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Abstract

The paper aims to show the practical importance of the failure probability-safety factor method
for designing engineering works. The method provides an automatic design tool by optimizing an
objective function subject to two sets of constraints, that guarantee some given safety factors and
failure probability bounds, associated with a given set of failure modes. Since a direct solution of
the optimization problem is not possible, the method proceeds as a sequence of classical designs,
based on given safety factors, that are modified for the design values to satisfy the safety factors
and the failure probability constraints, until convergence. This implies a double safety check that
leads to safer structures and designs less prone to wrong or unrealistic probability assumptions,
and to too excessively small safety factors. Finally, the actual global or combined probabilities
of the different failure modes are calculated using a Monte Carlo simulation. In addition, a
sensitivity analysis is performed. To this end, the optimization problems are transformed into
another equivalent ones, in which the data parameters are converted to artificial variables. In
this way, some variables of the dual associated problems become the desired sensitivities. The
method is illustrated by its application to the design of a composite beam.

Key Words: Sensitivity, Optimization, Automatic design.

1 Introduction and motivation

Engineering design of structural elements is a complicated and highly iterative process that usually
requires a long experience. Iterations consists of a trial-and-error selection of the design variables
or parameters, together with a check of the safety and functionality constraints, until a reasonable,
in terms of cost and safety, structure is obtained.

Optimization procedures are a good solution to free the engineer from the above mentioned
painful iterative process, i.e., to automate the design process. In this case, the values of the design
variables are given by the optimization process and the engineer fixes only the constraints and the
objective function to be optimized.

Note however, that iterations are then the responsibility of the optimization software that need
to follow a numerical strategy to evolve from the initial to the final optimal design. It is worthy
mentioning that the convergence properties of the optimization method are strongly dependent
on the initial designs, i.e., a poor initial design can lead to unfeasibility problems, while a good
initial design, leads to a very fast convergence. Thus, the importance of initial designs, where the
participation of the engineer is unavoidable.

Several authors have used previously the optimization techniques to deal with engineering de-
sign, as for example, Lorenz [13], Kim and H. Adeli [12], Adeli [1], Bhatti [2], Sarma and Adeli
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[20, 21], and Ringertz [17], etc. However, in this paper we deal with a new methodology that
simultaneously considers safety factors and probabilities of failure.

Safety of structures is one of the fundamental criterion for design (see Eurocode [10], ROM
[18],Freudenthal [11], Melchers [16], Wirsching and Wu [22], Wu, Burnside and Cruse [23]). To this
end, the engineer lists first all failure modes of the work being designed and writes later the safety
constraints to be satisfied by the design variables. To ensure satisfaction of the safety constraints,
two apporoaches are normally used: (a) the classical approach, based on safety factors, and (b) the
probability based approach, based on failure probabilities.

In the first case, the non-dimensional ratios of two opossing magnitudes (strengths to ultimate
stresses, stabilizing to overturning loads, design to actual loads, etc.) are forced to exceed their
corresponding safety factors, so that the failure is guaranteed to be far enough from occurrence.

In the second, the probabilities of failure of the different failure modes are forced to be below
given reasonable bounds.

Since considered failure modes are coincident for both approaches, there is a, non-necessarily
one-to-one, correspondence between the set of all safety factors and the sets of the corresponding
failure probabilities, and this correspondence occurs through the values of the design variables,
i.e., given any set of values for the design variables, the associated sets of safety factors and
probabilities of failure can be calculated. Then, these two sets correspond to each other in such a
correspondencee.

Note that the exhaustivity and the one-to-one character of this correspondence depends on
the dimensions of the design variables space and the number of failure modes, the safety factor
constraints and the failure probability constraints.

To avoid the lack of agreement between defenders of the classical and the probability based
approaches, and to obtain a more reliable design, Castillo et al. [5] have proposed a mixed method
that combines safety factors and failure probability constraints.

Since the failure probability bounds cannot be directly imposed in the form of standard con-
straints, optimization packages cannot deal directly with problems involving them. In fact, failure
probability constraints require other optimization problems.

Fortunately, in Castillo et al. [5], an iterative method for solving these problems is given that
converges in a few iterations to the optimal solution. The main advantage of this method is that
the engineer is informed by the optimization method, not only on the values of the design variables
leading to an optimal solution, but on the associated safety factors and failure probabilities for all
failure modes. This implies a double safety check that leads to safer structures and designs less
prone to wrong or unrealistic probability model, to tail distribution assumptions (see Castillo et
al. [6, 7, 8]), and to too excessively small safety factors.

Note that in this way, the design is less dependent (more robust) with respect to the probability
model assumptions, a criticism raised by defenders of the classical design.

In addition, the engineer would like to know how much changes in the data values alter the
value of the objective function or the β-values (failure probabilities). This warns him/her from
risky assumptions, points out the influence of the code constraints, and allows a better handling of
the construction process if changes in the costs occur.

As we shall see, this sensitivity analysis can be easily performed, by free, with a single modifi-
cation of the optimization problems involved.

In this paper, we discuss this procedure, and illustrate it by its application to the optimal design
of a composite beam.

The paper is structured as follows. In section 2 we present the failure probability-safety factor
(FPSF) method for designing of engineering works. In section 3 we show how to perform a sensitiv-
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ity analysis of the design problem. In section 4 we describe the composite beam problem and solve
it using the FPSF method. In section 5 a numerical example of the design is given and discussed.
Finally, in section 6 we give some conclusions.

2 The probability of failure-safety factor method

As indicated in the introduction, the PFSF method minimizes

f(x1, x2, . . . , xn;η0) (1)

subject to
gi(x1, x2, . . . , xn;η0) ≥ F k

i ; i ∈ I (2)

hi(x1, x2, . . . , xn;η0) ≤ P k
i ; i ∈ I (3)

where (x1, x2, . . . , xn) are the values of the design variables (X1, X2, . . . , Xn) to be determined
by the optimization method, η0 is a vector of data, including the fixed variables or parame-
ters, the cost of materials, the strength parameters (deterministic or statistic) of the materials
involved, etc., f(x1, x2, . . . , xn;η0) is the cost function, giving the total cost of the structure be-
ing designed, gi(x1, x2, . . . , xn;η0) are the non-dimensional ratios referred to at the introduction,
hi(x1, x2, . . . , xn;η0) are the probabilities of failure, or their bounds, associated with the set of
values (x1, x2, . . . , xn;η0) for the design variables and data, I is the set of failure modes, F 0

i ; i ∈ I
are the safety factors lower bounds, P 0

i ; i ∈ I are the failure probabilities upper bounds, and k
refers to the kth iteration.

Since the constraints in (3) involve complicated integrals, a usual procedure to overcome this
difficulty consists of transforming the initial set of random variables into a set of independent
standard normal variables, for example, with the help of the Rosenblatt transformation [19]. Then,
an upper bound for the i-th failure mode probability can be obtained by minimizing

β2 =
n∑

i=1

z2
i (4)

subject to
g∗i (z1, z2, . . . , zn;η0) = 1 (5)

where g∗i (z1, z2, . . . , zn;η0) is the function gi(x1, x2, . . . , xn;η0) after the above transformation.
Then, it can be easily shown (see Castillo et al. (2001)) that Φ(−β) can be taken as this upper

bound. Then, constraints (3) can be replaced by

qi(x1, x2, . . . , xn;η0) ≥ βk
i ; i ∈ I (6)

where β∗ki = qi(x1, x2, . . . , xn;η0) is the optimal value of β after that transformation and optimiza-
tion process.

For a complete description of some of these methods and some illustrative examples see Ditlevsen
and Madsen [9] and Madsen, Krenk and Lind [15].

Based on this, Castillo et al [5] suggest the following algorithm.

Algorithm 1 (Design with safety factors and probability constraints)
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• Input: The lower bounds {F 0
i |i ∈ I} for the safety factors {Fi|i ∈ I}, the upper bounds

{β0
i |i ∈ I} for the β-values {βi|i ∈ I}, with respect to all failure modes, and an error value ε

to control convergence of the procedure.

• Output: An optimal design defined by the values of the design variables, the actual safety
factors, and the probabilities of failure associated with all different failure modes.

Initialization. Initialize all the safety factors to their lower bounds, and let k = 0.

Step 1. Determine an optimal classical design minimizing with respect to x

f(x1, x2, . . . , xn;η0) (7)

subject to
gi(x1, x2, . . . , xn;η0) ≥ F k

i ; i ∈ I (8)

Step 2. Calculate exact values or lower bounds, βk
i ; i ∈ I, for the β-values for all failure modes,

using a Level II or III approach. For example, minimizing with respect to z

β =

√√√√ n∑
j=1

z2
j (9)

subject to
g∗i (z1, z2, . . . , zn;η0) = 1, (10)

Step 3. The safety factors are modified using the formula

∆Fi = ρ(β0
i − βk

i ); i ∈ I, (11)

where β0
i ; i ∈ I are the desired β lower bounds (associated with probability bounds), and ρ

is a small positive constant.

To avoid large increments of the safety factors in each iteration, the value of ρ can be selected
using the expression

ρ = min

(
ρ0,min

i

(
∆

|β0
i − βk

i |

))
, (12)

where ∆ is a small quantity, for example, ∆ = 1, and ρ0 is a small number. In addition, if,
using this formula, safety factor F k

i becomes smaller than its associated lower bound F 0
i , it

is kept equal to F 0
i .

In summary, the safety factors are updated using the formula

F k+1
i = max

(
F 0

i , F k
i + min

(
ρ0,min

i

(
∆

|β0
i − βk

i |

))
(β0

i − βk
i )

)
; i ∈ I (13)

Step 4. If in the current iteration, changes in the design variables are larger than a given threshold
value ε, let k = k + 1, and go to Step 1. Otherwise, go to Step 5.

Step 5. Calculate the actual safety factors associated with non-active constraints in (8).

Step 6. Stop and return design values, associated safety factors, and probabilities of failure for
the different failure modes.
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3 Sensitivity analysis

With the aim of performing a sensitivity analysis, the problem (7)-(8) can be modified to
Minimize with respect to x and η

f(x1, x2, . . . , xn;η) (14)

subject to
gi(x1, x2, . . . , xn;η) ≥ F k

i ; i ∈ I (15)

and
η = η0. (16)

and the problem (9)-(10) can be modified to
Minimize with respect to z and η

β =

√√√√ n∑
j=1

z2
j (17)

subject to
g∗i (z1, z2, . . . , zn;η0) = 1, (18)

and
η = η0. (19)

Once this is done, the sensitivities of the cost function to the data are given by the values of the
dual variables of the problem (14)-(16), and the sensitivities of the β-values to the data, by the
values of the dual variables of the problem (17)-(19) (see, for example, Bazaraa et al. [3] and
Luenberger [14]).

4 The composite beam problem

In this section we describe and design a composite beam (see Figure 1). Nevertheless, we clarify
the reader that the aim of this example is to illustrate the PFSF method and not making an
exhaustive enumeration and analysis of all possible failure modes and a rigurous analysis of the
structural problem. Do not let the trees to hide the forest.

Composite beams are widely used in bridges, multistory buildings, commercial plants, etc. The
main idea behind composite beams consists of replacing expensive steel material by cheap concrete
material where compressions accur. To this end, a concrete deck is attached to the top of the
compression flange of a steel beam using shear studs.

Design of composite beams usually involves selection of the following parameters: slab thickness,
beam spacing, slab steel reinforcement, shear studs (number, size), etc.

4.1 Beam description

Consider the composite beam in Figure 2, that gives its geometry (note that it is parametrically
defined).

To facilitate the beam description, we consider the following sets of indices:

e: Set of locations: {concrete slab (c), upper steel flange (u), lower steel flange (l)}.

t: Set of time periods: {0,∞}.
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Figure 1: Composite beam used in the illustrative example.
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Figure 2: Geometrical definition of the composite beam used in the illustrative example.
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Figure 3: Different regions of the plastic neutral axis.

p: Set of cross sections positions: {beam center (c), support (s)}.

n: Set of plastic neutral axis level: {1, 2, 3, 4, 5} (see Figure 3).

The main elements used in the composite beam design are:

1. Data

(a) Design constants

L: bridge span (m).
pl: plattform width (m).
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Figure 4: Detail of the connectors and their spacings.
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Figure 5: Illustration of the flexure.

dst: shear stud diameter (m).
r1: lower concrete passive reinforcement covering (m).
r2: upper concrete passive reinforcement covering (m).
nb: number of steel beams.
m: number of shear studs per cross section (m).

(b) Material properties

γc: concrete unit weight (kN/m3).
γs: steel unit weight (kN/m3).

fsk: elastic limit of passive steel (MPa).
fyk: elastic limit of structural steel (MPa).
Et: concrete Young modulus at time t ∈ {0,∞} (MPa).
Es: steel’s Young modulus.
φ: concrete fluence coefficient.

(c) Statistical properties

µwd
: mean value of wd.

µwp : mean value of wp.
µps : mean value of ps.
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vwd
: coefficient of variation of wd.

vwp : coefficient of variation of wp.
vps : coefficient of variation of ps.
vfc: coefficient of variation of fc.
vfs: coefficient of variation of fs.
vfy: coefficient of variation of fy.
fck: characteristic concrete compressive strength (MPa).
wpk: characteristic moving cart-load (KN).
wdk: characteristic dead load (KN/m).
psk: characteristic surcharge per unit surface load (kN/m2).

(d) Load data

ep: point load excentricity coefficient (nondimensional).
es: surcharge excentricity coefficient (nondimensional).

(e) Mode safety factors lower bounds.

F 0
c0: safety factor for the concrete capacity in the center of the beam at time 0.

F 0
c∞: safety factor for the concrete capacity in the center of the beam at time ∞.

F 0
u0: safety factor for the steel upper flange capacity in the center of the beam at time 0.

F 0
u∞: safety factor for the steel upper flange capacity at the center of the beam at time

∞.
F 0

�0: safety factor for the steel lower flange capacity at the center of the beam at time 0.
F 0

�∞: safety factor for the steel lower flange capacity at the center of the beam at time∞.
F 0

w: safety factor for the steel web capacity.
F 0

m: safety factor for the ultimate moment capacity of the beam.
F 0

v : safety factor for the ultimate shear capacity of the beam.

(f) Cost data

cc: cost per cubic meter of concrete (euros/m3).
cs: cost per Newton of passive steel (euros/N).
cy: cost per Newton of structural steel (euros/N).
cst: cost per shear stud (euros).

2. Variables

(a) Design variables

be: width of element e ∈ {c, u, %} (m).
te: thickness or height of element e ∈ {c, u, %} (m).

hw: steel web height (m).
tw: steel web thickness (m).
dn: connector separation n ∈ {1, 2, 3} (m).

As1 : slab lower concrete passive reinforcement (m).
As2 : slab upper concrete passive reinforcement (m).
hst: shear stud height (m).

(b) Random variables
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fc: concrete strength used in calculations (MPa).
fs: passive steel strength used in calculations (MPa).
fy: structural steel strength used in calculations (MPa).
wp: moving cart point load (KN).
wd: dead load acting on all plattform width (KN/m).
ps: surcharge per unit surface (KN/m2).

(c) Auxiliary or intermediate variables

w1: beam total weight per unit length (KN/m).
ld: dead load acting on all beam width (KN/m).

Cp: point load acting on the beam (KN).
su: surcharge acting on the beam per unit length (KN/m).

Mp: moment at position p ∈ {c, s} (MN.m).
Vt: position of the cross section center of gravity at time t ∈ {0,∞} (m).
Vp: shear force at position p ∈ {c, s} (KN).

Ae,t: concrete slab cross section at location e ∈ {c, u, %} and time t ∈ {0,∞}. (m2).
Aw: steel web cross section (m2).
It: concrete slab cross section moment of inertia at time t ∈ {0,∞} (m4).
Is: steel web cross section moment of inertia (m4).
Ye: coordinate of the concrete slab center of gravity at position e ∈ {c, u, %} (m).
Yw: location of the steel web cross section center of gravity (m).

EIt: concrete siffness at time t ∈ {0,∞} (MNm2).
δt: beam deflection in the center of the beam at time t ∈ {0,∞} (m).
δ: beam deflection in the center of the beam at time ∞ after subtracting deflection at

time 0 (m).
Amin: minimum passive steel reinforcement (m2).
emax: maximum thickness of steel slabs (m).
σe,t: normal stress at location e ∈ {c, u, %} and time t ∈ {0,∞} (MPa).
τp: web tangential stress at position p ∈ {c, s} (MPa).

Cun: compression block when the assumed plastic neutral axis is at level n ∈ {1, 2, 3, 4, 5}
(MN).

Tun: tensile block when the assumed plastic neutral axis is at level n ∈ {1, 2, 3, 4, 5}
(MN).

Xun: actual plastic neutral axis position when the assumed plastic neutral axis is at level
n ∈ {1, 2, 3, 4, 5} (m).

Mun: ultimate moment capacity when the assumed plastic neutral axis is at level n ∈
{1, 2, 3, 4, 5} (MN).

τcr: maximum tangential stress supported by the web (MPa).
λw: auxiliary coefficient for calculting the maximum shear force supported by the web.
mt: auxiliary coefficient for calculting the maximum shear force supported by the web.

τmax: maximum tangencial stress supported by the structural steel (MN/m2).
Vmax: maximum shear force supported by the structural steel (MN/m2).
Pstc: maximum force supported by the shear stud surrounding concrete (MN).
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Pst: maximum force supported by the shear studs (MN).
Ncs: maximum force supported by the concrete slab (MN).

3. Constraints. These are the constraints associated with the different modes of failure.

(a) failure of the concrete at time 0.

(b) failure of the concrete at time ∞.

(c) failure of the steel upper flange at time 0.

(d) failure of the steel upper flange at time ∞.

(e) failure of the steel lower flange at time 0.

(f) failure of the steel lower flange at time ∞.

(g) failure of the steel web.

(h) failure due to the ultimate moment capacity of the beam.

(i) failure due the ultimate shear force capacity of the beam.

4. Function to be optimized. We optimize the cost function, i.e., we minimize the composite
beam cost per unit length.

4.2 Geometric and mechanical properties of the beam elements

Cross sections (measured as steel equivalent sections):

Ac,t =
bctcEt

Es
(20)

Au,t = butu (21)
A�,t = b�t� (22)
Aw = hwtw (23)

Coordinates of the center of gravity for the different pieces:

Yc = tc/2 (24)
Yu = tc + tu/2 (25)
Y� = tc + tu + hw + t�/2 (26)
Yw = tc + tu + hw/2 (27)

Moments of inertia (measured as steel equivalent sections):

It =
bct

3
cEt

12Es
(28)

Is =
but3u
12

+
b�t

3
�

12
+

twh3
w

12
(29)

Center of gravity of the cross section including all materials:

Vt =
∑

e Ae,tYe + AwYw∑
e Ae,t + Aw

(30)
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Stiffness:

EIt = Es

(
It + Is +

∑
e

Ae,t(Ye − Vt)2 + Aw(Yw − Vt)2
)

(31)

Deflections:

δ = δ∞ − δ0 (32)

Concrete Young modulus at different times:

E0 = 10000 3
√

fc (33)

E∞ =
E0

1 + φ
(34)

4.3 Actions on the beam

The weight per unit length corresponding to a single beam is

w1 = γcbctc + γs (butu + b�t� + hwtw) (35)

and the proportional part of the dead load is

ld =
wdbc

p�
(36)

The proportional part of the point load per beam is

Cp =
wpbcep

p�
(37)

and the proportional part of the surcharge considering an excentricity amplification factor to take
into account the existence of nb beams becomes

su = psbces (38)

Then, the resulting bending moments and shear forces at the center of the beam and supports
are

Mc =
(w1 + ld + su)L2

8000
+

CpL

4000
(39)

Ms = 0 (40)

Vc =
Cp

2000
(41)

Vs =
(w1 + ld + su)L

2000
+

CpL

1000
(42)
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4.4 Safety factor constraints

We start by writing the safety factors constraints associated with all failure modes.

Concrete capacity at times 0 and ∞ failure modes. The analysis of these failures can be
done by considering the ratio of the strength to actual stresses as

fc

σc,t
=

fc

McVtEt

EIt

≥ Fct; t ∈ {0,∞} (43)

where Fc0 and Fc∞ are the safety coefficient associated with two these failure modes.

Steel upper and lower flange capacity at times 0 and ∞ failure modes. The analysis of
this failure can be done by considering the ratio of the strength to actual stresses as

fy√
σ2

u,t + 2τ2
c

=
fy√(

Mc(Vt − tc)Es

EIt

)2

+ 3
(

Vt

hwtw

)2
≥ Fu,t; t ∈ {0,∞} (44)

and

fy√
σ2

�,t + 2τ2
c

=
fy√(

Mc(tc + tw + hw + ti − Vt)Es

EIt

)2

+ 3
(

Vt

hwtw

)2
≥ F�,t; t ∈ {0,∞} (45)

where Fu,0, Fu,∞, F�,0 and F�,∞ are the safety coefficient associated with these plastic failure modes.

Steel web capacity failure mode. The analysis of this failure can be done by considering the
ratio of the shear steel strength capacity to the actual shear force as

fy√
3τ2

s

=
fy

Vs

√
3

hwtw

≥ Fw (46)

where Fw is the safety coefficient associated with this failure mode.

Ultimate bending moment capacity at the center of the beam failure mode. The analysis
of this failure can be done by considering the ratio of the resistant moment to the actual bending
moment as

Mu

Mc
≥ Fm (47)

where Fm is the safety coefficient associated with this failure mode (see Figure 6).

Ultimate shear force capacity at the buttress of the beam failure mode. The analysis
of this failure can be done by considering the ratio of the shear concrete strength capacity to the
actual shear force as

Vmax

Vs
≥ Fv (48)

where Fv is the safety coefficients associated with this failure mode.
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Figure 6: Illustration of the interaction shear-deflection.

Since, including the three flexural and three shear, we have 9 different failure modes, from now
on, we define the set If of failure modes as

If = {c0, c∞, u0, u∞, %0, %∞, w, mc, vs}

The beam will be safe if and only if Fc0, Fc∞, Fu0, Fu∞, F�0, F�∞, Fw, Fm, Fv ≥ 1.
Note that only the usually relevant failure modes have been considered, but other failures are

also possible, as shallow or deep soil failures; however, for the sake of clarity, they have been ignored
in this paper.

It is important to mention that we consider not the serviceability states, but the ultimate limit
states.

4.5 Various constraints

We assume that the concrete works at compression:

Vt ≥ tc; t ∈ {0,∞} (49)

We assume a non slender bridge, i.e., the following constraint is satisfied

pl

nb
≤ 0.1L (50)

4.6 Design criteria and code requirements

The following constraints are geometrical ,constraints fixed by the Spanish code:

0.008 ≤ tu ≤ emax (51)
0.008 ≤ t� ≤ emax (52)
0.008 ≤ tw ≤ emax (53)
0.180 ≤ tc (54)
bc/4 ≤ bu (55)

bc = pl/nb (56)
b� ≤ 30t� (57)
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The minimum steel required amount is

As1 ≥ 0.0009bctc and As2 ≥ 0.0009bctc (58)

According to the Spanish Code, the following constraint in the steel height must be satisfied

emax = 0.150m if fyk = 235MPa (59)
emax = 0.084m if fyk = 275MPa (60)
emax = 0.038m if fyk = 355MPa (61)

and the following maximum deflection at the center of the beam is allowed

δ ≤ L

800
(62)

where δ = δ∞ − δ0, i.e., the deflection at time ∞ measured with respect to the deflection at time
0, and

δ∞ = 2
∫ L/2

0

(w1 + ld + su)(L− x)x2 + Cpx
2

4000EI∞
dx (63)

and

δ0 = 2
∫ L/2

0

(w1 + ld)(L− x)x2

4000EI0
dx (64)

Limit state of web deformations:
To avoid the web bump the following conditions must be satisfied:

hw

tw
≤ 0.55

Es

fy

√
K (65)

hw

tw
≤ 100

√
355
fy

(66)

where K =
hwtw
butu

.

In addition we must have

fc = fck + 8 (67)

In this example we do not consider the vibration problem of the beam.

4.7 Connector constraints

We also use the following geometric connector constraints:

4dst ≤ hst ≤ 0.75tc (68)
d3 ≥ 5dst (69)

2.5dst ≤ d1 ≤ 0.8m (70)
d2 = 0.05m (71)
d3 ≤ 0.8m (72)
dst ≤ 2.5tu (73)

d1(m− 1) = bu − 2d2 (74)
d3 ≥ 0.1m (75)
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Figure 7: Possible positions of the plastic neutral axis.

Figure 8: Illustration of a connector failure.

To avoid the connector failure due to failure of the surrounding concrete we must have (see Figure
8).

0.6× 0.29
d2

st

1.25

√
fcEc ≥ Ncsd3/(mL/2) (76)

and to avoid the direct connector failures

0.8× 450π
d2

st

4× 1.25
≥ Ncsd3/(mL/2) (77)

where
Ncs = 0.85fcbctc + (As1 + As2)fs (78)
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4.8 Maximum shear constraints

τcr = 5.34Es0.9(tw/hw)2 (79)

λw =

√
fy√
3τcr

(80)

mt = exp(−0.227086λ2
w) (81)

τmax =
mtfy√

3
(82)

Vmax = τmaxhwtw (83)
Vt ≤ Vmax/2 (84)

4.9 Function to be optimized

In this section we calculate the total cost of the composite beam. Since this is only an illustrative
example of the proposed method, and for the sake of simplicity, we do not consider the life span of
the composite beam, maintenance or reparation costs.

To this end, we need calculating the required total weight of concrete,, steel, and the number
of connectors per unit length.

Cost = 1000cy(γsbutu + b�t� + hwtw) + ccbctc + 1000csγs(As1 + As2) + cst
m

d3
(85)

4.10 Classical design of the composite beam

In a classical design of the composite beam the safety factors are given and we

Minimize 1000cy(γsbutu + b�t� + hwtw) + ccbctc + 1000csγs(As1 + As2) + cst
m

d3

subject to the safety constraints

h1(bc, bu, b�, tc, tu, t�, bw, tw, As1 , As2 , d1, d3;η0) ≤ Fc0 (86)
h2(bc, bu, b�, tc, tu, t�, bw, tw, As1 , As2 , d1, d3;η0) ≤ Fc∞ (87)
h3(bc, bu, b�, tc, tu, t�, bw, tw, As1 , As2 , d1, d3;η0) ≤ Fu0 (88)
h4(bc, bu, b�, tc, tu, t�, bw, tw, As1 , As2 , d1, d3;η0) ≤ Fu∞ (89)
h5(bc, bu, b�, tc, tu, t�, bw, tw, As1 , As2 , d1, d3;η0) ≤ F�0 (90)
h6(bc, bu, b�, tc, tu, t�, bw, tw, As1 , As2 , d1, d3;η0) ≤ F�∞ (91)
h7(bc, bu, b�, tc, tu, t�, bw, tw, As1 , As2 , d1, d3;η0) ≤ Fw (92)
h8(bc, bu, b�, tc, tu, t�, bw, tw, As1 , As2 , d1, d3;η0) ≤ Fm (93)
h9(bc, bu, b�, tc, tu, t�, bw, tw, As1 , As2 , d1, d3;η0) ≤ Fv (94)

and the remaining constraints.
Note that the other variables involved are intermediate variables, i.e., they are auxiliary variables

that can be eliminated from the set of equations from (20) to (84). However, this is not necessary,
and even convenient not to do so, to reduce the required work.

16



4.11 Designing at levels II and III

A composite beam design at levels II and III imply defining the random properties of all variables
involved.

4.11.1 Distributional assumptions of the model

As it has been indicated, some variables are assumed to be independent random variables, with
the following distributional assumptions for the following parameters:

1. Geometric parameters. All the design variables bc, bu, b�, tc, tu, t�, bw, tw, As1 , As2 , d1 and
d3) are assumed to be deterministic, i.e. their values coincide with the design values with
probability one.

2. Mechanical material properties The concrete strength, fc, and the steel strengths, fs

and fy, are assumed to be normal random variables. Their means arfe evaluated using the
characteristic values fck, fsk and fyk, respectively, (there is a probability 0.95 that the real
value is greater than the characteristics values:

µfc =
fck

1− 1.64vfc

.

µfs =
fsk

1− 1.64vfs

.

µfy =
fyk

1− 1.64vfy

.

The variables wd, wp and ps are assumed to be independent random normal variables with
given means µwd

, µwp and µps , and coefficients of variation vwd
, vwp and vps , respectively.

4.11.2 Satisfying the failure probability constraints

Once the cost has been minimized subject to all the constraints, with the safety factors

{Fc0, Fc∞, Fu0, Fu∞, F�0, F�∞, Fw, Fm, Fv},
the corresponding bounds for the probabilities of failure

{Pc0, Pc∞, Pu0, Pu∞, P�0, P�∞, Pw, Pm, Pv}
or

{βc0, βc∞, βu0, βu∞, β�0, β�∞, βw, βm, βv}
are calculated, and the safety factors are modified using the formula (11).

∆F k
i = ρ(β0

i − βk
i ); i ∈ If , (95)

where β0
i is the β-value associated with the corresponding probability upper bound, P 0

i , and ρ is a
small positive constant.

Note that the safety factor has to be increased or decreased, depending on the difference between
the associated actual and the desired β-values (failure probabilities). Since an increase of the safety
factor decreases the corresponding failure probability and increases the β-values, the safety factor
increment is made proportional to the difference β0

i − βk
i .

Finally, if the resulting F k
i = F k−1

i +∆Fi is smaller than the corresponding bound F 0
i , we make

F k
i = F 0

i , in order to satisfy the safety factors constraints.
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5 A numerical example

The proposed method has been implemented in GAMS (General Algebraic Modeling System) (see
Castillo, Conejo, Pedregal, Garćıa and Alguacil [4]) for a concrete example. Suppose we want to
design the following composite beam:

L = 30m pl = 10m ep = 2; es = 1.7;
Es = 210000MPa; φ = 2; γc = 25KN/m3; γs = 78.5KN/m3;
m = 4; dst = 0.02m; d2 = 0.05m nb = 5
µps = 4KN/m2 µwd

= 40KN/m µwp = 600KN vps = 0.3
vwd = 0.2 vwp = 0.3 vfy = 0.03 vfs = 0.04
r1 = 0.05m r2 = 0.05m cy = 0.2108euros/N cs = 0.062euros/
cst = 2euros cc = 60.24euros/m3 fck = 30MPa fsk = 400MPa
fyk = 235MPa

where these are the data values that have been chosen by the designer.
Table 1 shows the convergence of the process that is attained after 5 iterations. The last column

of the table shows the design values of the design variables bc, bu, b�, tc, tu, t�, hw, tw, hst, As1 , As2 , d1,
d2 and d3, together with the safety factors and associated β-values. The design was done for
guaranteeing values of the safety factors

Fc0 = Fc∞ = 2.25; , Fu0 = Fu∞ = 1.65;F�0 = F�∞ = 1.3;Fw = 1.65;Fm = Fv = 2

and
βcc0 = βcc∞ = βcu0 = βcu∞ = βcl0 = βcl∞ = βw = βmc = βvs = 3.719

corresponding to a failure probability of 10−4.
The active values appear underlined in this table.
The following conclusions can be drawn from Table 1.

1. The process converges in only 9 iterations.

2. The list of actual safety factors and failure probabilities are obtained.

From this table we can get the following conclusions:

1. No safety factors are active, i.e., the maximum deflection constraint is as strict that none of
the safety factor constraints are active.

2. Due to the terribly strict constraint imposed by the maximum deflection, only the probability
bound βF�∞ is active, and this is so, because it takes on a very high value 5.

5.1 Sensitivity analysis

The sensitivities for the composite beam example are given in Tables 2 and 3. Table 2 gives
the cost sensitivities associated with the optimal classical design. It allows to know how much
changes the total cost of the composite beam when a small change in a single data value is made.
This information is extremely useful during the construction process to control the cost, and for
analyzing how the changes in the safety factors required by the codes influence the total cost of
engineering works. For example, a change of one euro in the unit cost cs of the steel leads to a

18



Table 1: Illustration of the iterative procedure. The design and final values are bolfaced.

ITERATIONS
Variable Units 1 2 3 9 (end)

Cost euros 756.3 769.4 776.0 783.3
bc m 2.00 2.00 2.00 2.00
bu m 0.50 0.50 0.50 0.50
bl m 0.09 0.13 0.64 0.67
tc cm 33.27 33.27 33.27 33.27
tu cm 0.80 0.80 0.80 0.80
t� cm 15.00 11.86 2.13 2.22
hw m 1.65 1.62 1.68 1.66
tw cm 1.37 1.35 1.41 1.38
hst cm 8.00 8.00 8.00 8.00
As1 cm2 5.99 5.99 5.99 5.99
As2 cm2 5.99 5.99 5.99 5.99
d1 cm 13.33 13.33 13.33 13.33
d2 cm 5.00 5.00 5.00 5.00
d3 cm 17.16 17.16 17.16 17.16
Fc0 – 4.49 4.48 4.48 4.47
Fc∞ – 6.12 6.08 6.08 6.05
Fu0 – 12.43 12.09 12.25 12.02
Fu∞ – 3.57 3.51 3.52 3.49
F�0 – 1.42 1.50 1.53 1.57
F�∞ – 1.30 1.37 1.41 1.45
Fw – 3.75 3.64 3.92 3.79
Fm – 2.02 2.06 2.07 2.10
Fv – 2.37 2.29 2.47 2.39
βc0 – 14.87 14.85 14.85 14.83
βc∞ – 16.82 16.77 16.79 16.75
βu0 – 20.56 20.56 20.56 20.56
βu∞ – 15.79 15.57 15.64 15.49
β�0 – 3.49 4.06 4.33 4.65
β�∞ – 2.50 3.09 3.39 3.72
βw – 17.25 16.79 17.90 17.41
βm – 8.01 8.34 8.38 8.58
βv – 11.34 10.79 12.14 11.54

cost increase of 120.77 euros (see the corresponding entry in Table 2). Similarly, an increase in the
safety factor lower bound Fc0 does not change the cost.

Table 3 gives the sensitivities associated with the β-values. It is useful to know how much
changes the corresponding β-value when a small change in a single data value is made, for example,
the means, standard deviations, etc. In this table the designer can easily analyze how the quality
of the material (reduced standard deviations in fc or fy) or precission in the applied loads (reduced
standard deviations in vps or vwp) influence the safety of the beam.
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Table 2: Sensitivities with respect to the data values in the wall illustrative example.

dst l r1 r2 pl nb ep eu

-483.43 27.53 0.00 0.00 -19.80 0.00 74.17 82.89
γc γs φ Es m wdk psk wpk

4.13 9.13 44.18 0.00 6.17 0.00 0.00 0.00
fck fsk fyk Fc0 Fc∞ Fu0 Fu∞ F�0

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F�∞ Fw Fm Fv cy cs cst cc

185.65 0.00 0.00 0.00 3276.71 94.02 23.31 0.67

Table 3: Sensitivities ∂βi
∂x , with respect to the data values x, in the wall illustrative example.

Data x ∂βc0

∂x
∂βc∞

∂x
∂βu0

∂x
∂βu∞

∂x
∂β�0
∂x

∂β�∞
∂x

∂βw

∂x
∂βm

∂x
∂βv

∂x

l -0.39 -0.28 0.00 -0.74 -0.66 -0.63 -0.28 -0.77 -0.35
dst 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.31 0.00
r2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.31 0.00
pl 0.36 0.25 0.00 0.81 0.58 0.54 0.78 0.73 0.94
nb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ep -1.42 -0.99 0.00 -3.38 -2.24 -2.05 -3.23 -2.92 -3.85
eu -1.30 -0.91 0.00 -2.64 -2.03 -1.88 -2.87 -2.64 -3.44
γc -0.05 -0.04 0.00 -0.07 -0.09 -0.09 -0.07 -0.09 -0.09
γs 0.00 0.00 0.00 0.00 -0.01 -0.01 0.00 -0.01 -0.01
φ 0.00 0.58 0.00 -4.44 0.00 -0.36 0.00 0.00 0.00
Es 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

µwd
-0.02 -0.01 0.00 -0.03 -0.03 -0.03 -0.03 -0.04 -0.04

µps -0.55 -0.38 0.00 -1.12 -0.86 -0.80 -1.22 -1.12 -1.46
µwp 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
µfc 0.17 0.12 0.00 0.12 0.01 0.01 0.00 0.02 0.00
µfs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
µfy 0.00 0.00 0.00 0.06 0.05 0.05 0.06 0.06 0.04
vwd

-0.95 -0.62 0.00 -2.32 -1.18 -0.97 -2.62 -2.03 -3.01
vps -4.13 -2.69 0.00 -10.06 -5.12 -4.20 -11.36 -8.80 -13.04
vwp -5.72 -3.72 0.00 -16.29 -7.31 -5.96 -15.72 -12.18 -18.05
vfc -240.29 -302.33 -422.67 -23.46 -0.01 -0.02 0.00 -0.27 0.00
vfs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
vfy 0.00 0.00 0.00 -199.34 -22.80 -15.92 -292.20 -62.05 -53.85
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6 Conclusions

The FPSF methods, when used for designing a parameterized composite beam with given objective
function, and used as described in this paper, presents the following advantages:

1. It leads to an automatic design, i.e., the values of the design variables are given, not by the
engineer, but by the optimization process itself.

2. It leads to an optimal design, in the sense of optimizing the given objective function.

3. It leads to a designer independent design. It is not dependent of who designs the engineering
work.

4. It gives information about actual safety factors and probabilities of failure for all failure modes.

5. It gives information about the optimal value of the objective function (cost).

6. It gives the sensitivities of the value of the objective function to the data, including costs of
materials, fixed geometric variables, safatey factor lower bounds, etc.

7. It gives the sensitivities of the β-values to the data, including the failure probability upper
bounds, statistical parameters, etc.

8. It works with a double safety control (factors of safety and failure probabilities) that leads to
a safer and less dependent (more robust) on statistical assumptions, design.

9. It allows an easy dialog between classical and probability based designers.

10. It facilitates the understanding of the close connection between the safety factor and the failure
probability k-dimensional spaces.
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