with unpredictable consequences. For this reason, the development of methods

and tools to analyze extremes in climate change context is of great interest. Regional

climate models offer the opportunity to analyze and project in different future scenar-

ios the variability of extremes at regional time scales. In the present work, we estimate

changes of maximum temperatures in Europe using two state-of-the-art regional cir-

culation models from the EU ENSEMBLES project. Regional climate models are used

as dynamical downscaling tools to provide simulations on smaller scales than those

represented for global climate models. Extremes are studied using a time-dependent

generalized extreme value (GEV) model for monthly maxima, which allows analyzing

different time-scale return periods (monthly, seasonal, annual, etc.). The study focuses

on the end of the 20th century (1961-2000), used as a calibration/validation period,

and analyzes the changes projected for the period 2061-2100 considering the A1B emis-

sion scenario. Finally, we analyze all over Europe the exceptionality of two well-known

extraordinary events: i) the 2003 summer and ii) 2006 autumn.
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1 Introduction

The major floods and heat waves registered in several regions of the world over the last

decade —e.g. the 2003 summer heat wave over Europe (Shär and Jendrithzky, 2004)—

have shown the enormous consequences of these extreme events on society and ecosys-

tems. Moreover, there is growing evidence that climate change has the potential to

alter the frequency and intensity of extremes, thus driving more severe events with

unpredictable consequences (Kharin and Zwiers, 2005; Tebaldi et al, 2006). Therefore,

the projection of climate extremes under different future scenarios is a crucial informa-

tion to assess the potential impacts of climate change on human and natural systems,

which are more sensitive to changes in the extremes than in the mean climate (see, e.g.

Kunkel et al, 1999).

Nowadays, the main tools available for this task are the ensembles of global (Meehl

et al, 2007) and regional (Christensen et al, 2007) climate model simulations (referred

to as GCMs and RCMs, respectively), produced by the international climate modeling

community in the framework of different international projects. These models have a

characteristic resolution of 250 and 25 km, respectively, and the resulting simulations

project the climate according to different emission scenarios for the XXI century, pro-

viding also an estimation of the underlying uncertainty. In particular, the EU-funded

project ENSEMBLES (van der Linden and Mitchell, 2009) is an example of a major

international effort to provide, among other things, a coordinated multi-RCM ensemble

of regional projections over Europe, considering both a ERA40-forced control period

(1960-2000) and A1B scenarios (2001-2100) using forcings from different GCMs. The

analysis of this dataset has focused mainly on the mean climate (see the special volume

Kjellstrom and Giorgi, 2010) and on particular proxy indicators of extreme behavior

(see, e.g. Fischer and Schar, 2010; Herrera et al, 2010, for an study over Europe and

over the Iberian peninsula, respectively).

The statistical theory of extreme values (Coles, 2001) provides the mathematical

framework for modeling the tail distribution of climate variables, i.e. the extreme val-

ues, allowing us to obtain useful information such as return values for certain return

periods. For instance, the generalized extreme value (GEV) distribution has been used

in different climate studies to model block extremes, typically annual maxima or min-

ima, both in observed and simulated data (Kharin et al, 2005; Goubanova and Li, 2007;

Kioutsioukis et al, 2010). In particular, the recent study by Nikulin et al (2011) applies

the GEV distribution considering annual maxima to one of the ENSEMBLES models

described above, forced by several GCMs in future climate conditions. As a result,

for instance, they report annual 20-year return values for maximum temperatures for

control and future scenarios.

Recent advances in extreme value theory allow introducing time-dependent varia-

tions in the GEV models considering different non-stationary mathematical frameworks

where parameters are replaced by functions dependent of time of different forms (Coles,

2001). In a simple setting, the parameters can include a trend term varying linearly with

time (Cooley, 2009) or a forcing term varying with some external climatic indices like

the Southern Oscillation Index or the North Atlantic Oscillation (NAO). For instance

Kharin and Zwiers (2005) applied a GEV distribution with parameters depending lin-
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early on time to analyze global changes in temperature and precipitation from global

climate change simulations. There are also studies combining both approaches (Méndez

et al, 2007; Brown et al, 2008); for instance, Brown et al (2008) studied global changes

in extreme daily temperature since 1950 considering the existence of trends and the

influence of the NAO. More complex approaches consider harmonic functions reflect-

ing the seasonality of the occurrence of maxima. For instance, Menéndez et al (2009);

Izaguirre et al (2010) developed a time-dependent model based on the GEV distri-

bution that accounts for the seasonality and interannual variability of extreme wave

height. In this case, the non-stationary behavior is parameterized using functions of

time (harmonic functions and covariates) for the parameters of the distribution. A sim-

ilar approach has been considered by Rust et al (2009) to model extreme precipitation

in the UK on a seasonal basis.

The purpose of the present study is twofold. First, we introduce a non-stationary

seasonal GEV distribution with time-dependent harmonic location, scale and shape

parameters fitted to data considering monthly extremes. As we show, this method is

suitable to reflect the different impact of climate change in the extreme temperatures

on the different seasons. Then, the resulting model is applied to estimate seasonal

return values of maximum temperatures over Europe considering both the reanalysis-

driven regional simulations (1961-2000) and future projections (2061-2100) driven by

A1B scenario simulations. The former are used to validate the model and to estimate

the biases corresponding to regional models and the later is used to infer the projected

return values in a changing climate. Simulations from the RCMs are compared to the

observed natural variability reflected by the E-OBS dataset which is the state-of-the-art

publicly available high-resolution daily dataset for Europe (Haylock et al, 2008). This

work is done using two regional models from the state-of-the-art ENSEMBLES dataset

of regional climate simulations. The combination of these two purposes is addressed to

increase the current knowledge of temperature extremes over Europe by means of the

application of a non-stationary GEV model to high resolution simulations.

The outline of this paper is as follows. First we describe the different kind of

maximum temperature data used in section 2. The non-stationary model is introduced

in section 3 and is applied to observed extreme temperatures in section 4. The simulated

warm temperature extremes for the end of the 20th century are validated against

observations in section 5. Changes projected for the period 2061-2100 are also presented

in that section. The main findings of the study are summarized in section 6.

2 Observed and model data

In this paper we analyze the control and transient simulation of two RCMs from the

EU funded ENSEMBLES project (http://www.ensembles-eu.org), which aimed at the

generation of climate change scenarios over Europe. ENSEMBLES studied regional

climate change from different perspectives and includes a large variety of communities

and state-of-the-art methodologies and techniques. In particular, dynamical downscal-

ing of GCM simulations, both control and transient, was performed using nine different

RCMs run by different institutions over a common area covering the entire continental

European region and with a common resolution of 25 km; some of the models where

also run at a 50km resolution in order to explore the added value of the resolution in-

crease (as far as we know, no result on issue has been reported yet). More information

on the experiments performed can be found in van der Linden and Mitchell (2009). In
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particular, in this paper we consider the following experiments run in the framework

of this project: (1) All RCMs were run driven by re-analysis data from the European

Centre for Medium Range Weather Forecasts (ECMWF) as boundary conditions (see

Uppala and others (2005) for more details about the ERA40 reanalysis); (2) the RCMs

were driven by control climate scenario (20c3m) simulations from different GCMs, (3)

the RCMs where also drive by future (A1B scenario) simulations from the same GCMs.

The analysis of these experiments will allow us estimating different sources of errors

and biases in the projections: data from (1) allows to estimate the RCM bias in per-

fect boundary conditions (optimal conditions). Comparing (2) and (1) we can estimate

whether the bias pattern is robust in sub-optimal conditions (GCM simulations). If

this is the case, then we can apply the standard “delta method” and compute the

projected RCM anomaly as the difference of the future and control projections (this

different would remove the RCM bias out of the regional change signal, extrapolat-

ing to changing conditions the robustness of the bias pattern obtained in suboptimal

conditions).

In this paper, we consider monthly maximum temperature data from the Konin-

klijk Nederlands Meteorologisch Instituut (KNMI) and the Swedish Meteorological and

Hydrological Institute (SMHI). The selection of these RCMs is based on two criteria.

On one hand the period simulated for these models using the ERA40 reanalysis as

boundary conditions is longer than for other RCMs. In ENSEMBLES all the RCMs

were run over a common period (1961-1990), however some of them simulated longer

periods. Simulations from KNMI and SMHI models cover a common period from 1961

to 2000. On the other hand, not all the GCMs considered in ENSEMBLES were nested

into every RCM. The above two RCMs were forced with driving conditions from the

same global model and, thus, conclusions should be attributed to the regional model

behavior, not to differences with the GCM considered. The two regional models were

run using the ECHAM5 GCM for a common period from 1961 to 2100. In this study,

the period analyzed for the future projections extends from 2061 to 2100.

For the purposes of validation of the RCM simulations in present climate, monthly

maximum temperature data from the E-OBS grid are considered from 1961 to 2000.

The E-OBS dataset is a high-resolution gridded dataset developed in ENSEMBLES for

maximum temperature, among other surface variables, and it is provided at both 50

and 25km original resolution. This dataset improves previous gridded data over Europe

in the number of stations used, being the best publicly available gridded product for

Europe to date. However, since station coverage is not homogeneous in space due to

data availability/sharing limitations, some problems of lack of representativeness have

been pointed out, particularly for extremes (see, e.g. Hofstra et al, 2010; Herrera et al,

2010). Therefore, in this work we consider the observation grid and RCM simulations

with the lower 50km resolution. This choice is also convenient from a computational

point of view, since the parameters of the seasonal GEV model should be optimized

at a grid box level (note that the 50km grid contains a total of 6271 grid boxes over

Europe). See Haylock et al (2008) for more details about the characteristics of E-OBS

dataset and the methodology applied.

3 Nonstationary Seasonal GEV model

A GEV model with time-varying location (µt), scale (ψt), and shape (ξt) parame-

ters is called a nonstationary GEV model (Coles, 2001) and is given by the following
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cumulative distribution function (CDF):

G(xt;µt, ψt, ξt) =
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where [a]+ = max(0, a).

The GEV family includes three distributions corresponding to the different types

of tail behavior: Gumbel (ξt = 0) with a light tail decaying exponentially; Fréchet

distribution (ξt > 0) with a heavy tail decaying polinomially, and Weibull (ξt < 0)

with a bounded tail. The corresponding time dependent quantiles xq,t are:

xq,t =
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where q is the corresponding probability.

In addition to “instantaneous” time dependent quantiles as given in (2), it is of

great interest the calculation of “aggregated” time dependent quantiles, which would

allow us the calculation of different annual return levels x̄q associated with periods

equal to or longer than one month using the same model. Thus, assuming a period

given by the interval (ta, tb), the annual return levels x̄q can be obtained solving the

following implicit equation: [ ◮OJO: El producto es sobre indices discretos y no queda

claro que los tiempo se refieran a ”meses” o ”dias” ]
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which can be approximated by:
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where km = 12 and the function f(x̄q , t) is equal to:
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In this paper, expression (4) is used to calculate annual return levels related to: the

whole year, spring, summer, autumn and winter, respectively. The advantage of the

proposed formulation is that there is no need to treat data and fitting for each period

separately, reducing the uncertainty in the estimation of seasonal and annual return

values.
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3.1 Model Formulation

Several nonstationary models have been recently introduced to deal with trends and

interannual oscillations (see, for instance, Mı́nguez et al (2010b)). In this study, we

consider a non-stationary model for seasonal variations introduced in Menéndez et al

(2009), hence dealing with the intra-annual (seasonal) variations of temperature max-

ima. Within this approach, monthly maximum temperatures xt of successive months

are assumed to be independent random variables following a GEV distribution with

time-dependent parameters as in (1). To introduce seasonality, the model proposed in

Menéndez et al (2009) is stated as follows:

µt = β0 +

Pµ
X

i=1

[β2i−1 cos(iwt) + β2i sin(iwt)] (5)

log (ψt) = α0 +

Pψ
X

i=1

[α2i−1 cos(iwt) + α2i sin(iwt)] (6)

ξt = γ0 +

Pξ
X

i=1

[γ2i−1 cos(iwt) + γ2i sin(iwt)] , (7)

where t is given in years, log (ψt) ensures positiveness of the scale parameter (ψt >

0), β0, α0, and γ0 are mean values, βi, αi, and γi are the amplitudes of harmonics

considered in the model, w = 2π/T is the angular frequency, T is one year, and Pµ,

Pψ and Pξ are the number of sinusoidal harmonics to be considered within the year,

associated with the location, scale and shape parameters, respectively. The resulting

parameters are estimated using the method of maximum likelihood, where the log-

likelihood function is defined as follows:

ℓ(θ; x, t, c) =

nd
X

t=1

log(g(xt;µt, ψt, ξt))

= −

nd
X

t=1
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where x = (x1, x2, . . . , xnd)
T is the sample vector, nd is the number of monthly maxima

observations, zt = 1+ξt

„

xt − µt
ψt

«

and znt = z
−1/ξt
t are auxiliary variables to simplify

the computational implementation, and g(xt;µt, ψt, ξt) =
dG(x;µt,ψt,ξt)

dx is the GEV

probability density function (PDF).

Although sophisticated methods have been proposed for the automatic selection of

harmonics (e.g. Mı́nguez et al, 2010a, present a method based on Akaike information

criterion), they would require a prohibitive computational time to be applied to the

whole European domain considered in this paper, with 6271 grid points. For this reason

we selected the following fixed parameterization for all cases (grid points) by comparing

the results of different models for a reduced number of locations or cities (Athens,

Brussels, Copenhagen, Lisbon, London, Madrid, Oslo, Paris, Rome, Stockholm) using

the E-OBS dataset (1961-2000):

Pµ = 3, Pψ = 3, and Pξ = 1. (9)
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The reason to take this parameterization is threefold: i) it is the most complex model

with all the parameters being statistically significant on a 5% level for the test cases

performed, ii) we get very good diagnostics for all cases, and iii) it is flexible enough

to capture the possible spatial variations over the grid.

The harmonic in the shape parameter ξ was introduced to check whether the tail

behavior changes with season. Results are given in Figure 1, where the intra-annual

evolution of the shape parameter is shown for each city. Note that the parameters allow

the model to fit the particular tail behavior for each location. This figure shows that

the tail behavior is Weibull (ξ < 0) for all cities (bounded tail behavior). Note that the

shape parameter is statistically significant (90% confidence intervals does not contain

the zero), with a clear seasonality effect, excluding in Paris where a constant shape

parameter could be used instead. Since we aim at a common model for all grid points

we decided to use the model with an harmonic in the shape parameter, although we

are aware that shape parameter may be difficult to estimate due to lack of information

in the tails.

Figure 2 shows the seasonal evolution of the location parameter (solid lines) and

95% “instantaneous” time dependent percentile x0.95,t (dashed line) [ ◮OJO: no se

distingue la linea discontinua ] in the resulting model for all cities, capturing the

seasonal variations. Note that both location and 95% percentile are conditional on the

time of occurrence within the year.

An important issue about the selected model is the decision about not to include

parameters accounting for possible trends. One of the aims of the paper is to make a

comparison between the fitting using two different periods (1961-2000 and 2061-2100),

in order to check i) how the regional climate models perform with respect to maxima

observations, and ii) their suitability to be used for the estimation of return levels

in the future. For this reason, we decided to fit results from models for those periods

independently and without including trends, this strategy allow us to get unique return

level values for each period to make a fair comparison. Nevertheless, we are aware of

the possibility of including trends in the model, which is a subject for further research.

3.2 Diagnostics

A number of diagnostic statistics and plots were computed to assess the goodness of

fit of the resulting models in the selected cities. In particular we computed quantile-

quantile (Q-Q, see Figure 3)) and probability-probability (P-P, not shown due to space

limitations) plots, obtaining very good diagnostics, with points close to the diago-

nal. Note that P-P and Q-Q plots for the sample of computed values z̄t can be

obtained as z̄t = 1
ξt

log
h

1 + ξt
“

xt−µt
ψt

”i

, so that if z̄(1), z̄(2), . . . , z̄(nd) are the cor-

responding sample order statistics, the plotting points for the probability plot are

{i/(nd + 1), exp(− exp(−z̄(i)))} whilst the plotting points for the quantile plot are

{− log(− log(i/(nd + 1))), z̄(i)}. Dashed lines in Figure 3 [ ◮OJO: es dashed? no se

distingue ] indicate 90% confidence intervals.

Using the resulting models, we have also calculated annual and seasonal aggregated

return levels (4) for the test cities, which provide the knowledge about the mean num-

ber of years, springs, summers, autumns and winters, respectively, in which a given

threshold is exceeded. Note that this information is obtained using only one fitted

model for each location. In addition, and in order to compare the robustness of the
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Fig. 1 Goodness of fit plots for the maximum monthly temperature shape parameter, related
to the EOBS database, at the selected locations. Shading indicates 90% confidence intervals.

results, we also computed the annual return level plots using the traditional station-

ary approach where only yearly maximum data values are considered. The following

information is shown in Figure 4:

– Fitted annual return levels (red line) obtained using the non-stationary model, and

90% confidence bands (red dashed lines [ ◮OJO: apenas se aprecia este intervalo

de confianza? o es que se solapa con el estacionario? ] ). Empirical annual return

period quantiles (red dots) are also shown, where only the maximum value for each

year is used.
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Fig. 2 Goodness of fit plots for the maximum monthly temperature location parameter (con-
tinuous line) and 0.95 time dependent quantile (x0.95,t, dashed line) for the selected locations
(in different panels). Shading indicates 90% confidence intervals.
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– Fitted and empirical return levels for: i) spring (green line and dots, respectively),

ii) summer (blue line and dots, respectively), iii) autumn (black line and dots, re-

spectively), and iv) winter (gray line and dots, respectively). All of them obtained

using the non-stationary model. Note that empirical points have been calculated

considering maximum values for each spring, summer, autumn and winter, respec-

tively.

– To check model performance, we have also plotted return levels from the traditional

stationary GEV based on annual block maxima (black dot-dashed line [ ◮OJO:

black or grey?? ] ).

The above figures provide some interesting information. Since the annual maxima

occurs during the summer, annual aggregated quantiles coincide with summer aggre-

gated quantiles for all cities. This result shows the consistency and coherency of the

proposed model. Note that blue lines associated with summer are hidden behind annual

red lines. The goodness of fit of the selected model is also justified through the compar-

ison with the results using the stationary approach based on annual maxima. Results

from this model are plotted using black dashed lines. Note that in all cases, this line

is almost undistinguishable with respect to results from the non-stationary approach.

This confirms the validity, consistency and coherency of the proposed model.

Over Europe, the minimum maximum temperatures are always obtained during

winter. Note that gray lines related to winter are below the rest of the seasonal quan-

tiles. Autumn presents different maximum temperatures with respect to spring. Higher

for Athens, Lisbon, London, Madrid, Paris and Rome, and lower for Copenhagen, Oslo

and Stockholm. This clearly indicates that springs present higher maximum tempera-

tures than autumns in the South-East part of Europe and United Kingdom, whereas

in the North-West part autumns present higher maximum temperatures than springs.

For this particular case, Brussels is in the frontier where autumns and springs have

similar maximum temperature behavior.

4 Results for Observed Extreme Temperatures

In this section we apply the seasonal GEV model introduced Sec. 3.1 (calibrated and

diagnosed considering ten illustrative locations) to obtain maps of return values for the

whole European domain. To this aim we consider the E-OBS maximum temperature

daily data series in each of the 6271 resulting grid points for the 40-year period 1961-

2000, and focus on return periods for 40 and 100 years; note that T = 40 mark the limit

of the empirical available data, whereas T = 100 is far beyond the available data and

fully relies in the extrapolation of the tail estimation. Note also that, in this study, the

return value for a return period T on a particular “season” —defined arbitrarily as in

(3)— is the extreme temperature value that is expected to be exceeded on average once

every T years in that particular “season”. Figure 5 presents a map of 40-year return

levels for Spring to Winter over Europe. This figure shows a South-North gradient,

especially in Autumn and Winter, with larger return levels in the South, especially

over the Mediterranean, and lower values in the North-Western. In summer there are

less differences between North and South and almost the whole continent shows 40-year

return values in the range from 30 to 40◦C. The same dominant pattern was obtained

for return values associated with other return periods analyzed (20 and 100 years, not

shown).
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panels show the four seasons.

−0.5

0

0.5

1

1.5

2

2.5

3

Spring Summer

Autumn Winter

Fig. 6 Changes of 100-year return levels relative to 40-year return levels. Values calculated
for extreme maximum temperature from the E-OBS dataset.

Figure 6 shows the differences of the 100-year return values relative to those ob-

tained for a 40-year period. Higher values are found for the 100-year return levels for all

seasons, although the increments are not high (the maximum increments achieved are

3◦C). In Spring and Autumn the differences are larger in the North-East whereas in

Winter the maximum is mostly reached in regions over Central Europe. Differences are

more homogeneous over the whole Europe in Summer due to the less strong meridional

gradient of the return values found in this season for the different periods.

5 Results for RCM Simulated Extreme Temperatures

Once extremes from the E-OBS pseudo-observations have been analyzed, we focus on

the results for the two RCMs considered in this work: KNMI and SMHI.
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5.1 Extremes in a control period

Firstly, we analyze the simulations done in the control period 1961-2000, driven by

both ERA40 (optimum conditions) and ECHAM5 20c3m scenario (sub-optimal con-

ditions). The comparison of these results with those obtained for the observations in

the previous section will provide a validation of the RCMs allowing identifying and

removing systematic biases. The main goal is determining whether each RCM has a

characteristic regional bias pattern which can be identified out of the global bias of the

driving global model (ERA40 or ECHAM5) used as boundary conditions.

Maps for the 40-year return levels obtained for the KNMI and SMHI RCMs (both

with ERA40 and ECHAM5 forcings) show a spatiotemporal pattern of return values

similar as that obtained for the observed E-OBS dataset (not shown). A gradient of

higher values in the South and lower values in the North is also found for the RCM

simulations, attaining higher values also in Summer and lower in Winter. In order to

quantify the degree of spatial agreement for the different return value patterns, we

computed the Spearman’s rank correlation between E-OBS and each RCM-GCM cou-

ple (e.g. KNMI forced by ERA40); the resulting values are shown in the diagram in

Fig. 7 next to the arrows linking E-OBS with each of the RCMs. Note that in all the

cases the correlations are over 0.80 indicating a good spatial agreement on the return

values. In order to further explore the differences between the RCMs and the observa-

tions, Figure 8 shows the maps of biases between the RCM and the E-OBS values for

each season (by rows) and RCM-GCM couple (by columns). Both KNMI and SMHI

present a similar North-South gradient in the bias pattern, with return values overes-

timated over Southern Europe and underestimated in the North in Spring, Summer

and Autumn. In Winter both models show a more uniform pattern with smaller bias,

especially for the KNMI model. These changes are more pronounced for the SMHI

model which registers lower values over a larger region with stronger negative differ-

ences in the North (around -5◦C). A similar North-South gradient has been found by

Nikulin et al (2011) for 20-yr return values of annual maximum temperature (summer

in our study) applying a stationary GEV model to EOBS data and regional simulations

from the RCA model forced by 6 GCMs. They also found a higher underestimation

over Scandinavia which shown related to the fact that the stations considered in EOBS

only represent the open-land temperature ignoring the forest influence in the maximum

daytime temperature in a region with a large forest fraction.

An important result is that KNMI and SMHI models exhibit the same character-

istic regional bias pattern (with small differences) for the two different global forcing

conditions (reanalysis from ERA40 or control simulations from ECHAM5), so the inter-

RCM variability of the bias pattern is much higher than the inter-GCM variability in

the resulting patterns. In order to quantify the degree of spatial agreement for the

different patterns, we computed the Spearman’s rank correlation for the bias patterns

(w.r.t. E-OBS) for each RCM-GCM couple; the resulting values are shown within the

dashed box in the diagram in Fig. 7. For instance, in Spring (labelled as “P” in the

diagram), the intra-RCM (for ERA40 and ECHAM5 forcings) correlations are 0.82

and 0.85 for the KNMI and SMHI models, respectively, whereas the inter-RCM (intra-

GCM) correlations are 0.61 and 0.78, respectively. Note that the correlations between

the global (ERA40 and ECHAM5) and regional (KNMI and SMHI) biases are much

lower (0.37, 0.18, 0.45 and 0.44, for the respective combinations, also shown in the

diagram in Fig. 7), thus indicating a robust regional pattern in the bias of the RCMs,

when compared with the observations.
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5.2 Future changes in temperature extremes

We analyze the future changes in temperature extremes considering the RCMs driven

by the ECHAM5 A1B emission scenario for the period 2061-2100. Since robust bias

patterns have been identified for the RCMs in present climate conditions, we shall apply

the “delta method” to obtain the estimated return values for future scenarios (see,

e.g. Zahn and von Storch, 2010, and http://www.ipcc-data.org/ddc change field.html).

This method consists on the comparison of simulated time slices of future scenarios

relative to a simulated control scenario in the 20th century (e.g. 20c3m scenario) of

the same model. In the previous section we analyzed the return values obtained from

the RCMs coupled to a control 20c3m scenario from ECHAM5 model. In this section

we consider the RCM simulations driven by the future 2061-2100 time-slice output

from ECHAM5 model for A1B scenario. Return levels corresponding to three return

periods (20, 40 and 100 years) have been estimated using the methodology described

in Sec. 3. Figure 9 presents the differences of the 40-year return values for the future

A1B (2061-2100) relative to 20c3m present climate (1961-2000) simulations for the

KNMI and SMHI models. It is found that changes in extreme temperature simulated

by the two RCMs have very similar patterns revealing increase almost everywhere

with the greatest magnitudes of the warming over Southern Europe. Other studies

have also found this region more sensitive to climate change. For instance, the study

by Nikulin et al (2011), presents an increase of temperature extremes in summer by the

end of the century over all Europe with higher values in the South. Lower changes are

registered in Winter in figure 9 which shows the larger differences in the North-West of

Europe. The pattern of differences is almost the same for the other two return periods

considered (not shown) being remarkable that the magnitude of the changes increases

for longer return periods. Note also that model projections for the 21st century shows

greater temperature extremes than the increase of temperature found in Figure 6 for

the E-OBS data due to an increase of the return period.

Moreover, Fig. 10 shows the relative increment of the extreme values (40-year return

values) with respect to the mean values (for daily maximum temperature), obtained

as the ratio of the increments shown in Fig. 9 and the increments of the seasonal

mean daily maximum temperatures computed in the same way. This figure shows

that the increment for extremes is expected to be higher than for the mean seasonal

temperatures, double in most of the European territory, particularly in Spring and

Summer.

6 Conclusions

Two state-of-the-art regional circulation models from the EU ENSEMBLES project

are considered to estimate changes of maximum temperatures in Europe. Extremes are

studied in terms of return values using a time-dependent generalized extreme value

model for monthly maxima. Seasonality is here introduced considering harmonic func-

tions associated to the location, scale and shape parameters. The study focuses on

the end of the 20th century (1961-2000), used as a calibration/validation period, and

analyzes the changes projected for the period 2061-2100 considering the A1B emission

scenario.

The robustness of the nonstationary model is compared to the traditional station-

ary approach revealing the consistency and coherency of the proposed model. This
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Fig. 9 Climate change responses for 40-year return levels in 2061-2100 relative to 1961-2000
simulated by the KNMI (left) and SMHI (right) RCMs, both driven by the ECMAH5 global
model.

comparison also remarks the main advantage this approach versus the stationary GEV

due to the no need to treat data and fitting for each period separately, reducing the

uncertainty in the estimation of seasonal and annual return values.

Results for observed extreme temperatures from the E-OBS dataset (1961-2000)

reveal a South-North gradient for the 40-year return value with larger values over the

Mediterranean. Same pattern is found for the KNMI and SMHI simulations done in the

control period driven by both ERA-40 and ECHAM5 20c3m scenario. It is also shown

that KNMI and SMHI models exhibit the same characteristic regional bias pattern

with respect to the E-OBS dataset (with small differences) for the two different global

forcing conditions, so the inter-RCM variability of the bias pattern is much higher than

the inter-GCM variability in the resulting patterns.

The projected future changes in temperature extremes in 2061-2100 relative to the

control period reveals increase almost everywhere for both RCMs showing the greatest

magnitudes of warming over Southern Europe. The magnitud of the changes increases

for longer return periods. It is remarkable that model projections for the 21st century
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Fig. 10 As Figure 9, but relative to the increment of Tmax.

shows greater temperature extremes than the increase of temperature found for the

E-OBS data due to an increase of the return period.
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