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Abstract

This paper shows how the mathematical and the engineering points of view are complementary and

help to model real problems that can be stated as systems of linear equations and inequalities. The

paper is devoted to point out these relations and making them explicit for the readers to discover the

new world that arises when contemplating the compatibility conditions or the set of general solutions

from the dual perspective. After reminding an orthogonally based powerful algorithm to analyze

the compatibility of linear systems of equations and solving them, a water supply problem is used

to illustrate its mathematical and engineering multiple aspects, including the optimal statement of

the problem in terms of an adequate selection and numbering of equations and unknowns, a deep

analysis of the compatibility conditions and a physical interpretation of the general solution, together

with that of each individual generators of the affine space. The possibilities of removing unknowns

without altering the compatibility of the problem is also analyzed. Next, the Γ-algorithm to analyze

the compatibility of linear systems of inequalities and solving them is described and then, the water

supply problem revisited adding some constraints, such as capacity limits for the pipes and retention

valves, and discussing how they affect the resulting general solution and many other aspects of it.

Finally, some conclusions are derived.

Key Words: Compatibility, cones, duality, linear spaces, polytopes, simultaneous solutions .

1 Introduction

There are many physical and engineering problems that involve linear systems of equalities and inequal-
ities. These systems can be interpreted from the mathematical or the engineering points of view, that
are complementary and terribly rich. In general, people working in these areas have knowledge about
only one of these two perspectives and lack a deep understanding of the relations between the mathe-
matical and the physical concepts. This fact, leads to important limitations in the capacity of extracting
conclusions from the results that can be expected after a careful analysis of these problems.

This paper is devoted to pointing out these relations and making them explicit for the readers to
discover the new world that arises when contemplating the compatibility conditions or the set of general
solutions from the dual perspective.

Though many other possibilities exist, we have selected a particular example, the water supply prob-
lem, to illustrate these two points of view, and we exploit this dual (mathematical and engineering)
perspective to deal with a problem that involves linear systems of equalities or inequalities, depending on
the constraints used to model the reality. Many questions of practical interest arise and can be answered
thanks to this dual analysis of the problem.

For the sake of completeness two algorithms, one for dealing with linear equalities and one for linear
inequalities are given. They allow solving not only particular systems of equations but many subsets at
the same time.

The paper is structured as follows. In Section 2 we describe one of the two fundamental algorithms in
this paper, the orthogonalization algorithm, that is used in Section 3 for determining the compatibility
of systems of linear equalities and solving them, i.e., obtaining the set of all possible solutions. In Section
4 the water supply problem is described and used to illustrate all the theoretical methods. A special
care is taken in showing the correspondences between the engineering and the mathematical elements
of this problem. Section 5 presents the Γ-algorithm, a powerful algorithm to obtain the dual cone of a
given cone, that is the key algorithm used in Section 6 for determining the compatibility of systems of
linear inequalities and solving them, i.e., obtaining the set of all possible solutions. In Section 7 we revisit
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the water supply problem adding some constraints to illustrate the methodology and several engineering
problems and the correspondences with their mathematical counterparts discussed. Finally, in Section 8
we give some conclusions and recommendations.

2 The Orthogonalization Algorithm

In this section we describe an important algorithm for obtaining the linear orthogonal subspace orthogonal
to another linear subspace (for a detailed description of this algorithm see Castillo, Cobo, Jubete, Pruneda
and Castillo [3], Castillo, Cobo, Fernández-Canteli, Jubete and Pruneda [1], Cobo, Jubete and Pruneda
[2]). We shall see that this algorithm allows studying the compatibility and solving linear systems of
equalities.

Algorithm 1 (Orthogonalization Algorithm)

• Input: A set of vectors U = {u1,u2, . . . ,us} of IRn.

• Output: The generators {w1,w2, . . . ,ws} of the linear subspace L(V)⊥ orthogonal to L(V), where
V is any subset of U, and the list L of pivot columns, necessary to obtain the generators of a given
V.

Step 1: Set W = In (the identity matrix of dimension n and let the iteration number i = 1.

Step 2: Calculate the dot products tij = uT
i wj for all j, where wj is the column j vector of W.

Step 3: Choose the pivot column p as one column vector not orthogonal to ui, that is, tip 6= 0 and add
it to the pivot list L. If there is no such a column go to Step 6. Otherwise, continue with Step 4.

Step 4: Divide the actual pivot column wp by tp.

Step 5: For all the remaining columns (different from the actual pivot column, i.e., j 6= p) do wj =
wj − tijwp.

Step 6: If i = m, go to Step 7. Otherwise, increase i in one unit and go to Step 2.

Step 7: Return W = {w`, . . . ,ws} as a set containing the generators of all linear subspaces orthogonal
to all possible L(V), and the list L of pivot columns.

Remark 1 After each iteration of the algorithm, i.e., after Step 5, each column in W can be multiplied
by an arbitrary non-null number without altering the validity of the algorithm.

Remark 2 Given V, to obtain the linear subspace orthogonal to it, we remove from W the pivot columns
associated with the vectors in V and return the linear subspace generated by the remaining columns. The
complement linear subspace can be obtained from the pivot columns.

3 Solving Systems of Equations

This section is devoted to systems of equations of the form:

a11x1 +a12x2 + · · · +a1nxn = b1,
a21x1 +a22x2 + · · · +a2nxn = b2,
· · · · · · · · · · · · · · ·

am1x1 +am2x2 + · · · +amnxn = bm.

(1)

First, a method for determining whether or not the system (1) of equations is compatible is given.
Next, it is shown how the set of all possible solutions of the given system can be obtained.

A classical treatment of these problems can be seen in Gill, Golub, Murray and Saunders [10].

2



3.1 Deciding whether or not a linear system of equations is compatible

In this section we show how to apply the orthogonalization algorithm to analyze the compatibility of a
given system of equations.

System (1) can be written as

x1











a11

a21

...
am1











+ x2











a12

a22

...
am2











+ · · · + xn











a1n

a2n

...
amn











=











b1

b2

...
bm











. (2)

Expression (2) shows that the vector b = (b1, . . . , bm)T belongs the linear space generated by the
column vectors {a1,a1, . . . ,an} of the system matrix A, i.e., the compatibility requires:

b ∈ L(a1,a2, . . . ,an) ⇔ b ∈
(

L(a1,a2, . . . ,an)⊥
)⊥

.

Thus, analyzing the compatibility of the system of equations (1) reduces to finding the linear subspace
L{w1, . . . ,wp} orthogonal to L{a1, . . . ,an} and checking whether or not bT W = 0.

Example 1 (Compatibility of a linear system of equations) Suppose that we are interested in de-
termining the conditions under which the system of equations

−x1 +x2 +2x4 = a
2x1 +x2 −x3 −x4 = 2a

−x3 +x4 = −a
x2 +x3 +x4 = b

2x1 −2x2 +x3 = c

(3)

is compatible. Then, using Algorithm 1, we get (see Table 1) that the linear subspace orthogonal to the
linear subspace generated by the column vectors in (3) is:

W = L{w1} = L
{

(18, 5,−16,−15, 4)T
}

, (4)

which implies the following compatibility condition:

wT
1 (a, 2a,−a, b, c)T = (18, 5,−16,−15, 4)(a, 2a,−a, b, c)T = 0 ⇒ 44a − 15b + 4c = 0. (5)

3.2 Solving a homogeneous system of linear equations

Consider the homogeneous system of equations

a11x1 +a12x2 + · · · +a1nxn = 0,
a21x1 +a22x2 + · · · +a2nxn = 0,
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
am1x1 +am2x2 + · · · +amnxn = 0

(6)

which can be written as
(a11, . . . , a1n)(x1, . . . , xn)T = 0,
(a21, . . . , a2n)(x1, . . . , xn)T = 0,
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(am1, . . . , amn)(x1, . . . , xn)T = 0.

(7)

Expression (7) shows that (x1, . . . , xn) is orthogonal to the set of row vectors {a1,a2, . . . ,am} of A.
Then, obtaining the solution to system (7) reduces to determining the linear subspace orthogonal to

the linear subspace generated by the rows of matrix A.
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Iteration 1
a1 v1

1 v1
2 v1

3 v1
4 v1

5
-1 1 0 0 0 0
2 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
2 0 0 0 0 1
t1 -1 2 0 0 2

Iteration 2
a2 v2

1 v2
2 v2

3 v2
4 v2

5
1 -1 2 0 0 2
1 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 1 0
-2 0 0 0 0 1
t2 -1 3 0 1 0

Iteration 3
v3

1 v3
2 v3

3 v3
4 v3

5
-1/3 2/3 0 -2/3 2
1/3 1/3 0 -1/3 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Iteration 3 (simplified)
a3 v3

1 v3
2 v3

3 v3
4 v3

5
0 -1 2 0 -2 2
-1 1 1 0 -1 0
-1 0 0 1 0 0
1 0 0 0 3 0
1 0 0 0 0 1
t3 -1 -1 -1 4 1

Iteration 4
a4 v4

1 v4
2 v4

3 v4
4 v4

5
2 -1 2 0 -2 2
-1 1 1 0 -1 0
1 -1 -1 -1 4 1
1 0 0 0 3 0
0 0 0 0 0 1
t4 -4 2 -1 4 5

Final
v1 v2 v3 v4 v5

-3 3 -1/2 -1/2 9/2
0 3/2 -1/4 -1/4 5/4
3 -3 0 1 -4
3 -3/2 3/4 3/4 -15/4
0 0 0 0 1

Final (simplified)
v1 v2 v3 v4 v5

-1 2 -2 -2 18
0 1 -1 -1 5
1 -2 0 4 -16
1 -1 3 3 -15
0 0 0 0 4

Table 1: Tables resulting from the orthogonalization algorithm. Note that the tables in iteration 3 and
the final tables have been simplified by multiplying some columns by non-null numbers.

Example 2 (Solving homogeneous systems of linear equations) Consider the set of equations

−x1 +2x2 +2x5 = 0
x1 +x2 +x4 −2x5 = 0

−x2 −x3 +x4 +x5 = 0
2x1 −x2 +x3 +x4 = 0.

(8)

To solve any subsystem of (8), we obtain the generators of the linear subspaces orthogonal to any of
the linear subspaces generated by the rows of the system matrix, as shown in Table 1, Iterations 1 to 4.
Next, given a subset of equations, we remove the corresponding pivot columns from the final table and
generate the orthogonal linear subspace with the remaining columns. In fact, we can solve 24 − 1 = 15
subsystems from this table. Some of them together with their solutions are given in Table 2.

3.3 Solving a complete system of linear equations

Now consider the complete system of linear equations (1):

a11x1 +a12x2 + · · · +a1nxn = b1,
a21x1 +a22x2 + · · · +a2nxn = b2,
· · · · · · · · · · · · · · ·

am1x1 +am2x2 + · · · +amnxn = bm

(9)

that adding the artificial variable xn+1, it can be written as

a11x1 +a12x2 + · · · +a1nxn −b1xn+1 = 0,
a21x1 +a22x2 + · · · +a2nxn −b2xn+1 = 0,
· · · · · · · · · · · · · · · · · ·

am1x1 +am2x2 + · · · +amnxn −bmxn+1 = 0,
am1x1 +am2x2 + · · · +amnxn −bmxn+1 = 0,

xn+1 = 1.

(10)
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Table 2: Some examples of homogeneous subsystems of (8) that can be solved from the final simplified
tableau in Table 1.

System Solution

−x1 +2x2 +2x5 = 0











x1

x2

x3

x4

x5











=











2 −2 −2 18
1 −1 −1 5
−2 0 4 −16
−1 3 3 −15
0 0 0 4

















ρ1

ρ2

ρ3

ρ4







−x2 −x3 +x4 +x5 = 0











x1

x2

x3

x4

x5











=











−1 2 −2 18
0 1 −1 5
1 −2 4 −16
1 −1 3 −15
0 0 0 4

















ρ1

ρ2

ρ3

ρ4







x1 +x2 +x4 −2x5 = 0
−x2 −x3 +x4 +x5 = 0











x1

x2

x3

x4

x5











=











−1 −2 18
0 −1 5
1 4 −16
1 3 −15
0 0 4















ρ1

ρ2

ρ3





x1 +x2 +x4 −2x5 = 0
2x1 −x2 +x3 +x4 = 0











x1

x2

x3

x4

x5











=











−1 −2 18
0 −1 5
1 0 −16
1 3 −15
0 0 4















ρ1

ρ2

ρ3





−x1 +2x2 +2x5 = 0
x1 +x2 +x4 −2x5 = 0

2x1 −x2 +x3 +x4 = 0.











x1

x2

x3

x4

x5











=











−2 18
−1 5
0 −16
3 −15
0 4











(

ρ1

ρ2

)

x1 +x2 +x4 −2x5 = 0
−x2 −x3 +x4 +x5 = 0

2x1 −x2 +x3 +x4 = 0.











x1

x2

x3

x4

x5











=











−1 18
0 5
1 −16
1 −15
0 4











(

ρ1

ρ2

)

−x1 +2x2 +2x5 = 0
x1 +x2 +x4 −2x5 = 0

−x2 −x3 +x4 +x5 = 0
2x1 −x2 +x3 +x4 = 0.











x1

x2

x3

x4

x5











= ρ1











18
5

−16
−15
4











The first part of the system (10) can be written as

(a11, . . . , a1n,−b1)(x1, . . . , xn, xn+1)
T = 0,

(a21, . . . , a2n,−b2)(x1, . . . , xn, xn+1)
T = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(am1, . . . , amn,−bm)(x1, . . . , xn, xn+1)

T = 0.

(11)

that shows that (x1, . . . , xn, xn+1) is orthogonal to the set of vectors

{(a11, . . . , a1n,−b1), (a21, . . . , a2n,−b2), . . . , (am1, . . . , amn,−bm)}.

Then, it is clear that the solution of (11) is the linear subspace orthogonal to the linear subspace
generated by the rows of matrix Ab:

L{(a11, . . . , a1n,−b1), (a21, . . . , a2n,−b2), . . . , (am1, . . . , amn,−bm)}⊥.
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Final (simplified)
v1 v2 v3 v4 v5

-1 2 -2 -2 9/2
0 1 -1 -1 5/4
1 -2 0 4 -4
1 -1 3 3 -15/4
0 0 0 0 1

Table 3: The final Table of the orthogonalization algorithm containing the generators of the solution of
any subset of equations in (12).

Thus, the solution of (9) is the projection on X1 × · · · × Xn of the intersection of the orthogonal
complement of the linear subspace generated by

{(a11, . . . , a1n,−b1), (a21, . . . , a2n,−b2), . . . , (am1, . . . , amn,−bm)}

and the set {x|xn+1 = 1}.

Example 3 (A complete system of linear equations) Consider the set of equations

−x1 +2x2 = −2
x1 +x2 +x4 = 2

−x2 −x3 +x4 = −1
2x1 −x2 +x3 +x4 = 0.

(12)

which, using the auxiliary variable x5, can be written as (8). Since the solution of the homogeneous system
(8) was already obtained, now we only need to force x5 = 1 and return to the initial set of variables (i.e.,
removing variable x5) . For convenience we have included another version of the final tableau in Table 1
in Table 3. This tableau allows solving any subset of equations in (12). Table 4 shows some examples.

Deposit Deposit

Consumption nodes

Supply nodes

Figure 1: The water supply network showing the pipes, the nodes and the sign of the flows entering or
leaving the network.
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Table 4: Some examples of complete subsystems of (12) that can be solved from the final simplified
tableau in Table 1.

System Solution

−x1 +2x2 = −2







x1

x2

x3

x4






=







2 −2 −2
1 −1 −1
−2 0 4
−1 3 3











ρ1

ρ2

ρ3



 +







9/2
5/4
−4

−15/4







−x2 −x3 +x4 = −1







x1

x2

x3

x4






=







−1 2 −2
0 1 −1
1 −2 4
1 −1 3











ρ1

ρ2

ρ3



 +







9/2
5/4
−4

−15/4







x1 +x2 +x4 = 2
−x2 −x3 +x4 = −1







x1

x2

x3

x4






=







−1 −2
0 −1
1 4
1 3







(

ρ1

ρ2

)

+







9/2
5/4
−4

−15/4







x1 +x2 +x4 = 2
2x1 −x2 +x3 +x4 = 0







x1

x2

x3

x4






=







−1 −2
0 −1
1 0
1 3







(

ρ1

ρ2

)

+







9/2
5/4
−4

−15/4







−x1 +2x2 = −2
x1 +x2 +x4 = 2

2x1 −x2 +x3 +x4 = 0.







x1

x2

x3

x4






= ρ1







−2
−1
0
3






+







9/2
5/4
−4

−15/4







x1 +x2 +x4 = 2
−x2 −x3 +x4 = −1

2x1 −x2 +x3 +x4 = 0.







x1

x2

x3

x4






= ρ1







−1
0
1
1






+







9/2
5/4
−4

−15/4







−x1 +2x2 = −2
x1 +x2 +x4 = 2

−x2 −x3 +x4 = −1
2x1 −x2 +x3 +x4 = 0.







9/2
5/4
−4

−15/4







4 The Water Supply Problem

Consider the water supply system of a given city, represented in Figure 1, that consists of the following
elements (see Figure 1):

Pipes: They represent the paths to be followed by the water.

Nodes: They are the points where the pipes intersect, and where water enters or leaves the flow
network. We assume that there are two supply nodes, those coinciding with the two deposits, and
the remaining nodes are consumption nodes.

Data: The data of our problem are the amounts of flow that enter or leave each node, indicated by the
arrows, and the topology of the network, depicted in Figure 1.

Unknowns: The unknowns in the water supply problem are the water flows in each of the pipes, that
is, the number of unknowns coincides with the number of pipes.

Equations: To derive the system of equations that model this problem we must establish the fluid
balance at each node, i.e., assuming that there are no losses, the income flow + the output flow
must be null at each node. This reveals that we have a system of equations with as many equations
as nodes.
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So, the diagram in Figure 1 can be completed by numbering nodes and pipes (unknowns), and
associating to each node i its input or output flow qi, to get the diagram in Figure 2. Note that an
arbitrary direction has been assigned to each flow. If the resulting variable is positive this means that
the direction of the flow coincides with the arbitrary assignment; otherwise, it is contrary to it.

1

2

3

4

5

6 7

9

8

10

11

12

x1

x10

x9

x14

x12

x13

x15

x11

x8

q1

q2

q5

q3
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Figure 2: The water supply system of a given city showing the unknowns, i.e., the flows associated with
all pipes, and the node and flow numberings.

Establishing the node balance equations, in matrix form, we get:









































−1−1
1 −1

1 −1−1
1 1 −1

1 −1
1 1−1

1 1 1
−1 1

−1 1 1
−1−1 1

−1 1
−1−1





























































































x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15





















































=









































−q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

−q12









































(13)

that is a nice looking and convenient banded matrix, which columns contain a one and a minus one,
because each pipe has associated flow entering one node and leaving another node.

It is important to realize about the importance of the node numbering, that has a great influence on
the structure of the coefficients matrix. For example, assume that we number the nodes as in Figure 3,
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Figure 3: Alternative numbering of the nodes (not appropriate).

then, the resulting system of equations does not lead to a banded matrix any more and becomes:









































1 −1
−1 1

−1−1
1 1 −1

1 1−1
1 1 1

−1 1 1
−1−1

1 −1−1
1 −1

−1 1
−1−1 1





























































































x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15





















































=









































q1

q2

−q3

q4

q5

q6

q7

−q8

q9

q10

q11

q12









































. (14)

Note that it is convenient that connected nodes have close numbers; otherwise the matrix band size
increases. Thus, from now on we will use the numbering in Figure 2.

First, we can ask ourselves for the conditions to be satisfied for the linear system (13) to have solution
(one or more). Then, we need to use the method described in Section 3.1, that leads to the conditions

−q1 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 + q10 + q11 − q12 = 0.

Note that they express that the amount of water entering the network must coincide with the amount
of water leaving the network. Thus, the engineering meaning of the compatibility condition is a global
balance of flow.

However, note that this compatibility holds for this topology, but is not the general compatibility
condition. For example, in Figure 4 we show the case in which pipes 6,7,9 and 10 have been removed,
for which satisfaction of the global balance is not sufficient for compatibility. In fact, the new system of
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equations for this case is:









































−1−1
1 −1

1 −1−1
1 1

1
−1

1
1

1 1
−1−1 1

−1 1
−1−1













































































x1

x2

x3

x4

x5

x8

x11

x12

x13

x14

x15





































=









































−q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

−q12









































and the compatibility conditions become:

−q1 + q2 + q3 + q4 + q5 = 0
q6 + q7 = 0

q8 + q9 + q10 + q11 − q12 = 0
(15)

that represent the global balances for each of the three existing subnetworks (see Figure 4).
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Figure 4: An example where the global balance is not sufficient for compatibility.
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Figure 5: A particular numerical case where the deposits supply 10 and 12 units of flow and the node
consumptions are indicated.

Consider the particular case in Figure 5. To obtain the set of all possible solutions, we can apply the
orthogonalization algorithm 1 and obtain:



















































x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15



















































= ρ1



















































0
0
0
0
0
0
0
0
−1
1
−1
1
0
0
0



















































+ ρ2



















































−1
1
−1
1
0
0
0
0
0
0
0
0
0
0
0



















































+ ρ3



















































−1
1
−1
0
1
−1
1
0
0
0
0
0
0
0
0
















































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+ ρ4
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















































0
0
0
0
0
0
0
0
−1
1
−1
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1
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

















































+



















































6
4
5
0
2
2
0
1
6
−4
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0
−3
12
0



















































, (16)

where ρ1, ρ1, . . . , ρ4 ∈ IR, that from a mathematical point of view is an affine linear space, i.e., the sum
of a given vector (the last one) plus a linear space of dimension 4 (an arbitrary linear combination of 4
linearly independent vectors).

From an engineering point of view, this solution must be interpreted as follows:

1. The given vector is a particular solution, i.e., a solution to the stated problem. Note that it satisfies
Equation (13) for the q values in Figure 5. This vector can be replaced by any other particular
solution.

2. The first vector corresponds to a solution of the associated homogeneous problem, i.e., assuming
that no flows enters or leaves the network, and that the flow is null with the exception of pipes 9,
10, 11 and 12, that is represented in Figure 6(a).

3. The second vector corresponds to a solution of the associated homogeneous problem, i.e., assuming
that no flows enters or leaves the network, and that the flow is null with the exception of pipes 1,
2, 3 and 4, that is represented in Figure 6(b).
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Figure 6: A particular solution of the associated homogeneous system of equations. Note that no flow
enters or leave the network, and inner flow affects only to some pipes.

4. The third vector corresponds to a solution of the associated homogeneous problem, i.e., assuming
that no flows enters or leaves the network, and that the flow is null with the exception of pipes 1,
2, 3, 5, 6 and 7, that is represented in Figure 7(a).

5. The fourth vector corresponds to a solution of the associated homogeneous problem, i.e., assuming
that no flows enters or leaves the network, and that the flow is null with the exception of pipes 9,
10, 11, 13, 14 and 15, that is represented in Figure 7(b).

The linear space generated by the first four vectors in (16) can be represented using another basis
of the same space; in particular the basic vectors represented in Figure 6 or those in Figure 7 can be
replaced by those represented in Figure 8.

The appearance of ρ values in the general solution (16) implies that the flows in the pipes can be
unlimited in any direction (the ρ’s can be positive or negative). This has no physical sense and will be
corrected in Section 7. The number of ρ’s, i.e., the dimension of the linear space of homogeneous solutions
is related to the number of degrees of freedom of our solution, that is, the maximum number of redundant
pipes, i.e., that can be removed or fail without failure in the required water supply.

To know whether or not a set of pipes can be removed, we just need to enforce the flow in all pipes
in the set to be null. For example, assume that we want to know if pipes 1 and 2 can be removed, then,
from (16) we must have:

x1 = −ρ2 − ρ3 + 6 = 0

x2 = ρ2 + ρ3 + 4 = 0

12
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Figure 7: A particular solution of the associated homogeneous system of equations. Note that no input
or output flow occurs, and inner flow affects only to some pipes.

that is an incompatible system of equations, because the submatrix

(

0 −1 −1 0
0 1 1 0

)

associated with x1 and x2 has rank 1.
Thus, the general rule to determine if a set of pipes can simultaneously fail without influencing the

water supply is that the rank of the associated matrix must coincide with the number of pipes in that
set. For example, the pipes 4, 7, 9 and 12 lead to the matrix (see (16)):







0 1 0 0
0 0 1 0
−1 0 0 −1
1 0 0 0







that has rank 4 indicating that they can be removed simultaneously without affecting the required supply.
The solution corresponds to ρ1 = ρ2 = ρ3 = 0 and ρ4 = 6, that leads to the particular solution:

(6, 4, 5, 0, 2, 2, 0, 1, 0, 2, 4, 0, 3, 6, 6)T

5 The Γ algorithm

In this section we describe the Γ algorithm, (see Jubete [12, 13], Padberg [16], Castillo, Jubete, Pruneda
and Solares [5], Castillo, Esquivel y Pruneda [6] and Castillo, Conejo, Pedregal, Garćıa and Alguacil [4]),
that is the key algorithm to solve systems of inequalities.
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Figure 8: Alternative basis for the linear space of dimension 4 appearing in the general solution.

The reader interested in a classical treatment of some of these problems can, for example, consult the
works of Minkowski [14]), Motzkin, Raiffa, Thompson, and Thrall [15], Chazelle [7], Chernikova [8] and
Greenberg [11], Dyer [9], Pillers [17], etc.

Since the concepts of cone and dual cone are used, we start with their definitions.

Definition 1 (Polyhedral convex cone) Let A be a matrix, and {a1, . . . ,am} be its column vectors.
The set

Aπ ≡ {x ∈ IRn | x = π1a1 + . . . + πmam with πj ≥ 0; j = 1, . . . ,m}

of all nonnegative linear combinations of the column vectors of A is known as the polyhedral convex cone
generated by a1, . . . ,am (its generators), and is denoted Aπ.

A cone Aπ can be written as the sum of a linear space Vρ plus a pure cone Wπ, i.e., Aπ = Vρ +Wπ.
In this paper we use the Greek letter π to refer to non-negative real numbers.

Definition 2 (Nonpositive dual or polar cone) Let Aπ be a cone in IRn with generators a1, . . . ,ak.
The nonpositive dual of Aπ, denoted Ap

π, is defined as the set

Ap
π ≡

{

u ∈ IRn | AT u ≤ 0
}

≡
{

u ∈ IRn | aT
i u ≤ 0; i = 1, . . . , k

}

that is, the set of all vectors such that their dot products by all vectors in Aπ are nonpositive.

Algorithm 2 (Dual cone of a given cone.)

• Input: A cone defined by a non-necessarily minimal set of generators A = {a1, . . . ,am} in IRn

that is partitioned in two sets: B and C, such that the cone be in standard form Aπ = Bρ + Cπ.

• Output: The dual cone in one of its minimal representations.

Initialization:
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• Since at iteration h we look for a minimal set of generators of the dual cone generated by {a1, . . . ,ah}
in the form Vh

ρ + Wh
π, the matrix Uh of the generators of Ah

π at iteration h, will be partitioned as

(Vh,Wh), where the columns of Vh and Wh are the linear space and the acute cone generators of
the corresponding dual cone, respectively.

Initially, i.e., when no a vectors have been considered yet, the dual cone is IRn = (In)ρ, where In

is the identity matrix of dimension n. Then, we let V1 = In, W1 = ∅, and U1 = (V1,W1).

• Since for minimal representation purposes, each vector uh
j in Uh will be assigned at the end of

iteration h the set
Ih
j = {1 ≤ i ≤ h|aT

h uh
j = 0},

we initialize the set I1
j to empty sets, for j = 1, 2, . . . , n, and let the iteration number h = 1 (first

iteration).

Regular Process:

Step 1: Calculate the dot products. Calculate th = aT
h Uh.

Step 2: Look for the pivot. Find a column vi (called a pivot column) in Vh such that thi 6= 0.

Step 3: Test for ΓI or ΓII processes. If no pivot has been found, go to Process II (Step 5).
Otherwise go to Process I (Step 4).

Step 4: Process I. Normalize the pivot column by dividing it by −thpivot. Perform the pivoting process

by letting uh
ij = uh

ij + thj uh
i for all j 6= pivot. Append the index h to the Ih

j sets for all j 6= pivot. If

ah ∈ B, remove vector uh
pivot from Vh and go to Step 6. Otherwise, remove uh

pivot from Vh, and

append it to Wh. Then, go to Step 6.

Step 5: Process II. Append to Ih
j the index h for all j such that tj = 0.

For all wj ∈ Wh divide wj by |thj |.

Consider the set of vectors

Z = {wk(i,j) = wi + wj |t
h
i < 0, thj > 0;wi,wj ∈ Wh}.

Assign the vectors in Z the sets Ih
k(i,j) = (Ih

i ∩ Ih
j ) ∪ {h}, and select from Z a maximal subset

Z∗ ⊂ Z of vectors wk(i,j) such that Ih
k(i,j) 6⊂ Ih

k(i1,j1)
and Ih

k(i,j) 6⊂ Ih
s , for all ws such that ths = 0.

Remove from Wh all wj such that thj > 0 and append to Wh all vectors of Z∗.

Step 6: If h < m, let h = h + 1 and go to Step 1; otherwise, return matrices Vh and Wh, and exit.

Remark 3 At the end of each iteration of the Γ-algorithm,i.e., after Step 5, the v column vectors of the
tableau can be multiplied by any non-negative number, and the W column vectors of the tableau can be
multiplied by any positive number.

6 Solving Systems of Inequalities

6.1 Deciding whether or not a system of linear inequalities is compatible

In this section we show how to apply the Γ-algorithm to analyze the compatibility of a system of linear
inequalities.

Consider the system:

a11x1 +a12x2 + · · · +a1nxn = b1,
a21x1 +a22x2 + · · · +a2nxn = b2,
· · · · · · · · · · · · · · ·

am1x1 +am2x2 + · · · +amnxn = bm

x1, x2, · · · , xn ≥ 0

(17)
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that can be written as

x1











a11

a21

...
am1











+ x2











a12

a22

...
am2











+ · · · + xn











a1n

a2n

...
amn











=











b1

b2

...
bm











(18)

x1, x2, · · · , xn ≥ 0.

Expression (18) shows that the given system is compatible if and only if the vector b = (b1, . . . , bm)T

belongs to the cone generated by the set of column vectors {a1,a2, · · · ,an} of the coefficient matrix A,
i.e.,

b ∈ Aπ ≡ b ∈ (Ap
π)

p
. (19)

Thus, the compatibility problem reduces to finding the dual cone Vρ + Wπ of the cone generated by
the columns of the coefficient matrix and checking that bT V = 0 and bT W ≤ 0.

To analyze the compatibility of a system of linear inequalities in arbitrary variables, it can be converted
to the case in (17), using slack variables to convert the inequalities in equalities, and one more artificial
variable to convert the arbitrary variables into no negative variables, that is, each variable xi can be
converted to x∗

i − x0.

Example 4 (Compatibility of a linear system of equations in restricted variables) Determine
the conditions for the following system of equations to be compatible.

−x2 +2x4 +x5 −x6 = a
x3 +x4 +2x6 = b

x2 −x3 +x5 +2x6 = c
−x1 +x2 −x3 −x5 −x6 = d

x1, x2, x3, x4, x5, x6 ≥ 0.

(20)

For the system (20) to be compatible, the vector (a, b, c, d)T must belong to the cone Aπ generated by
the columns of the coefficient matrix, that is to say, it must belong to the dual of the dual of Aπ. In other
words, their dot products by the cone generators of Ap

π must be non-positive. Since Ap
π can be obtained

from the Table 5, we obtain the desired compatibility condition:

( a b c d )











−1 1 0 1 1 0

−1 −2 0 −2 −2 −1

−1 −2 −1 0 −1 0

0 0 1 1 0 0











≤ 0. (21)

6.2 Solving a homogeneous system of linear inequalities

Consider the homogeneous system of inequalities

a11x1 +a12x2 + · · · +a1nxn ≤ 0,
a21x1 +a22x2 + · · · +a2nxn ≤ 0,
· · · · · · · · · · · · · · · · · · · · · · · · ≤ · · ·
am1x1 +am2x2 + · · · +amnxn ≤ 0

(22)

which can be written as
(a11, . . . , a1n)(x1, . . . , xn)T ≤ 0,
(a21, . . . , a2n)(x1, . . . , xn)T ≤ 0,
· · · · · · · · · · · · · · · · · · · · · · · · · · · ≤ · · ·
(am1, . . . , amn)(x1, . . . , xn)T ≤ 0.

(23)

Expression (23) shows that (x1, . . . , xn) is the dual cone of the row vectors {a1,a1, . . . ,am} of A.
Thus, obtaining the solution of the system (22) reduces to determining the dual cone Ap

π of the cone
generated by the cone generated by the rows of matrix A.
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Iteration 1
a1 v1

1 v1
2 v1

3 v1
4

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
-1 0 0 0 1
t1 0 0 0 -1
I1
j 1 1 1

Iteration 2
a2 v2

1 v2
2 v2

3 w2
1

-1 1 0 0 0
0 0 1 0 0
1 0 0 1 0
1 0 0 0 1
t2 -1 0 1 1
I2
j 1 1 1

2

Iteration 3
a3 v3

1 v3
2 w3

1 w3
2

0 1 0 0 0
1 0 1 0 0
-1 1 0 -1 -1
-1 0 0 0 1
t3 -1 1 1 0
I3
j 1 1 1 2

2 2 3

Iteration 4
a4 w4

1 v4
1 w4

2 w4
3

2 1 0 0 0
1 1 -1 -1 0
0 1 0 -1 -1
0 0 0 0 1
t4 3 -1 -1 0
I4
j 1 1 1 2

2 2 3 3
3 4

Iteration 5
a5 w5

1 w5
2 w5

3 w5
4

1 -1/3 1/3 1/3 0
0 -1/3 -2/3 -2/3 0
1 -1/3 1/3 -2/3 -1
-1 0 0 0 1
t5 -2/3 2/3 -1/3 -2
I5
j 1 1 1 2

2 2 3 3
3 4 4 4

Iteration 6
a6 w6

1 w6
2 w6

3 w6
4 w6

5 w6
6

-1 -1/3 1/3 0 2/3 1/3 0
2 -1/3 -2/3 0 -4/3 -2/3 -2/3
2 -1/3 -2/3 -1 0 -1/3 0
-1 0 0 1 2/3 0 0
t6 -1 -3 -3 -4 -7/3 -4/3
I6
j 1 1 2 2 1 1

2 3 3 4 4 2
3 4 4 5 5 5

Normalized dual
w1 w2 w3 w4 w5 w6

-1 1 0 1 1 0
-1 -2 0 -2 -2 -1
-1 -2 -1 0 -1 0
0 0 1 1 0 0

Table 5: Gamma Process to determine the dual cone in Example 4.

Example 5 (Solving an homogeneous system of linear inequalities) Consider the system of equa-
tions

−x4 ≤ 0
−x1 +x3 +x4 ≤ 0

x2 −x3 −x4 ≤ 0
2x1 +x2 ≤ 0
x1 +x3 −x4 ≤ 0

−x1 +2x2 +2x3 −x4 ≤ 0

(24)

To solve this system, we obtain the dual cone of the cone generated by the rows coefficients, as shown
in Table 5. Thus, the solution is







x1

x2

x3

x4






=











−1 1 0 1 1 0

−1 −2 0 −2 −2 −1

−1 −2 −1 0 −1 0

0 0 1 1 0 0



























π1

π2

π3

π4

π5

π6

















,

where π1 to π6 are arbitrary non-negative real numbers. From Table 5 other subsets of inequalities in
(24) can be solved, as shown in Table 2.
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Table 6: Some examples of homogeneous subsystems of (24) that can be solved from Table 5.

System Solution

−x4 ≤ 0







x1

x2

x3

x4






=











1 0 0

0 1 0

0 0 1

0 0 0















ρ1

ρ2

ρ3



 + π1











0

0

0

1











−x4 ≤ 0
−x1 +x3 +x4 ≤ 0







x1

x2

x3

x4






=











1 0

0 1

1 0

0 0











(

ρ1

ρ2

)

+











0 0

0 0

−1 −1

0 1











(

π1

π2

)

−x4 ≤ 0
−x1 +x3 +x4 ≤ 0

x2 −x3 −x4 ≤ 0







x1

x2

x3

x4






=ρ1











0

−1

0

0











+











1 0 0

1 −1 0

1 −1 −1

0 0 1















π1

π2

π3





−x4 ≤ 0
−x1 +x3 +x4 ≤ 0

x2 −x3 −x4 ≤ 0
2x1 +x2 ≤ 0







x1

x2

x3

x4






=











−1 1 1 0

−1 −2 −2 0

−1 1 −2 −1

0 0 0 1



















π1

π2

π3

π4









−x4 ≤ 0
−x1 +x3 +x4 ≤ 0

x2 −x3 −x4 ≤ 0
2x1 +x2 ≤ 0
x1 +x3 −x4 ≤ 0







x1

x2

x3

x4






=











−1 1 0 1 1 0

−1 −2 0 −2 −2 −1

−1 −2 −1 0 −1 0

0 0 1 1 0 0



























π1

π2

π3

π4

π5

π6

















−x4 ≤ 0
−x1 +x3 +x4 ≤ 0

x2 −x3 −x4 ≤ 0
2x1 +x2 ≤ 0
x1 +x3 −x4 ≤ 0

−x1 +2x2 +2x3 −x4 ≤ 0







x1

x2

x3

x4






=











−1 1 0 1 1 0

−1 −2 0 −2 −2 −1

−1 −2 −1 0 −1 0

0 0 1 1 0 0



























π1

π2

π3

π4

π5

π6

















6.3 Solving a complete system of linear inequalities

Now consider the complete system of linear inequalities:

a11x1 +a12x2 + · · · +a1nxn ≤ b1,
a21x1 +a22x2 + · · · +a2nxn ≤ b2,
· · · · · · · · · · · · · · ·

am1x1 +am2x2 + · · · +amnxn ≤ bm.

(25)

Adding the artificial variable xn+1, the constraint xn+1 = 1 and the redundant constraint xn+1 ≥ 0 (it
is a key trick that allows the constraint xn+1 = 1 to be easily forced at the end of the process), it can be
written as

a11x1 +a12x2 + · · · +a1nxn −b1xn+1 ≤ 0
a21x1 +a22x2 + · · · +a2nxn −b2xn+1 ≤ 0
· · · · · · · · · · · · · · · · · ·

am1x1 +am2x2 + · · · +amnxn −bmxn+1 ≤ 0
am1x1 +am2x2 + · · · +amnxn −bmxn+1 ≤ 0

−xn+1 ≤ 0
xn+1 = 1.

(26)

18



System (26) can be written as

(a11, . . . , a1n,−b1)(x1, . . . , xn, xn+1)
T ≤ 0

(a21, . . . , a2n,−b2)(x1, . . . , xn, xn+1)
T ≤ 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(am1, . . . , amn,−bm)(x1, . . . , xn, xn+1)

T ≤ 0
−xn+1 ≤ 0

xn+1 = 1.

(27)

Expression (27) shows that (x1, . . . , xn, xn+1) belongs to the dual cone of the cone generated by the
set of vectors

{(a11, . . . , a1n,−b1), (a21, . . . , a2n,−b2), . . . , (am1, . . . , amn,−bm), (0, 0, · · · , 0,−1)}.

Then, it is clear that the solution of (26) is the intersection of that cone with the hyperplane xn+1 = 1.
Thus, the solution of (25) is the projection on X1 × · · · × Xn of the solution of (26).

Example 6 (Solving a complete system of linear inequalities) To solve the following system of
inequalities:

−x1 +x3 ≤ −1
x2 −x3 ≤ 1

2x1 +x2 ≤ 0
x1 +x3 ≤ 1

−x1 +2x2 +2x3 ≤ 1

(28)

we use the auxiliary variable x4 and the redundant constraint 1 = x4 ≥ 0. Then, the system (28) can be
written as:

−x4 ≤ 0
−x1 +x3 +x4 ≤ 0

x2 −x3 −x4 ≤ 0
2x1 +x2 ≤ 0
x1 +x3 −x4 ≤ 0

−x1 +2x2 +2x3 −x4 ≤ 0
x4 = 1.

(29)

Since the upper part is an homogeneous system, one need to find the dual cone of the cone generated
by the row coefficients, that appears in Table 5. After imposing condition x4 = 1 one get the solution:





x1

x2

x3



 =







−1 1 1 0

−1 −2 −2 −1

−1 −2 −1 0















π1

π2

π3

π4









+





0 1
0 −2

−1 0





(

λ1

λ2

)

. (30)

Table 7 gives the solution of several subsystems from (28), that can be obtained from Table 5.

7 The Water Supply Problem Revisited

In this section we analyze the water supply problem, but assuming that there are some constraints to the
flow.

First, we assume that there is a capacity limit in the pipes. Establishing the node balance equations,
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Table 7: Some examples of complete subsystems of (28) that can be solved from Table 5.

System Solution

−x1 +x3 ≤ −1





x1

x2

x3



=







1 0

0 1

1 0







(

ρ1

ρ2

)

+ π1







0

0

−1






+







0

0

−1







−x1 +x3 ≤ −1
x2 −x3 ≤ 1





x1

x2

x3



=ρ1







0

−1

0






+







1 0

1 −1

1 −1







(

π1

π2

)

+







0

0

−1







−x1 +x3 ≤ −1
x2 −x3 ≤ 1

2x1 +x2 ≤ 0





x1

x2

x3



=







−1 1 1

−1 −2 −2

−1 1 −2











π1

π2

π3



 +







0

0

−1







−x1 +x3 ≤ −1
x2 −x3 ≤ 1

2x1 +x2 ≤ 0
x1 +x3 ≤ 1





x1

x2

x3



=







−1 1 1 0

−1 −2 −2 −1

−1 −2 −1 0















π1

π2

π3

π4









+







0 1

0 −2

−1 0







(

λ1

λ2

)

−x1 +x3 ≤ −1
x2 −x3 ≤ 1

2x1 +x2 ≤ 0
x1 +x3 ≤ 1

−x1 +2x2 +2x3 ≤ 1





x1

x2

x3



=







−1 1 1 0

−1 −2 −2 −1

−1 −2 −1 0















π1

π2

π3

π4









+







0 1

0 −2

−1 0







(

λ1

λ2

)

in matrix form, we get:









































−1−1
1 −1

1 −1−1
1 1 −1

1 −1
1 1−1

1 1 1
−1 1

−1 1 1
−1−1 1

−1 1
−1−1





























































































x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15





















































=









































−q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

−q12









































(31)

subject to
− ci ≤ xi ≤ ci; i = 1, 2, . . . , 15, (32)

where ci; i = 1, 2, . . . , 15 are the pipe capacities.
In addition to ci ≥ 0; i = 1, 2, . . . , 15 the compatibility conditions of this system of inequalities, that

have been obtained using the method described in Section 6.1, are:

− q1 + q2 + q3 + q4 + q5 + q6 + q7 + q8 + q9 + q10 + q11 − q12 = 0 (33)
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and

(−1)p



























































































































































−1 −1 −1 −1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0
−1 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0

−1 −1 −1 −1 0 0 0 0 0 0 0 0
−1 0 −1 0 0 0 0 0 0 0 0 0
−1 −1 −1 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

−1 −1 0 −1 0 0 0 0 0 0 0 0
0 −1 0 −1 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
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(34)
for p = 1, 2., which can be easily interpreted from an engineering point of view. The first condition is
the global balance, and the remaining conditions are constraints associated with some partitions of the
network. For example the constraints (see Figure 9 and the first boldfaced line in (34)):

− c1 − c3 ≤ q2 ≤ c1 + c3 (35)

establish that the total amount of flow entering the network cannot exceed the amount associated with
the full capacity of the intersected pipes 1 and 3. Similarly, the constraints (see Figure 9 and the second
boldfaced line in (34)):

− c2 − c4 − c7 ≤ q3 + q5 ≤ c2 + c4 + c7 (36)

establish that the total amount of flow entering the network cannot exceed the amount associated with
the full capacity of the intersected pipes 2, 4 and 7.
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Figure 9: Illustration of the network partitions associated with the compatibility conditions −c1 − c3 ≤
q2 ≤ c1 + c3 and −c2 − c4 − c7 ≤ q3 + q5 ≤ c2 + c4 + c7.

The solution of the system (31)-(32) with the flow data in Figure 5, using the algorithm for dual cones
is:
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;

8
∑

i=1

λi = 1; λi ≥ 0; i = 1, 2, . . . , 8

(37)
From this general solution many questions can be answered, as:

1. Which pipes are over dimensioned. They correspond to the pipes which components never reach
its capacity in absolute value. Since in our example the capacity for all pipes has been assumed 6
flow units, we find that the over dimensioned pipes are: x3, x7, x8, x9, x12 and x13 (see Figure 10).
Note that the minimum required capacities for these pipes can also be obtained from the matrix in
Figure 10.

2. Which pipes are critical (cannot fail). They correspond to pipes with components of the same sign
in all the basic vectors. In our example they are the pipes x8, x13, x14 and x15 (see Figure 11).

3. Which pairs of pipes cannot fail simultaneously. For example, pipes associated with x10 and x11

cannot fail simultaneously (see Figure 12), because this would imply all λs to be null.
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Figure 10: Illustration of the process of locating the over dimensioned pipes.

Figure 11: Illustration of the process of locating the critical pipes.

4. Which pipes have fixed flow. They have the same component in all basic vectors. In our example
they correspond to pipes associated with x8, x13, x14 and x15 (see Figure 11).

It is also interesting to know the set of all possible solutions when some pipes fail. For example, if the
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Figure 12: Illustration of the process of locating pairs of pipes that cannot fail simultaneously.

pipe 10 fails to work, its flow will be null, and then the first four λs must be null, so that we have:
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;

4
∑

i=1

λi = 1; λi ≥ 0; i = 1, 2, . . . , 4. (38)

If pipes 7 and 10 do not work, we have:
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(
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)

;

2
∑

i=1

λi = 1; λi ≥ 0; i = 1, 2 (39)
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and finally, if pipes 4, 7 and 10 do not work, we have:
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(40)

i.e., a unique solution, so that no further pipes can fail.
Next, we limit the direction of the flow using some retention valves, that allow the flow in only one

direction, in pipes 2, 15, 14 and 1, sequentially, i.e., first a valve is used in pipe 2, then another valve is
added in pipe 15, and then valves in pipes 14 and 1, are used.

The general solutions for the four cases are:

Retention valve in pipe 2:
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(41)

that is the sum of an affine space of dimension 3 and a cone generated by a single vector. Note that
x2 ≥ 0 and that the last column vector in (41) corresponds to a zero flow in pipe 2.
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Retention valves in pipes 2 and 15:








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
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


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
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
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




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




















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
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
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














































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−1 0
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




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6
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0
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0
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


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(42)

that is the sum of an affine space of dimension 2 and a cone generated by two vectors. Note that
x2, x15 ≥ 0 and that the last column vector in (42) corresponds to a zero flow in pipes 2 and 15.

Retention valves in pipes 2, 15 and 14:
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)

(43)

that is the sum of a linear space of dimension 2, a cone generated by a single vector and a polytope
with two vertices. Note that x2, x15, x14 ≥ 0 and that the last two column vectors in (43) correspond
to cases of zero and positive flows in pipes 2, 15 and 14.
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Retention valves in pipes 2, 15, 14 and 1:
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
(44)

that is the sum of a linear space of dimension 2 and a polytope with four vertices. Note that
x2, x15, x14, x1 ≥ 0 and that the last two column vectors in (44) correspond to cases of zero and
positive flows in pipes 2, 15, 14 and 1.

8 Conclusions

The following conclusions can be derived from this paper:

1. A full understanding of real problems stated as systems of linear equations or inequalities requires
both the mathematical and the engineering points of view that complement each other.

2. The compatibility conditions must be interpreted from an engineering point of view, that help to
identify errors, omissions or possible discrepancies between the mathematical model and the reality
being modelled.

3. The mathematical structures of the general solutions, linear spaces, cones, polytopes and mixed
combinations of these three structures have clear engineering interpretations that are closely related
to the real problem being modelled.

4. The generators of the solution set, i.e., the linear space generators (basis), the cone generators, and
the polytope generators (vertices) have clear interpretations from an engineering point of view, and
contains a valuable information on the general solution of the problem and its properties.
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Editorial CIS, Santander, Spain, 1991.

[13] F. Jubete. El Politopo. Su estructura geométrica y volumen exacto, Editorial CIS, Santander, Spain,
1993.

[14] H. Minkowski. Gesammelte Abhandlugen, Teubner, Berlin, 1911.

[15] T. S. Motzkin, H. Raiffa, T. S. Thompson and R. M. Thrall. Double Description Method, Contri-
butions to the Theory of Games, 19, 51–73, Princeton University Press, Princeton, NJ, 1966.

[16] M. Padberg. Linear optimization and extensions, Springer, Berĺın, 1995.
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