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1 Introduction

There are two principal ways of dealing with the design of engineering works:

1. The classical approach. This is based on safety factors, which are used to guarantee the required
safety of the structures to be designed. The engineer, when faced with the problem of designing an
engineering work, identifies all possible failure modes and chooses the design variable values for the
corresponding engineering work to make it reasonably safe with respect to these modes. The greater
the damage associated with the failure mode, the greater the level of safety required for this mode (see
EUROCODE [11], ROM [24]).

A classical design fixes the values of the safety factors and chooses the values of the design variables
to satisfy these safety conditions. All the variables involved are assumed to be deterministic.

2. The probability-based approach. This works with probabilities of failure. Normally, a global probability
of failure is used as the basic design criteria. However, working with failure probabilities is difficult
because (a) it requires the definition of the joint probability of all variables involved, and (b) the
evaluation of the failure probability is not an easy task. The problem becomes even more difficult
if several failure modes are analyzed, because the failure region is the union of the different failure
mode regions, and regions defined as unions are difficult to deal with because of their irregular and
non-differentiable boundaries (see Melchers [21]). As an alternative design criteria, the probabilities of
failure for the different modes can be used. Nevertheless, one may easily obtain an upper bound for
the global failure probability by summing all the failure mode probabilities.
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A probability-based design checks that the selected design leads to failure probabilities below given
upper bounds. Some or all the variables involved are assumed to be random (see Rackwitz and Fiessler
[22], Wirsching and Wu [30], Wu, Burnside and Cruse [31], and Ditlevsen and Madsen [10]).

Nowadays, both approaches are questioned: the classical approach because it does not give a clear idea of
how far we are from failure, and the probability-based approach because it is very sensitive to the assumed
joint distribution and tail assumptions.

Defenders of the classical and probabilistic approaches have serious difficulties in working together be-
cause they speak different languages. In this paper, we defend the coexistence of safety factors and failure
probabilities and present a method that solves this problem, limiting both safety factors and probabilities of
failure for the proposed designs. The method consists of a sequence of optimal (in the sense of minimizing
the cost or an alternative objective function) classical designs, based on sets of safety factors bounds, that
are adequately modified in each iteration to satisfy both the safety factors and the failure mode probability
bound requirements.

Several authors have previously used optimization techniques to deal with engineering design, as for ex-
ample, Lorenz [18], Kim and H. Adeli [16], Adeli [1], Bhatti [2], Sarma and Adeli [27, 28], and Ringertz [23],
Royset, Der Kiureghian and Polak [26], etc. However, in this paper we deal with a new methodology that
simultaneously considers safety factors and probabilities of failure. In addition, a sensitivity analysis proce-
dure is presented. A sensitivity analysis adds quality to a design and supplies very important information
on the work being designed from the view point of cost and reliability.

The paper is organized as follows. Section 2 introduces the problem of wall design and presents the
particular example of a retaining wall used in the paper. Some background concepts are refreshed in Section
3. The proposed method is described in Section 4. A method for obtaining the failure probabilities and cost
sensitivities to data is given in Section 5. The method is illustrated by its application to a wall design in
Section 6. Section 7 is devoted to conclusions. Finally, an appendix explains some detailed analysis of the
wall example.

2 Retaining Wall design

2.1 Introduction

Retaining structures are designed to hold back soil where an abrupt change in ground elevation occurs. The
retained material or backfill exerts a push on the structure and thus tends to overturn or slide it, or both.
The stem, heel and toe of such a wall act as cantilever beams, which need to be designed to withstand the
soil pressures. Thus, a wall design implies:

1. Performing the stability check for the structure.

2. Computing the maximum and minimum soil pressures present under the toe and heel, comparing them
with the allowable soil pressure provided as data.

3. Designing the reinforcing steel for the toe, heel and stem considering the corresponding bending and
shear.

There are several well-known commercial computer programs, such as Correct Surcharge, DDRW-1,
EPRES, FREW, GRETA, GWALL, HEAVE, Kzero2, LPRES, RETAIN, Retaining Wall Design, RetWall,
ReWaRD, SHEET, Sheetpile-2, SHORING, SPUNT-A2, SPW 911, STAWALL, UNIBEAR, WALLAP, etc.,
that compute the soil bearing pressures under the base of a wall supporting any kind of backfill material
with additional surcharge and concentrated external loads acting on the wall. In addition, they analyze the
stability of the whole structure and perform the concrete design based on several design methods, in turn
based on the working or the ultimate strength.

These programs normally offer the option of considering other external loads applied to the wall in
addition to the backfill pressure. Though a surcharge can be defined as an equivalent height of backfill,
they calculate earth pressures at key locations down the retaining wall, bending moments, shear forces, wall
displacements, ground settlements, etc., and implement safety factors.
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Figure 1: Geometrical description of the wall.

Some computer programs additionally design retaining walls according to certain international standards,
such as BS 8002, Eurocode 7, CIRIA 104, Hong Kong Geoguide, CP2, British Steel’s Piling Handbook and
Highway Agency’s BD42/94.

Most existing software for wall design uses the classical design based on safety factors, i.e. the design
corresponds to level I. In other words, no random variables are allowed and, consequently, no probability
of failure is obtained. Nowadays however the level II and III procedures have been substantially developed,
and it is highly recommendable to use them.

An additional problem of these programs is that the design parameters, such as the toe or heel lengths,
the stem widths, etc. have to be provided by the engineer, and an acceptable design of the wall is obtained
only after a trial and error procedure. Once a wall design satisfying all the constraints is obtained, it is not
easy to know whether we are far from or close to the optimal design. In this paper we deal with an optimal
design that allows an automatic design of the wall.

2.2 Description of the retaining wall example

A retaining wall problem involves many variables, such as all wall dimensions, backfill slope, concrete and
steel strength, allowable soil bearing pressure, backfill properties, etc. For example, consider the wall in
Figure 1 that defines the geometry of the wall (note that the wall is defined in parametric form).

The main elements used in the wall design are:

1. Geometric data.

h1: height of the wall.

2. Acting agents data.

q: surcharge.

3. Material definition data.

γc: unit weight of the concrete.

γs: unit weight of the soil.

γst: unit weight of steel.

fc: concrete design strength.

fy: steel design strength.

ka: active pressure coefficient.
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Figure 2: Illustration of the reinforced bar positions.

kp: passive pressure coefficient.

σsoil: soil strength.

µcrit: critical friction factor.

τmax: concrete shear strength.

4. Steel bar data. See Figure 2, which gives the details of the bar reinforcement.

r: bar cover depth.

φ`: secondary longitudinal steel bar diameter (minimum).

φt: secondary transversal steel bar diameter (minimum).

s`: secondary longitudinal bar spacing.

st: secondary transversal bar spacing.

5. Mode safety factors lower bounds.

F 0
t : safety factor against overturning.

F 0
s : safety factor against sliding.

F 0
b : safety factor for the bearing capacity constraint.

F 0
stem: safety factor for the bending moment at stem.

F 0
toe: safety factor for the bending moment at toe.

F 0
heel: safety factor for the bending moment at heel.

F 0
sstem: safety factor for the shear at stem.

F 0
stoe: safety factor for the shear at toe.

F 0
sheel: safety factor for the shear at heel.

6. Cost data.

cc: cost per cubic meter of concrete.

cst: cost per Newton of steel.
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ct: cost per square meter of timber.

cex: cost per cubic meter of excavation.

7. Design variables. These are the variables whose mean values are automatically selected by the
optimization procedure.

a: toe length.

c: heel length.

b: stem width, bottom.

d: stem width, top.

zt: soil cover.

h2: toe height

h3: heel height.

Astem: cross section of the reinforcing bars at stem.

Atoe: cross section of the reinforcing bars at toe.

Aheel: cross section of the reinforcing bars at heel.

3 Classical and probability-based designs

In this section we introduce some basic concepts that are needed to understand the subsequent material.
The design and reliability analysis of an engineering work involves a number of random variables (X1, . . . , Xn).

These include geometric variables, material properties, loads, etc. In this paper we use uppercase letters
to refer to random variables, and the corresponding lowercase letters to refer to particular instantiations of
these variables. They belong to an n-dimensional space, which can be divided into two regions, the safe and
failure regions:

Safe Region: S ≡ {(x1, x2, . . . , xn)}|g(x1, x2, . . . , xn) ≥ 1},
Failure Region: F ≡ {(x1, x2, . . . , xn)}|g(x1, x2, . . . , xn) < 1}. (1)

where g(x1, x2, . . . , xn) can be the non-dimensional ratio of two opposing magnitudes, such as stabilizing
to overturning forces, strengths to ultimate stresses, etc. Since the constraint g(x1, x2, . . . , xn) = 1 defines
strict stability or security, to increase safety, the constant 1 is normally replaced by a larger constant F 0. If
m different modes of failure are considered, the problem modifies to

Design Region in mode i: Si ≡ {(x1, x2, . . . , xn)}|gi(x1, x2, . . . , xn) ≥ F 0
i }, (2)

where i = 1, 2, . . . , m
It is important to distinguish between design values (those desired by the engineer), which in this paper

are assumed to be the expectations, E(Xi) or x̄i, or characteristic values, of the random variables Xi : i =
1, 2, · · · , n, and actual values xi (those existing in reality). Some of these expectations are chosen by the
engineer or the design codes, and some are selected by the optimization procedure to be presented. The set
of actual values associated with the expectations chosen by the engineer will be denoted by the vector

η = (h1, q, γc, γs, γst, fc, fy, ka, kp, σsoil, µcrit, τmax, r, φ`, φt, s`, st, cc, cst, ct, cex),

and the set of actual values associated with the design variables, chosen by the optimization procedure, will
be denoted by the vector

d = (a, b, c, d, zt, h2, h3, Astem, Atoe, Aheel).

The corresponding mean or characteristic vectors will be denoted η̄ and d̄, respectively.
Assume that the following failure modes are considered: Sliding, overturning, bearing capacity, and stem,

toe and heel flexural and shear failures.
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Since, including the three flexural and three shear, we have 9 different failure modes, we define the set
If of failure modes as

If = {s, t, b, stem, toe, heel, sstem, stoe, sheel}
The analysis of these failures can be performed by considering

gi(d̄, η̄) = Fi; i ∈ If (3)

where gi(d̄, η̄) is the ratio of two opposing magnitudes, such as stabilizing to overturning forces, strengths
to ultimate stresses, etc., and the stability coefficients, Fi, are random quantities. The wall will be safe if
and only if

Fs, Ft, Fb, Fstem, Ftoe, Fheel, Fsstem, Fstoe, Fsheel ≥ 1.

Note also that only the usually relevant failure modes have been considered, but other failures are also
possible, such as shallow or deep soil failures; however, for the sake of clarity, these have been ignored. It is
important to mention that the serviceability states are not considered here, but the ultimate limit states.

4 The proposed method

In this section we describe the proposed method that not only allows a perfect dialog between classical and
probability-based designers, but also a double safety check.

Note that the probabilities of failure are very sensitive to joint probabilities and tail assumptions (see
Galambos [13] and Castillo [5]), and therefore the safety factors allow a correction to be made when this
occurs in the unsafe direction.

When several modes of failure are considered (overturning, sliding, bending, etc.), the calculation of the
global failure probability is too complicated, because it involves dealing with the union of several sets (those
resulting from each of the failure modes) and hence its boundary is highly irregular (non-differentiable). To
avoid this problem, and make it possible for safety factors and failure probabilities to coexist, we present
here a method that bases the design on fixing bounds for the safety factors and probabilities for each failure
mode, instead of fixing a global failure probability. This leads to a design such that the corresponding
probabilities of failure against each mode and the associated safety factors are used to guarantee the safety
of the engineering work. This solution can satisfy both types of engineers, those who like working with
safety factors, and those desiring failure probabilities. The resulting design is a combination of both, though
it can be either of the two, if the other set of constraints is less strict. It can also shed some light on the
conservative or non-conservative character of the design.

Though it is fully acceptable to propose a method for individual failure modes and not for the system,
an accurate enough upper bound for the failure probability of the system, based on those for the modes, can
be easily calculated.

Thus, the proposed method
Minimizes

d̄
h(d̄, η̄) (4)

subject to
gi(d̄, η̄) ≥ F k

i ; i ∈ If , (5)

and
βFi(d̄, η̄,κ) ≥ β0

i ; i ∈ If . (6)

where βFi ; i ∈ If are the Cornell’s reliability indices associated with all failure modes.
Since in order to evaluate each of the constraints (6) one needs to solve a minimization problem, the

problem (4)-(6) cannot be solved directly. In other words, the optimization procedure and the reliability
constraints are coupled. A similar coupling was already mentioned, in a different approach, by Royset, Der
Kiureghian and Polak [26] who solved it using an interesting procedure. Here, a new procedure is presented
that consists of a sequence of classical designs that minimize the cost. In each step, exact values of the
actual safety factors, and exact values or bounds for the probabilities of failure for the different modes
are calculated, and the corresponding safety factors updated, until the resulting design satisfies both the
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required safety factors and failure probability bounds. As a result, the engineer is informed about the failure
probabilities for the different modes, as required by modern analysis, and the corresponding safety factors,
as in the classical analysis.

An advantage of this approach is that the optimization procedure and the reliability calculations are
decoupled.

The method has an initialization part:

Initialization. The safety factors bounds F 1
i ; i ∈ If are initialized to their required lower bounds F 0

i ; i ∈ If

and then its three main parts are repeated until convergence (iteration k is described below):

Part 1. Optimal classical design. This consists of an optimal classical design based on the actual safety
factors bounds:

Minimize
d̄

h(d̄, η̄) (7)

subject to
gi(d̄, η̄) ≥ F k

i ; i ∈ If . (8)

As a result of this process, we obtain the corresponding optimal mean values (d̄k) for the design
variables. This is the design a classical designer will choose for minimizing the cost given the safety
factor bounds F k

i ; i ∈ If .

Part 2. Evaluation of failure probabilities. The probabilities of failure, P k
i = q(d̄k

, η̄,κ); i ∈ If , or
their corresponding β-values, βk

i = s(d̄k
, η̄, κ); i ∈ If , associated with all failure modes are evaluated

or their upper bounds are determined based on the values of the design variables obtained in Part 1.
This involves the solution of one optimization problem per failure mode.

As is well known, the calculation of the probabilities of failure associated with each failure mode (i ∈ If )
can be performed solving the following non linear programming problem

Minimize
z

βi =

√
n∑

j=1

z2
j (9)

subject to

zj = hj(di,ηi; d̄, η̄,κ); j = 1, . . . , n (10)
gi(di, ηi) = 1 (11)

where zj ; j = 1, 2, . . . , n are the usual independent standard normal random variables. As a result we
obtain the reliability index βk

i and the design point or point of maximum likelihood (dk
i , ηk

i ) for mode
i at iteration k.

Once the optimal value of the objective function βi has been obtained, we can use the well-known
FORM/SORM formulas to calculate Pfi .

Part 3. Updating safety factors. At iteration k, the safety factor bounds are adequately updated for
the actual safety factors and the failure probabilities to satisfy the required bounds:

F k
i = max(F k−1

i + ∆F k−1
i , F 0

i ) = max(F k−1
i + ρ(β0

i − βk
i ), F 0

i ); i ∈ If , (12)

where β0
i ; i ∈ If are the desired β lower bounds (associated with probability bounds), and ρ is a small

positive constant.

If, after updating, some safety factor F k
i becomes smaller than the associated lower bound for F 0

i , it
is kept equal to F 0

i (this explains the use of the max function in (12)).
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The final result of the above procedure is an optimal classical design (d̄∗) with the resulting safety factors,
which is at the same time an optimal probability-based design, as it satisfies the probability requirements.

Note that the actual safety factors need to be calculated using expressions gi(d̄
∗
, η̄), because the values

F k
i are only bounds (not necessarily active).

The idea of combining both approaches has clear advantages, since

1. There is a double security check.

2. If the required safety factors bounds are too low or too high, the failure probability method warns the
engineer about this.

3. If the failure probability constraints are extreme or the probability assumptions unrealistic, the asso-
ciated safety factors warn the engineer about this problem, and allow a trial and error adjustement
procedure until an agreement between the safety factors and the probability bounds is obtained.

4. Since the tail probabilities are known to be very influential in the final design, the safety factors can
be used to test these sensitivities.

4.1 The Safety Factor-Probability Method Algorithm

The above methodology can be summarized in the following algorithm.

Algorithm 1 (Design with safety factors and probability constraints)

• Input: The lower bounds {F 0
1 , F 0

2 , . . . , F 0
m} for the safety factors {F1, F2, . . . , Fm}, the lower bounds

{β0
1 , β0

2 , . . . , β0
m} for the β-values {β1, β2, . . . , βm}, with respect to all failure modes, and an error value

ε to control convergence of the procedure.

• Output: An optimal design defined by the mean values of the design variables and actual safety factors,
and probabilities of failure for the different failure modes.

Initialization. Initiate the safety factor bounds {F 1
1 , F 1

2 , . . . , F 1
m} to their required lower bounds {F 0

1 , F 0
2 , . . . , F 0

m}.
Step 1: Master problem The optimal classical design minimizing the cost subject to the safety factor

constraints is obtained.

Step 2: Subproblems Exact values or upper bounds for the probabilities of failures or β-values for all
failure modes are calculated, solving a minimization problem per failure mode (level II or III approach).

Step 3: Updating bounds Safety factors bounds are updated using Formula (12).

Step 4: Checking convergence If changes in the design variables in the current iteration are larger than
a given threshold value ε, go to Step 1. Otherwise, go to Step 5.

Step 5: Post process Calculate the actual safety factors associated with non-active constraints. Stop and
return design values, associated safety factors, and probabilities of failure for the different failure modes.

5 Sensitivity analysis

A sensitivity analysis improves the quality of any study. Under a sensitivity analysis, not only the solution
of the problem is sought but also how sensitive it is to data changes.

The sensitivity analysis is not a standard procedure and is very useful to (a) the designer, who can know
which data values are more influential on the design, (b) to the builder, who can know how changes in prices
influence the total cost, and (c) to the code maker, who can know the costs and reliability changes associated
with an increase or decrease in the required safety factors or failure probabilities. The methodology proposed
below is very simple, efficient and allows all the sensitivities to be calculated simultaneously. At the same
time it is the natural way of evaluating sensitivities when optimization procedures are present.
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A sensitivity analysis can be easily performed using the fact that almost all mathematical programming
software packages give the values of the dual variables. To this end, we need to convert the data values into
artificial variables and add the corresponding constraints. In other words, we transform our initial problem:

Minimize
d̄

h(d̄, η̄) (13)

subject to
gi(d̄, η̄) ≥ Fi; i ∈ If . (14)

into the equivalent problem:
Minimize

d̄, η∗
h(d̄, η∗) (15)

subject to
gi(d̄, η∗) ≥ Fi; i ∈ If . (16)

and
η∗ = η̄ (17)

and the problem:

Minimize
z

β(d̄, η̄,κ) =

√
n∑

j=1

z2
j (18)

subject to

zj = hj(d, η; d̄, η̄,κ); j = 1, . . . , n (19)
g(d, η) = 1 (20)

into the equivalent problem:

Minimize
z,d∗, η∗, κ∗

β(d∗, η∗, κ∗) =

√
n∑

j=1

z2
j (21)

subject to

zj = hj(d, η;d∗, η∗, κ∗); j = 1, . . . , n (22)
g(d, η) = 1 (23)

and
(d∗, η∗, κ∗) = (d̄, η̄,κ). (24)

However, when solving the second problems, which have exactly the same solutions as their initial prob-
lems, one can obtain the values of the dual variables associated with the constraints in (17) or (24). These
are the sensitivities of the objective function with respect to the parameters d̄, η̄ and κ, i.e. they indicate
how much the objective function changes with a very small unit increment of the corresponding parameter.

6 The Retaining Wall Example

In this section we describe the application of the proposed methods to the retaining wall example. Detailed
treatment of the constraints are given in the Appendix.

6.1 Distributional assumptions of the model

A wall design at levels II and III implies defining the random properties of all the variables involved. In
this example, all the design, geometric, acting agent and material definition data are assumed to be normal
and independent random variables which means are the corresponding design values denoted by an overbar
placed on the corresponding variables and standard deviations shown in Table 1.

For the sake of simplicity, in this paper the following set of variables is assumed to be deterministic:

{r, φ`, φt, s`, st, cc, cst, ct, cex}
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Table 1: Distributional assumptions for the variables in the illustrative example (κ vector values).

Type Variable Standard deviation Type Variable Standard deviation
a 0.025m Strength fc 3MPa
b 0.025m variables fy 22MPa
c 0.025m σsoil 0.25MPa

Geometric d 0.025m τmax 0.04MPa
variables zt 0.025m Unit weight γc 1kN/m3

h1 0.025m variables γs 2kN/m3

h2 0.025m γst 0.2kN/m3

h3 0.025m Other ka 0.05
Astem 0.00001m2 variables kp 0.1
Atoe 0.00001m2 µcrit 0.05
Aheel 0.00001m2 q 8kN/m

6.2 Numerical solution and discussion

The proposed method was implemented in GAMS (General Algebraic Modeling System) (see Castillo,
Conejo, Pedregal, Garćıa and Alguacil [6]) for the wall example. Suppose we want to design a retaining
wall with the following assumptions:

h̄1 = 5m; γ̄c = 25kN/m3; γ̄s = 20kN/m3; f̄c = 30MPa; f̄y = 450MPa;
k̄a = 0.5; k̄p = 3; µ̄crit = 0.5; σ̄soil = 0.25MPa; q̄ = 40kN/m;
r = 0.05m; F 0

t = 1.2; F 0
s = 1.15; F 0

b = 1.2; F 0
stem = 1.4;

F 0
toe = 1.4; F 0

heel = 1.4; F 0
sstem = 1.2; F 0

stoe = 1.2; F 0
sheel = 1.2;

cc = 66/m3; cst = 0.06euro/N ; ct = 12euro/m3; cex = 3.6euro/m3; τmax = 0.4MPa;
φ` = 0.02m; φt = 0.02m; s` = 0.2m; st = 0.2m;

where these are the data values that have been chosen by the designer.
The proposed method was used for the design using these data. Table 2 shows the convergence of the

process. The last column of the table shows the design values of a, b, c, d, h2, h3, zt, Astem, Atoe and Aheel,
together with the safety factors and associated β-values. The design was made to guarantee values of the
safety factors Ft ≥ 2.0; Fs ≥ 2.0; Fb ≥ 2.0; Fstem ≥ 1.3;Ftoe ≥ 1.3; Fheel ≥ 1.3; Fsstem ≥ 1.4; Fstoe ≥
1.4;Fsheel ≥ 1.4 and βt, βs, βb, βstem, βtoe, βheel, βsstem, βstoe and βsheel larger than or equal to β0

i = 3.71.
The active values appear underlined in this table.

The following conclusions can be drawn from Table 2.

1. The process converges in 24 iterations, but practically the same results are obtained after iteration 15.

2. The safety factor bound F 0
s is active, i.e. it leads to a stricter constraint than the corresponding

reliability index bound. Note that the corresponding safety index βs is greater than β0
s = 3.71.

3. The reliability indices bounds β0
b , β0

stem, β0
toe, β

0
heel, β

0
sstem, β0

stoe, β
0
sheel are active, i.e. they lead to

stricter constraints than the corresponding safety factors.

4. The safety factor F 0
t and its corresponding reliability index bound β0

t are both inactive. Note that
both the safety factor and the beta value are greater than their corresponding bounds. Restrictions
associated with the other failure modes make this one safe enough.

5. The optimal values for d and zt are d = 0.3 and zt = 0.3. This implies that the constraints (25) (see
Appendix) are active. In other words, a lower cost can be obtained if these constraints are removed,
but then, the optimal solutions would be d = zt = 0.
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Table 2: Illustration of the iterative procedure. The design and final values are boldfaced.

ITERATIONS
Variable Units 1 5 15 20 24 (end)

Cost euro 1105.2 1219.3 1275.4 1280.1 1281.6
h1 m 5.00 5.00 5.00 5.00 5.00
zt m 0.30 0.30 0.30 0.30 0.30
a m 1.55 1.70 1.79 1.80 1.81
b m 0.90 1.10 1.21 1.22 1.23
c m 4.83 4.29 4.01 3.98 3.97
d m 0.30 0.30 0.30 0.30 0.30
h2 m 0.50 0.58 0.61 0.62 0.62
h3 m 1.04 1.34 1.50 1.51 1.51

Astem m2 0.00166 0.00165 0.00160 0.00159 0.00159
Atoe m2 0.00044 0.00041 0.00038 0.00037 0.00037
Aheel m2 0.00180 0.00162 0.00145 0.00143 0.00143
Ft – 6.45 6.09 5.96 5.96 5.96
Fs – 2.00 2.00 2.00 2.00 2.00
Fb – 2.00 2.00 2.01 2.01 2.01

Fstem – 1.30 1.68 1.84 1.86 1.86
Ftoe – 1.30 1.49 1.50 1.50 1.50
Fheel – 1.30 1.70 1.87 1.88 1.89
Fsstem – 1.40 1.73 1.91 1.93 1.93
Fstoe – 1.40 1.67 1.80 1.81 1.82
Fsheel – 1.40 1.72 1.91 1.93 1.93

βt – – 24.75 24.17 24.13 24.13
βs – – 3.88 3.81 3.80 3.80
βb – – 3.72 3.71 3.71 3.71

βstem – – 3.10 3.67 3.70 3.71
βtoe – – 3.61 3.73 3.72 3.71
βheel – – 3.06 3.67 3.70 3.71
βsstem – – 3.11 3.65 3.70 3.71
βstoe – – 3.25 3.67 3.70 3.71
βsheel – – 3.11 3.64 3.69 3.71

6.3 Sensitivity analysis

The sensitivities for the illustrative wall example are given in Tables 3 and 4. Table 3 gives the cost
sensitivities associated with the optimal classical design. It allows us to know how much the total cost of
the wall changes when a small change in a single data value is made. This information is extremely useful
during the construction process for controlling the cost, and for analyzing how the changes in the safety
factors required by the codes influence the total cost of engineering works. For example, a change of one
euro in the unit cost cc of the concrete leads to a cost increase of 11.511euros (see the corresponding entry
in Table 3). Similarly, an increase in the safety factor lower bound F 0

t does not change the cost, but an
increase in the safety factor lower bound F 0

s increases the cost by 193.43 euros per unit of increase.
Table 4 gives the sensitivities associated with the β-values in adimensional form. It is useful to know how

much the corresponding β-value changes when a small change in a single data value is made, for example,
the means, standard deviations, etc. In this table the designer can easily analyze how the quality of the
material (reduced standard deviations in fc or fy) or precision in the construction of the work (reduced
standard deviations in h1, h2 and b) influence the safety of the wall.

Note that all sensitivities with respect to standard deviations are null or negative as expected (the larger
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Table 3: Cost sensitivities with respect to the data values in the wall illustrative example.

cc ct cst cex r φl

11.511 12.811 2730.090 56.743 738.238 3.667
φt sl st F 0

t F 0
s F 0

b

5.243 -110.025 -157.291 0.000 193.430 55.728
F 0

stem F 0
toe F 0

heel F 0
sstem F 0

stoe F 0
sheel

27.349 8.287 24.936 1.427 159.455 130.364
γ̄c γ̄s γ̄st f̄c f̄y σ̄soil

-5.595 22.042 2.087 -0.024 -0.245 -448.968
τ̄max µ̄crit q̄ k̄a k̄p h̄1

-1360.752 -773.721 11.666 2492.194 -18.392 490.227

the dispersion, the smaller the reliability.

7 General conclusions

A new method has been presented for designing engineering works that presents the following advantages:

1. Since safety factors and probabilities of failure are dealt with, the method allows communication
between classical and probability-based designers.

2. The proposed method takes full advantage of the optimization packages, in the sense that:

(a) The constraints need not be written in terms of the design variables. Auxiliary or intermediate
variables can be used.

(b) The cost function and the constraints need not be written in explicit form, i.e. auxiliary variables
and equations can be used to facilitate the statement of the problem.

(c) The failure region need not be written in terms of the normalized (transformed) variables. The
transformation equation, in direct or inverse form, is sufficient.

(d) The responsibility for iterative methods is given to the optimization software.

3. Sensitivity values are given, for free, if one converts the data values into artificial variables, by printing
the values of the dual problem. This allows us determine how much a small change in any of the data
values, such as the cost of the materials, the safety factors, etc., affects the total cost and the reliability
indices of the engineering work.

4. The method controls for safety against all failure modes by a double check: via safety factors and via
reliability indices.

5. The resulting designs are:

(a) Automated

(b) Optimal.

(c) Designer independent.

12



Table 4: Sensitivities x̄∂βi

∂x , with respect to the data values x, for the illustrative wall example (only non-zero
values are shown).

Data x x̄∂βt

∂x x̄∂βs

∂x x̄∂βb

∂x x̄∂βstem

∂x x̄∂βtoe

∂x x̄∂βheel

∂x x̄∂βsstem

∂x x̄∂βstoe

∂x x̄∂βsheel

∂x

r 0.00 0.00 0.00 -0.30 -0.62 -0.36 -0.23 -0.36 -0.28
µh1 -30.69 -4.73 -7.75 -16.32 -16.32 -15.60 -7.81 -9.76 -9.15
µa 8.42 -0.11 3.42 0.00 -14.50 3.92 0.00 0.06 1.36
µb 6.55 0.47 1.66 8.58 2.86 2.93 5.65 1.65 1.35
µc 25.78 4.23 2.70 0.00 -2.11 -4.77 0.00 1.39 0.48
µd 0.24 0.15 -0.16 0.10 -0.60 0.11 0.00 -0.22 0.14
µh2 -4.00 -0.56 -0.78 0.00 11.39 1.48 0.00 2.77 1.48
µh3 4.17 2.04 -1.13 0.00 6.31 4.46 0.00 1.75 2.66
µzt -1.83 0.05 -0.55 -0.97 -0.48 -0.91 -0.37 -0.43 -0.47

µAstem
0.00 0.00 0.00 6.75 0.00 0.00 0.00 0.00 0.00

µAtoe
0.00 0.00 0.00 0.00 9.59 0.00 0.00 0.00 0.00

µAheel
0.00 0.00 0.00 0.00 0.00 6.63 0.00 0.00 0.00

µγc 6.13 2.16 -1.17 0.68 -3.38 0.70 0.00 -1.06 0.74
µγs

3.73 -0.59 -1.37 -2.73 -2.15 -2.66 -2.57 -1.99 -2.90
µfc 0.00 0.00 0.00 0.09 0.12 0.05 0.00 0.00 0.00
µfy 0.00 0.00 0.00 7.20 10.29 7.07 0.00 0.00 0.00

µσsoil
0.00 0.00 7.26 0.00 0.00 0.00 0.00 0.00 0.00

µτmax 0.00 0.00 0.00 0.00 0.00 0.00 7.40 8.06 7.47
µµcrit 0.00 7.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00

µq -1.89 -1.28 -1.49 -3.09 -2.65 -3.06 -1.97 -1.91 -2.21
µka -7.22 -5.92 -3.51 -6.12 -2.37 -6.35 -4.63 -3.81 -3.89
µkp 0.01 0.38 0.09 0.00 0.37 0.10 0.05 0.08 0.08
σh1 -0.57 0.00 -0.01 -0.02 -0.02 -0.02 -0.01 -0.01 -0.01
σzt -0.56 0.00 -0.01 -0.02 -0.01 -0.02 0.00 0.00 -0.01
σa -0.33 0.00 -0.01 0.00 -0.15 -0.01 0.00 0.00 0.00
σb -0.43 0.00 0.00 -0.11 -0.01 -0.01 -0.05 0.00 0.00
σc -0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σd -0.01 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00
σh2 -0.64 0.00 0.00 0.00 -0.79 -0.01 0.00 -0.05 -0.01
σh3 -0.11 0.00 0.00 0.00 -0.04 -0.02 0.00 0.00 -0.01

σAstem 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.00
σAtoe 0.00 0.00 0.00 0.00 -0.24 0.00 0.00 0.00 0.00
σAheel

0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00
σγc -1.45 -0.03 -0.01 0.00 -0.07 0.00 0.00 -0.01 0.00
σγs -3.36 -0.01 -0.07 -0.28 -0.17 -0.26 -0.25 -0.15 -0.31
σfy 0.00 0.00 0.00 -0.46 -0.94 -0.44 0.00 0.00 0.00

σσsoil
0.00 0.00 -2.82 0.00 0.00 0.00 0.00 0.00 0.00

στmax 0.00 0.00 0.00 0.00 0.00 0.00 -2.03 -2.41 -2.07
σµcrit 0.00 -2.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00

σq -3.46 -0.25 -0.33 -1.41 -1.05 -1.39 -0.58 -0.54 -0.72
σka -12.58 -1.33 -0.46 -1.39 -0.21 -1.50 -0.79 -0.54 -0.56
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A Appendix

This appendix gives the details of the intermediate equations needed to deal with the constraints and the
cost function.

A.1 Forces acting on the wall

Before deriving the set of constraints, the total weight of the wall and soil, and the earth pressures acting
on the wall are determined together with the corresponding points of application. The constraints are then
established. To this end, intermediate or auxiliary variables that facilitate the work can be used.

Note that optimization programs allow the use of these auxiliary variables, and that an explicit expression
for the constraints in terms of the design variables is not needed. This is an important advantage, as such a
process is complicated.

Total weight of the wall and soil. Figure 3(a), illustrates the weights, wi; i = 1, 2, 3, 4, of the different
pieces of the wall, and their respective locations. Similarly, the weights, si; i = 1, 2, 3, of the different pieces
of the soil are illustrated in Figure 3(b).

Earth pressures. Figure 4(a) shows the soil pressures.

A.2 Design criteria and safety factors requirements

Two design constraints are:
d ≥ 0.3; zt ≥ 0.3 (25)

and the safety factors constraints:
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Figure 3: Decomposition of the cross section of the cantilever wall into simpler geometrical pieces (triangles
and rectangles) to calculate: (a) the weights of the concrete, and (b) the soil weights.
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Figure 4: (a) Illustration of the earth pressures on both sides of the wall. (b) Weight and soil pressure forces
acting on the wall.

Overturning constraint:
ms/mt ≥ Ft (26)

where ms and mt are shown in Figure 4(b).

Sliding constraint:
µcrit/µ ≥ Fs (27)

where µ is the actual friction factor.

Bearing capacity constraint:
σsoil

σi
≥ Fb (28)
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Figure 5: Illustration of the calculation of the steel reinforcing bars.

where σi is the maximum stress at the left end of the toe.

Flexural and shear constraints at the heel, toe and stem:
First of all, the reinforcement steel needed in a general section subject to a normal force (n), a shear

force (v) and a bending moment (m) (see Figure 5) are calculated:
∑

MA = 0 : fc0.8x(h− r − 0.4x) = m + n(h/2− r)∑
FH = 0 : t = fc0.8x− n

Asfy

t
≥ Fk; k = stem, toe, heel

τmax

v/(h− r)
≥ Fj ; j = sstem, stoe, sheel

(29)

A.3 Function to be optimized

Since this is only an illustrative example of the proposed method, for the sake of simplicity the life span of
the wall, maintenance or reparation costs are not considered. Then, the total cost of the wall is:

Cost = h(d̄, η̄) = vccc + stct + wstcst + vexcex

where the required total volume of concrete, vc, the total timber surface, st, the total weight of steel, wst,
and the total excavation volume vex are:

vc = w/γc

st = h2 + h3 + h1 + zt +
√

(b− d)2 + h2
1

wst = A1(h1 + zt + caux2 + 0.5)γst + A2(daux + daux2 + daux3)γst + A3(a + b + c)γst

+(h2 + h3 + d +
√

(b− d)2 + (h1 + zt)2 + 4)πφ2
t γst/(4st)+

(
√

(b− d)2 + (h1 + zt)2 + d + h1 + zt + c + h3 + daux + daux2 + daux3 + h2 + a)φ2
l γst/(4sl)

vex = vc + (h1 + zt)c + zta + (h1 + zt + h3)2/2 + (h2 + zt)2/2
(30)

where γst = 78.5kN/m3.
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