
An Optimal Engineering Design Method

with Failure Rate Constraints
and Sensitivity Analysis.

Application to Composite Breakwaters

Carmen Castillo1, Roberto Mı́nguez2, Enrique Castillo3 and Miguel A. Losada4

June 14, 2004

Abstract

The paper presents a new method for the design of maritime structures against sea waves that
minimizes the initial/construction cost of the structure when the yearly maximum acceptable
failure rates for all modes of failure are fixed beforehand. The solution of the resulting optimiza-
tion problem becomes complex because the evaluation of failure rates involves one optimization
problem per failure mode (FORM), so that a decomposition method is used to solve the prob-
lem. In addition, a sensitivity analysis is performed, which makes it possible to determine how
the cost and yearly failure rates of the optimal solution are affected by small changes in the
input data values. The proposed method is illustrated by its application to the design of a com-
posite wall under breaking and non breaking wave conditions. The storms are assumed to be
stochastic processes characterized by their maximum significant wave heights, their maximum
wave heights and the associated zero-up-crossing mean periods.

Key Words: Cost optimization, Failure probability, Modes of failure, Stochastic process, Relia-
bility analysis, Safety factors.

1 Introduction

The phases that an engineering structure undergoes are: construction, service life and dismantling.
In addition, maintenance and repair take place during the service lifetime. During each of these
phases, the structure and the environment undergo a continuous sequence of outcomes, the conse-
quences of which have to be considered in the project. The objective of the design is to verify that
the structure satisfies the project requirements during these phases in terms of acceptable failure
rates and cost (see Losada [1] and ROM [2]).

Since repair depends on the modes of failure and their occurrence frequencies, these must be
defined. A mode describes the form or mechanism in which the failure of the structure or one of
its elements occurs. Each mode of failure is defined by a corresponding limit state equation as, for
example:

gm(x1, x2, . . . , xn) = hsm(x1, x2, . . . , xn)− hfm(x1, x2, . . . , xn); m ∈ M, (1)
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18071 Granada, Spain. e-mail: mcastill@ugr.es

2Assistant Professor, Department of Applied Mathematics, University of Castilla-La Mancha, 13071 Ciudad Real,
Spain. e-mail: Roberto.Minguez@uclm.es & FulBright Scholar, Department of Statistics, Cornell University, 14853-
3901 Ithaca (NY), USA. e-mail: rm333@cornell.edu

3Full Professor, Department of Applied Mathematics and Computational Sciences, University of Cantabria, Avda.
Castros s/n., 39005 Santander, Spain. e-mail: castie@unican.es

4Full Professor, Grupo de Puertos y Costas, CEAMA, University of Granada, Avda. del Mediterráneo s/n, 18071
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where (x1, x2, . . . , xn) refer to the values of the variables involved, gm(x1, x2, . . . , xn) is the safety
margin and hsm(x1, x2, . . . , xn) and hfm(x1, x2, . . . , xn) are two opposing magnitudes (such as sta-
bilizing and mobilizing forces, strengths and stresses, etc.) that tend to avoid and produce the
associated mode of failure, respectively, and M is the set of all failure modes.

In this paper it is assumed that failure occurs during storms that are assumed to be stochastic
processes of random intensity, and that failure occurs when the critical variables (extreme wave
heights and periods) satisfy gm ≤ 0. Then, the probability of failure mode m in a given period
becomes:

Pfm =
∫

gm(x1,x2,...,xn)≤0

fX1,X2,...,Xn(x1, x2, . . . , xn)dx1dx2 . . . dxn, (2)

where fX1,X2,...,Xn(x1, x2, . . . , xn) is the joint probability density function of all variables involved
in the problem. With this information, and the consideration of all storms that may occur in a
year, the different yearly failure rates for all failure modes can be estimated.

If the design variables lead to admissible failure rates, i.e., below given upper bounds, the design
is said to be safe. The main advantage of probabilistic based design is that the reliability of the
structure can be evaluated. However, they are very sensitive to tail assumptions (behavior of the
random variables for extreme values) (see Galambos [3] and Castillo [4]), and in some cases, as,
for example, vertical wall stability, runup, overtopping, geotechnical stability, etc., the dependence
structure and the statistical distributions of the variables involved are difficult to define.

Over the last few years design methods have been improved by applying optimization techniques.
The main advantage is that these techniques lead to optimal design and automation, i.e., the values
of the design variables are provided by the optimization procedure (the optimal values) and not
fixed by the engineer. Designer’ concerns are only the constraints to be imposed on the problem
and the objective function to be optimized.

Some authors consider the construction cost (Castillo et al. [5, 6], Castillo et al. [7, 8, 9]) or the
total cost (construction, maintenance and repairs) as the design criteria (Van Dantzig [10], Burchart
et al. (1995), Voortman et al. [11], Enevoldsen [12], Enevoldsen and Sorensen [13, 14] and Mı́nguez
et al. [15]). As the main purpose of the different maritime structures is to protect areas from being
flood by large waves, and they can be used in very different conditions where the consequences
of a partial or complete failure also are very different, the accepted probability of failure varies
considerably. However, people should not allow engineers and politicians to make their decision
based only on economic criteria. Human life, quality and service reliability, and perhaps other
criteria must be considered. In fact, some constraints on the yearly failure probability rate must
be imposed. The calculation of which implies solving as many optimization problems as failure
modes. Thus, use of optimization programs is not straightforward.

In some cases (see Nielsen and Burcharth [16]) cost evaluations take into account the occurrence
of failures, but taking into account the actual sequence of failures is difficult. Large storms produce
at most one single failure of each type (mode) or combinations of them, because even though
several of its waves (the largest) are able to produce failure, once destroyed, the breakwater cannot
be destroyed again before its repair that will take place once the storm has finished. An evaluation
of the number of failures must take into consideration that several dangerous sea waves normally
occur during the same storm, but produce at most one failure of each type. This implies that the
natural event to predict the number of failures is the storm occurrence.

In addition to requiring optimal solutions to problems, some interest is shown by people in
knowing how sensitive are the solutions to data values. A sensitivity analysis provides excellent
information on the extent to which a small change in the parameters or assumptions (data) modifies
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the resulting design (geometric dimensions, costs, reliabilities, etc.). This will be useful to: (a) the
designer in order to know how sensitive the design is to the assumptions, (b) the construction
engineer to know to what extent changes in the unit prices and other data modify the cost and
reliabilities, and (c) the code designer to know, for example, how much a lowering of the failure
rate bounds increases the cost.

The aims of this paper are: (a) to present a method for evaluating the frequency of failures
with their normal sequencing being taken into account, i.e., within storms, (b) to present a design
method that minimizes the initial/construction costs subject to some yearly failure rate constraints
applicable to composite breakwaters or other type of maritime structures, and (c) to provide tools
to perform a sensitivity analysis.

The paper is structured as follows. In Section 2 the probabilistic design is described. In
Section 3 the proposed method for optimal design is presented. In Section 4 a technique for
performing a sensitivity analysis is explained. Section 5 illustrates the proposed method by an
example application dealing with the design of a composite breakwater. Section 6 is devoted to the
discussion of the statistical assumptions. Section 7 presents a numerical example. Finally, Section
8 gives some conclusions.

2 The Probabilistic Design Problem

In this section the probabilistic design problem is described.

Safe and failure domains. In the design and reliability analysis of a maritime structure, there
are some random variables (X1, . . . , Xn) involved. They include geometric variables, material
properties, loads, etc. In this paper, without loss of generality, we make no distinction between
random and deterministic variables. So, it is assumed that all variables involved are random, and
deterministic variables are only particular cases of them. They belong to an n-dimensional space,
which, for each mode of failure, can be divided into two domains, the safe and the failure domains:

Safe domain: S ≡ {(x1, x2, . . . , xn)}|gm(x1, x2, . . . , xn) > 0}
Failure domain: F ≡ {(x1, x2, . . . , xn)}|gm(x1, x2, . . . , xn) ≤ 0}

}
; m ∈ M (3)

where M is the set of all modes of failure m.
It is important to distinguish between design values of the random variables Xi, and actual

values xi (i = 1, 2, · · · , n). The design values are those values selected by the engineer at the design
stage for the geometric variables (dimensions), the material properties (strengths, stiffness, etc.),
that do not necessarily correspond with those in the real work. Thus, in this paper the design values
are assumed to be the means or the characteristic values (extreme percentiles) of the corresponding
random variables, and are denoted x̄i (mean) and x̃i (characteristic), respectively. Some of these
design values are chosen by the engineer or given by the design codes, and some (associated with
the design variables) are selected by the optimization procedure to be presented. In this paper,
the set of variables (X1, . . . , Xn) will be partitioned in four sets (for the particular example of the
composite breakwater see Appendix A):

1. Optimized design variables d: Design random variables the mean values of which are to
be chosen by the optimization procedure to optimize the objective function (minimize the
total expected cost). Normally, they describe the dimensions of the work being designed,
such as width, thickness, height, cross sections, etc., but can include material properties, etc.
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Figure 1: Composite breakwater showing the geometric design variables.

2. Non-optimized design variables η: Set of variables the mean or characteristic values of
which are fixed by the engineer or the code guidelines as input data to the optimization pro-
gram. Some examples are costs, material properties (unit weights, strength, Young modulus,
etc.), and other geometric dimensions of the work being designed (parapet breakwater width,
etc.) that are fixed.

3. Random model parameters κ: Set of parameters used in the probabilistic design, defin-
ing the random spatial and temporal variability and dependence structure of the variables
involved (standard deviations, variation coefficients, correlations, etc.).

4. Dependent or non-basic variables ψ: Dependent variables which can be written in terms
of the basic variables d and η to facilitate the calculations and the statement of the problem
constraints.

The corresponding means of d will be denoted d̄, and the mean or the characteristic values of
η is denoted η̃.

The cost optimization problem to be stated in Section 3 will make use of these sets of variables.
Given a set of values of the design variables d̄, the probability of failure pm

st under mode m
during a random storm can be calculated using the joint probability density function f(x) =
fX1,X2,...,Xn(x1, x2, . . . , xn; θ) of all variables involved, where θ is a parametric vector, by means of
the integral:

pm
st(θ) =

∫

gm(x1,x2,...,xn)≤0

fX1,X2,...,Xn(x1, x2, . . . , xn; θ)dx1dx2 . . . dxn. (4)

In this paper we assume that the parametric vector θ = (d̄, η̃,κ) contains the means d̄, the means
or the characteristic values η̃, and some other extra vector of random model parameters κ.

Unfortunately, calculation of pm
st(θ) is difficult. So, to eliminate the need for complex numerical

integrations, the “First Order Reliability Methods” (FORM) transform the initial set of variables
into an independent multinormal set and use a linear approximation. For a complete description of

4



some of these methods and some illustrative examples see Hasofer and Lind [17], Madsen, Krenk and
Lind [18], Ditlevsen and Madsen [19], or Melchers [20], and for maritime engineering see Burcharth
[21, 22, 23], Burcharth and Sorensen [24], Goda [25] and Goda and Takagi [26].

In this paper we assume that the reader is familiar with the FORM for evaluating the probability
of failure, more precisely, pm

st(d̄, η̃,κ) for m = 1, 2, . . . ,M is obtained using:

pm
st(d̄, η̃, κ) = Maximum

d, η
Φ(−βm) = Φ(−

√
zT z) , (5)

i.e., maximizing with respect to d, η, subject to

z = G(d, η, ψ, θ) (6)
q(d, η) = ψ (7)

gm(d,η, ψ) = 0, (8)

where βm is the reliability index for failure mode m, Φ(·) is the cumulative distribution function of
the standard normal random variable, G(d,η, ψ, θ) is the transformation leading to the standard
unit normal z variables used in FORM, q(d, η) = ψ are the equations that allow obtaining the
values of the intermediate variables ψ, and gm(d, η,ψ) = 0 is the boundary of the failure region
for failure mode m.

Note that we do not minimize βm in (5) as usual, but maximize the probability of failure
Φ

(
−
√

zTz
)
. However, since the functions Φ(·) and square root are increasing, both approaches

are equivalent. The second has been chosen because we later look for the probability of failure
sensitivities with respect to the data, i.e., the rate of change of Φ (−βm) with respect to the data
values.

3 Proposed Method for Optimal Design

To design the maritime structure we propose to minimize the initial/construction cost subject to
failure rate constraints. Since the latter involves random occurrences, some model assumptions are
necessary. Note that contrary to the material in Section 2, that is well known, some of the formulas
and the model to be presented in Sections 3 and 4 are original.

3.1 Model assumptions

Before describing the model assumptions, it is worth mentioning that the aim of this paper is
to introduce a new approach of breakwater design based on minimizing initial/construction cost
subject to yearly failure rates bounds for all failure modes, and to present a technique for sensitivity
analysis. Thus, the breakwater example to be discussed below is simply an illustrative example, and
it must be considered as such because the analysis can not be considered exhaustive, since several
failure modes were not implemented (settlement, scour, deterioration and corrosion of reinforcement
due to chloride ingress through the concrete or concrete cracks, etc.) and some hydraulic responses
were not analyzed (wave transmission, wave reflection).

Our model is based on the following assumptions:

1. The storms are assumed to be stochastic processes, i.e., to occur at random times with yearly
rate rst (mean number of storms per year). Note that no assumption is needed about the
dependence or independence of storms or the distribution of occurrence times, because only
the yearly failure rate is looked for.
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2. Long-term statistics deal with the distribution of the storms which are characterized by a
set of three variables that represent the maximum significant wave height Hsmax of all its sea
states, its maximum wave height Hmax, and the associated wave period Tzmax (that occurring
with Hmax). It is assumed that they are dependent random variables whose probability
distribution and dependence structure must be derived from real data. Once a storm has
occurred, its intensity and characteristics can be derived from this joint distribution, i.e.,
a set of values {Hsmax ,Hmax, Tzmax} can be drawn at random from a population with the
corresponding distribution. For the sake of simplicity, we assume that these variables provide
enough information to verify the breakwater failure modes.

3. Failures occur during storms and the probability of failure in mode m in a random storm is
pm

st(d̄, η̃, κ), which has been considered to be a function of the design variables and parame-
ters (d̄, η̃,κ), which include the geometric dimensions of the breakwater and the parameters
defining the probability distribution of all variables involved.

4. One storm can cause at most only one failure of each type (mode), because in the case of
occurrence of several sea waves in one storm all able to produce failure, only the first failure
of each mode must be considered, because repair is not possible during storms. This implies
that failure accumulation is not included.

5. A failure mode does not induce any other failure modes. This means that the structure is
assumed not to suffer a progressive collapse. However, different failure modes can occur si-
multaneously, and they are not statistically independent because they have common inducing
agents.

Interaction between failure modes is an important problem. However, we have to bear in
mind that nowadays there is not enough knowledge on such interaction for it to be included
in models; we are still trying to understand and to evaluate how individual modes of failure
start and progress. Thus, to complicate the presentation of a new optimization procedure
with additional heuristic approaches is in the authors opinion not the best decision for this
paper, though, for example, a model for interaction between the toe berm and the main
armour for rubble mound breakwaters is presented in Christiani [27].

6. The probability of failure in mode m, pm
st(d̄, η̃, κ), is a Benoulli random variable, and the

mean number of storms per year is rst. Thus, the mean number of failures per year is equal
to the mean of the Binomial random variable B(rst, p

m
st),

rstp
m
st(d̄, η̃, κ). (9)

7. The proposed approach is based on guaranteeing bounded yearly failure rates of all failure
modes. However, for the global failure rate, one can consider the well known bounds:

Lower bound: Pf = max
m

Pfm ; Upper bound: Pf = 1−
M∏

m=1

(1− Pfm)

where Pf is the global probability of failure (upper bound failure rates could be included in
the proposed method without additional effort).
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3.2 Initial/construction cost function

In this paper the criteria for design is based on minimizing the initial/construction cost per running
meter of vertical breakwater subject to bounded yearly failure rates. The objective function is a
function of the volumes of sand, concrete and rubble stone in the caisson section. In this paper we
do not consider cost of damage due to serviceability service states and to ultimate limit states (see
Sorensen et al. [28], Voortman et al. [11]) but these cost are bounded by the yearly failure rate
bounds. Thus, the initial/construction cost (C0(d̄, η̃)), is given by

C0(d̄, η̃) = CcVc + Ca`Va` + CcoVco (10)

where d̄ and η̃ are the design variables at their means and characteristic values, respectively, Vc, Va`

and Vco are the sand filled caissons, armor layer, and core volumes, respectively, and Cc, Ca` and
Cco are the respective construction costs per unit volume. The details of the derivation of the cost
function are given in Appendix B.

3.3 Evaluation of the failure mode probabilities in a random storm

In this paper we evaluate the failure mode probabilities in a random storm using first order reliability
methods (FORM). More precisely, pm

st(d̄, η̃,κ) for m = 1, 2, . . . ,M is obtained using:

pm
st(d̄, η̃, κ) = Maximum

d,η
Φ(−βm) = Φ(−

√
zT z) (11)

that is maximizing with respect to d, η, subject to

z = G(d, η, θ) (12)
q(d, η) = ψ (13)

gm(d, η) = 0, (14)

where βm is the reliability index for failure mode m, G(d, η,θ) is the transformation leading to
the standard unit normal distribution, and gm(d,η) = 0 is the boundary of the failure region for
failure mode m.

Note that we do not minimize βm in (11) as usual, but maximize the probability of failure
Φ

(
−
√

zTz
)
. However, since the functions Φ(·) and square root are increasing, both approaches

are equivalent. The second has been chosen because we later look for the probability of failure
sensitivities with respect to the data, i.e., the rate of change of Φ (−βm) with respect to the data
values.

Once the probabilities for all failure rates have been calculated it possible to obtain the yearly
failure rates for all modes. Thus, once the failure rates bounds are decided their incorporation into
the optimization procedures as additional constraints can be done as follows:

rm(d̄, η̃, κ) = rstp
m
st(d̄, η̃, κ) ≤ R0

m, (15)

where R0
i ; i = 1, 2, . . . ,M are the corresponding failure rates upper bounds for the M different

failure modes, which should be fixed by the codes.
Everything is now ready to state the design problem as an optimization problem as follows.
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3.4 Design as an optimization problem

In this paper the design of a maritime structure is equivalent to solve the following optimization
problem:

Minimize
d̄

C0(d̄, η̃) , (16)

i.e., minimize with respect to d̄, subject to the yearly failure rate, the equations that allow obtaining
the intermediate variables, and geometric constraints:

rm(d̄, η̃,κ) = rstp
m
st(d̄, η̃,κ) ≤ R0

m; m = 1, · · · ,M (17)
q(d̄, η̃) = ψ (18)

h(d̄, η̃, ψ) ≤ 0. (19)

where pm
st(d̄, η̃, κ) is given by solving the problem (11)-(14). The constraints (17) are called com-

plicating constraints, because they involve inner optimization problems.

3.5 Solving the cost optimization problem using decomposition techniques

The problem described in Eqs. (16)-(19) presents some difficulties because constraints (17) require
the knowledge of rm(d̄, η̃, κ), the calculation of which implies solving several optimization problems
(11)-(14) (one per failure mode).

This type of problem can be solved using decomposition techniques (see Benders [29] and
Geoffrion [30]) that were applied to reliability optimization problems by Mı́nguez [31], and Mı́nguez
et al. [32, 15]. The price that has to be paid for such a simplification is iteration. That is, instead
of solving the original problem at once, two simpler problems are solved iteratively: a simple called
master problem which is a problem similar to the original one but replacing the probabilities of
failure for each failure mode by linear approximations, and a subproblem or subproblems (one for
each failure mode) where the linear approximations of the probabilities of failure are updated for
the new design values obtained form the master problem. For a detailed analysis of decomposition
techniques see Conejo et al. [?]. The use of this method together with FORM for the reliability
evaluations holds is not a time consuming method and the values of the failure rate functions are
stable for any given point.

The following iterative scheme, which solves two optimization problems (the master problem
and the subproblems) can be applied to solve the problem (16)-(19):

• Step 0: Initialization. Initialize the iteration counter ν = 1, select some initial values
for the design variables d̄ = d̄1 and evaluate the initial/construction cost C

(1)
0 = C0(d̄1, η̃).

To improve convergence it is convenient that initial design hold the failure rate requirements
(17).

• Step 1: Subproblem solution. Solve the subproblems, i.e., the problems (11)-(14) modi-
fied to

rm(d̄ν , η̃, κ) = Maximum
d,η, d̄

rstΦ(−βm) = rstΦ(−
√

zT z) (20)

subject to

z = G(d, η,ψ, d̄, η̃, κ) (21)
gm(d, η,ψ) = 0, (22)
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q(d, η) = ψ (23)
d̄ = d̄ν : µmν (24)

where the corresponding dual variables have been denoted µmν .

• Step 2: Master problem solution for iteration ν. The master problem which consist in
replacing the yearly failure rates per a linear approximations in problem (16)-(19) is solved:

Minimize
d̄

C0(d̄, η̃) , (25)

subject to

r∗m(d̄, η̃,κ) ≤ R0
m; m = 1, · · · ,M (26)

q(d̄, η̃) = ψ (27)
h(d̄, η̃, ψ) ≤ 0 (28)

r∗m(d̄, η̃,κ) = rm(d̄ν−1, η̃, κ) + µT
mν−1(d̄− d̄ν−1); m = 1, · · · ,M, (29)

obtaining d̄ν and C
(ν)
0 = C0(d̄ν , η̃). Note that r∗m(d̄, η̃, κ) is a linear approximation of the

yearly failure rate.

• Step 3: Convergence checking. If

∣∣∣∣∣
C

(ν)
0 − C

(ν−1)
0

C
(ν)
0

∣∣∣∣∣ is lower than the tolerance, the proce-

dure stops, otherwise, go to Step 2.

The process of solving iteratively these schemed is repeated until convergence. Observe also
that approximative hyperplanes (29) are constructed using the partial derivatives of the yearly
failure rates (µmk) with respect the design variables (d̄).

4 Sensitivity Analysis

The problem of sensitivity analysis in reliability based optimization has been discussed by several
authors, see, for example, Enevoldsen [33], or Sorensen and Enevoldsen [34]. In this section we
show how the duality methods can be applied to sensitivity analysis in a straightforward manner.
We emphasize here that the method to be presented in this section is of general validity.

In the problem (25)-(29) it is very easy to obtain the sensitivities of the optimal initial/construction
cost (the objective function) with respect to the failure rate bounds R0

m because they appear on
the right hand side of constraint (26). When this happen, this sensitivity is simply the value of the
dual variable associated with that constraint, that practically all software optimization packages
give by free because it is very easy to calculate once the optimal solution has been found.

The problem arises when the data or parameters with respect to which we want to calculate
the sensitivities do not appear on the right hand side of a constraint.

The way of solving this problem consists of generating artificial (redundant) constraints that
satisfy such a condition. One way of generating these constraints consists of transforming all the
parameters or data with respect to which we desire the sensitivities, into artificial variables and
adding the constraints that lock the variables to their actual values. To illustrate, we apply this
technique to the optimization problems (20)-(24) and (25)-(29) at the optimal solution d̄

∗.
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The problem (20)-(24) is obviously equivalent to the problem

Maximum
d,η, d∗, η∗, κ∗

rstΦ(−βm) = rstΦ(−
√

zT z) (30)

subject to

z = G(d, η, ψ, η∗,κ∗, d∗) (31)
q(d, η) = ψ (32)

gm(d, η,ψ) = 0, (33)
d∗ = d̄

∗ : µm (34)
η∗ = η̃ : δm (35)
κ∗ = κ : ξm (36)

where d∗, η∗ and κ∗ are the artificial variables.
The basic idea is simple. Assume that we wish to know the sensitivity of the objective function

to changes in some data values d̄
∗, η̃ and κ. Converting the data into artificial variables, d∗, η∗

and κ∗, and locking them, by means of constraints (34)-(36), to their actual values d̄, η̃ and κ,
we obtain a problem that is equivalent to the initial optimization problem but has a constraint
such that the values of the dual variables associated with them give the desired sensitivities. More
precisely, the values of the dual variables µm, δm and ξm associated with constraints (34)-(36) give
the sensitivities of the probability of failure to d̄

∗, η̃ and κ, respectively.
These sensitivities allow determining how the reliability of the breakwater changes when its

design values and the statistical parameters of the random variables involved are modified.
Similarly, the problem (25)-(29) is obviously equivalent to the problem

Minimize
d̄, η∗,κ∗

C0(d̄,η∗) , (37)

i.e., minimize with respect to d̄, subject to the yearly failure rate and geometric constraints:

r∗m(d̄,η∗, κ∗) ≤ R0
m; m = 1, · · · ,M (38)

q(d̄, η∗) = ψ (39)
h(d̄, η∗, ψ) ≤ 0 (40)

r∗m(d̄,η∗, κ∗) = rm(d̄∗, η∗, κ∗) + µT
mν−1(d̄− d̄

∗) (41)
+δT

mν−1(η
∗ − η̃) + ξT

mν−1(κ
∗ − κ); m = 1, · · · ,M, (42)

η∗ = η̃ (43)
κ∗ = κ (44)

where now η∗ and κ∗ are the artificial variables.
The values of the dual variables associated with constraints (38), (43) and (44) give the sensi-

tivities of the initial/construction cost to R0
m, η̃ and κ, respectively.

These sensitivities allow determining how the initial/construction cost of the breakwater changes
when the reliability bounds, its geometric dimensions and the statistical parameters of the random
variables are modified.

Remark 1 Note that problems (30)-(36) and (37)-(44) need to be solved only once, i.e., after solv-
ing problem (16) and (19). Because the starting point is already the optimal solution, convergence
is ensured at the first iteration.
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5 Optimized Design of a Composite Breakwater

The probability based design of composite breakwaters has been studied by Christiani et al. [35],
Burcharth and Sorensen [24], Sorensen and Burcharth [36], as well as in the European project
PROVERBS (see Oumeraci et al. [37]) and the PIANC Working Group 28 on Breakwaters with
Vertical and Inclined Concrete Walls [38].

In this section the proposed procedure is applied to the design of a composite breakwater. The
main section of the breakwater is shown in Figure 1 where the main parameters are shown. Notice
that these parameters define geometrically the different elements of the cross section and must
be defined in the construction drawings. Our goal is an optimal design based on minimizing the
construction and repair costs per running meter of the composite breakwater.

5.1 Modes of failure

In this study a total of 8 modes of failure has been considered: sliding failure (s), turning failure
(t), 4 foundation failures (b, c, d, sea), overtopping failure (o), and seaside berm instability failure
(a) as it is shown in Figure 2. But other failure modes, such as settlement, scour, deterioration and
corrosion of reinforcement due to chloride ingress through the concrete or concrete cracks, wave
transmission, wave reflection, etc. could have been considered.

All modes of failure are ascribed to ultimate limit states but the consequences of failure under
each mode are considered different. Like other disciplines of civil engineering the occurrence of the
failure does not necessarily mean that the structure will collapse but that its resistance is seriously
diminished and its functionality seriously affected. Some of those modes are correlated, because
they have common agents, or because one mode can induce the occurrence of others. Only the
correlation due to common agents is considered in this paper.

The external wave forces on the upright section are the most important considerations in the
design of vertical breakwaters, including both pulsating and impact wave loads. The well known
Goda pressure formulas (see Goda [25]) for the evaluation of the forces acting on the breakwater
(see Figure 2) have been used in this paper. But as the impulsive pressure coefficient used in
Goda’s formula does not accurately estimate the effective pressure due to impulsive pressure under
all conditions the new impulsive pressure coefficient proposed by Takahashi et al. [39] is used.
The maximum wave height (Hmax) is adjusted in the surf zone due to random wave breaking as
described by Goda [25]

Hmax

L0
≤ A

{
1− exp

(
−1.5

πh0

L0
(1 + 15 tan4/3 θb)

)}
(45)

where h0 is the water height in the distance of five times the maximum significant wave height
Hsmax toward the offshore of the breakwater, L0 is the deep water wave length, θb is the mean
angle of the sea bottom and the coefficient A takes different values depending of the kind of waves,
for example, it takes the value 0.17 for regular waves. Its upper and lower limits are 0.18 and 0.12,
respectively.

Thus the design wave height Hd is

Hd = min(Hmax,Hbreak). (46)
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Figure 2: The eight composite failure modes considered in the breakwater example.
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Sliding failure. This failure occurs when the breakwater caisson suffers an horizontal displace-
ment, it can occur as a slip either at the interface between the caisson concrete base and the rubble
material, or entirely in the rubble material. The safety against sliding failure can be verified by the
following limit state equation (see Figure 2(a))

gs = min(µc, tan(φr))(W1 − Fv)− Fh, (47)

where µc is the friction coefficient, φr is the angle of internal friction of rubble, Fh and Fv are
the total vertical and horizontal forces due to wave pressure, and W1 is the actual caisson weight
reduced for buoyancy, which are given by:

Fh = hc(p1 + p4)/2 + h′(p1 + p3)/2 (48)

Fv =
1
2
puB (49)

W1 = Vcγc − h′Bγw (50)
Vc = Bhb + woho (51)

where hc is the freeboard, p1, p3 and p4 are the Goda’s pressures at the water level, caisson’s bottom
and freeboard, respectively, pu is the uplift pressure, B the caisson width, Vc is the total caisson
volume, γc is the average unit weight of caisson, h′ is submerged height of the caisson, γw is the
water unit weight, hb is caisson height, and ho and wo are the parapet breakwater height and width,
respectively.

Overturning failure. This failure occurs when the breakwater structure rotates with respect to
point O (see Figure 2(b)) because of water pressure forces. Note that this failure is relevant only
in the cases of monolithic structures placed on very strong foundation soils or rock. Usually this
mode is dominated by the bearing capacity failure in the rubble mound. The safety against turning
failure can be verified by the following limit state equation

gt = W1y −Mv −Mh, (52)

where y is the W1 offset with respect to point O, and Mv and Mh are the moments with respect
to point O of the vertical and horizontal water pressure forces, which are given by

Mv =
2
3
FvB =

1
3
puB2 (53)

and
Mh =

1
6
(2p1 + p3)h′2 +

1
2
(p1 + p4)h′hc +

1
6
(p1 + 2p4)(hc)2. (54)

Foundation failure. The following geotechnical failure functions for a feasibility level of sophis-
tication proposed by Oumeraci et al. [37] considering that the subsoil material is rock are used in
this paper:

1. Rotation failure (b).

2. Rupture surface through rubble only (c).

3. Rupture surface through rubble and along top of subsoil (d).
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4. Additionally, we have also considered the seaward rupture surface through rubble only (sea).

The set of failure modes consists of a limited number of failure surfaces with a known a-priori
geometry (see Figures 2 (c)-(f)). Alternatively, more sophisticated equations based on the upper
bound theory can be used (see Sorensen and Burchart [36], Oumeraci et al. [37]).

It is often very practical to consider the equilibrium of the wall separately from the equilibrium
of the soil, thus the integrated effective stresses acting on the skeleton of rubble foundation are
obtained as resultant from the other forces acting on the wall. The distance of the vertical force
W1 − Fv component to the harbour side edge Bz is:

Bz = 2
W1y − FhyFh

− FvyFv

W1 − Fv
, (55)

where yFh
and yFv are the lever arms of Fh and Fv, respectively.

The resulting horizontal seepage force in the rubble mound (Fhu) can be obtained under the
assumptions of triangular pressure distribution in the horizontal direction and hydrostatic pressure
in the vertical direction as:

Fhu =
B2

z tan θs

2B
pu or Fhu =

hn(2Bz − hn/ tan θs)
2B

pu, (56)

which are valid if Bz ≤ hn/ tan θs or Bz > hn/ tan θs, respectively, where hn is the core height, and
θs is the angle between the bottom of the wall and the rupture surface (see Figure 2 (d)), that can
be obtained as

θs = arctan
hn

Bz + b + (hn + e) cot α`
, (57)

where b is the leeward berm width, e is the armor layer thickness and α` is leeward slope angle.
Then, the safety against rotation failure can be verified by the following limit state equation

(see Figure 2 (c))

gb = B2
z (γs − γw) tan φr

(
tan2(π/4 + φr/2) exp(π tanφr)−1

)
−(W1 − Fv)

(
1

1− Fh/(W1 − Fv)

)3

,

(58)
where γs is the rubble mound unit weight.

The safety against rupture surface through rubble only failure can be verified by the following
limit state equation (see Figure 2 (d))

gc = W1− Fv+ (γs − γw)[(Bz + b + e cotα`)hn/2 + (b + e cotα`/2)e]−(Fh + Fhu) cot(φr − θs). (59)

The safety against rupture surface through rubble and along top of subsoil failure can be verified
by the following limit state equation (see Figure 2 (e))

gd = (W1−Fv + (γs − γw)[(2(Bz + b + e cotα`) + hn(cotα` − cotαφr))hn/2 + (b + e cotα`/2)e])µs

−(Fh + Fhu), (60)

where µs is the friction coefficient between the rubble bedding layer and the rock subsoil. Note
that in this case the angle between the bottom of the wall and the rupture surface is φr (see Figure
2 (e)),

In addition, for avoiding the seaward failure in calm sea wave conditions, the rupture surface
through rubble only is considered using the following limit state (see Figure 2 (f)) equation

gsea = φr − arctan
(

hn

B + Bm + (e + hn) cot αs)

)
, (61)
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where Bm is the seaward berm width and αs is the seaward slope angle. Note that no wave forces
are considered in this failure mode, so the yearly probability treatment will be different than the
other failure modes (it does not depend on rst).

Overtopping failure. For a composite breakwater of seaboard slope tanαs and freeboard hc,
(see Figure 2 (g)), and a sea state defined by a significant maximum wave height Hsmax , the mean
overtopping volume q per unit of breakwater length is given, for a caisson breakwater, by the
exponential relation (see Franco and Franco [40])

q = a exp(−bohc/Hsmax)
√

gH3
smax

, (62)

where q/
√

gH3
smax

is the dimensionless discharge, hc/Hsmax is the relative freeboard, and a and
bo are coefficients that depend on the structure shape and on the water surface behavior at the
seaward face.

The definition of tolerable limits for overtopping is still an open question, given the high ir-
regularity of the phenomenon and the difficulty of measuring it and its consequences. Different
levels from functional safety (serviceability limit states) to structural safety (ultimate limit states)
mainly in cast in situ concrete superstructures could be considered (see Goda [25] and Franco et
al. [41]). In this paper we have just considered the structural damage.

The safety against overtopping failure can be verified from the following equation:

go = q0 − q, (63)

where q0 is the maximum allowable mean overtopping discharge for structural damage.

Berm instability failure. It is customary in caisson breakwater construction to provide a few
rows of foot-protection concrete blocks at the front and rear of the upright section. It usually
consists of rectangular blocks weighting form 100 to 400 kN depending on the design wave height.
This protection is indispensable especially against oblique wave attack. The remainder of the berm
and slope of the rubble mound foundation must be protected with armor units of sufficient weight
to withstand the wave action. In this paper we take into account only the stability of the berm
and the slope, so berm instability failure refers to the removal of pieces from the berm and slope
as it is shown in Figure 2 (h).

Based on experiments, Losada [1] and following Tanimoto, Yagyu and Goda [42], proposed the

following limit state equation to evaluate the dimensionless quantity
W

γwH3
d

:

W

γwH3
d

= RΦe, (64)

where Φe is the berm stability function, R is an dimensionless constant, which depends on γs (for
rubble armor units) and γw, and W is the individual armor block weight of the berm, that are
given by

W = γs`
3
e (65)

R =
γs/γw(
γs

γw
− 1

)3 (66)
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Φe = min



0.3,

[
4.2

(1− c)d
c1/3Hd

+ 3.24 exp

(
−2.7

d(1− c)2

Hdc1/3

)]−3


 (67)

c =
4πd

L sinh
(

4πd

L

) sin2
(

2πBm

L

)
, (68)

where le is the equivalent cubic block side, d is the berm depth in front of the caisson, c is an
auxiliary variable, and Bm is the seaward width. Under such a conditions, the occurrence of failure
can be determined from the following equation:

ga = W − γwRΦeH
3
d . (69)

Remark 2 Note that once the optimal solution has been obtained, the limit state equations (47),
(52), (58), (59), (60), (61), (63) and (69) allow one to determine global and sets of partial safety
factors which are equivalent to the reliability constraints in the sense of leading to the same optimal
solution (see PIANC, Working Group 28 [38] and Burcharth [23]).

In fact, the proposed method can be extended to include global and partial safety factors. The
authors are working in this line that is the aim of another paper.

5.2 Practical design criteria

In maritime works there are some rules of good practice that should be observed. Some of them
are country dependent and some have historical roots, others are taken as a precaution against
impulsive breaking wave conditions. Those used in this example, are (see Figure 1)

1. Layers slopes and berms widths: The seaside and leeward berm and slope protection
has the following restrictions. The minimum armor unit weight allowed is 0.3 kN while the
maximum is 21 kN (concrete pieces have to be used for greater weight armor units), this
implies that the armor layer thickness limits are (e = 2`e):

0.5 ≤ e ≤ 2 (m), (70)

where `e is the equivalent cubic block side for the main layer. The minimum berm widths
limits, note that berm widths in Spain are smaller than usual berm widths in Japan are:

Bm ≥ 2`e; b ≥ 2`e. (71)

The gradient of the slope of the rubble mound is usually set at

1.5 ≤ cotαs ≤ 3; 1.5 ≤ cotα` ≤ 3. (72)

2. Construction or operational reasons: The caisson width limits are:

10 ≤ B ≤ 35 (m), (73)

while the maximum seaward and the minimum leeward freeboard are

hc = hn + hb + ho − hlo − tr ≤ 15; hn + hb − hlo − tr ≤ 1 (m), (74)

respectively, where hb is caisson height, hn is core height, hlo is the minimum water depth
value in front of the breakwater and tr is the tidal range.
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The minimum water level in front of the vertical breakwater and the minimum water depth
in front of the caisson are respectively,

h ≥ hlo; d ≥ hlo − (hh + e). (75)

The following constraints are used for considering the vertical breakwater as a composite
breakwater:

hn + e

hlo + tr
≥ 0.3;

hn + e

hlo
≤ 0.9. (76)

For safety reasons the minimum parapet breakwater height is limited to:

ho ≥ 1 (m). (77)

3. Geometric identities:

h = h1 + h2; h = h′ + hn; h′ + hc = hb + ho; d + e = h′ (78)

where h1 is the water level owing to the astronomical tide, and h2 is the water level produced
by barometrical or storm surge effects.

5.3 Failure rate upper bounds

Thought the different maritime structures can be used in very different conditions where the con-
sequences of a partial or complete failure also are very different, and the accepted probability of
failure can vary considerably. Human life, quality and service reliability, and perhaps other criteria
must be considered and some constraints on the yearly failure probability rate must be imposed by
code designers.

In this paper the selection of the failure rates depends on the consequences of failures, thus, the
greater the consequence of failure is the lower failure rate bound is selected. Note that all failure
rates are considered annual except the seaward geotechnical failure that will be considered in the
whole lifetime of the structure.

The upper failure rate bounds are:

R0
s = 0.01; R0

t = 0.001; R0
b = 0.001; R0

d = 0.001
R0

sea = 0.001; R0
o = 0.03; R0

a = 0.01.
(79)

6 Statistical assumptions

To complete the model, the statistical assumptions need to be provided. They are strongly depen-
dent on the location of the maritime structure. For illustrative purposes, in this section we present
those for a composite breakwater in the harbor at Gijón.

6.1 Random and deterministic project factors

The joint distribution of all variables involved is based on the following assumptions (all the numeric
values are listed in Table 1):
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1. Optimized design variables: The subset {B, hb, ho} of optimized design variables d related to
the concrete caisson are assumed to be deterministic because the construction control is good,
whereas the subset of variables associated with the rubble mound {b,Bm, e, hn, α`, αs} are
considered normal random variables whose mean values are obtained from the optimization
procedure. In what follows the mean value, standard deviation and the coefficient of variation
of any variable x will be denoted as µx, σx and vx, respectively.

2. Load variables: The joint distribution of the three-variate random variable (Hsmax ,Hmax,
Tzmax) defining our simplified storms and other factors affecting the incident waves, are defined
by definition of (see Appendix C for details):

(a) The marginal cumulative distribution function of Hsmax . Based on extreme value consid-
erations and the truncated character of the simplified storms (they were considered for
Hsmax ≥ 3), it is shown in Appendix C that Hsmax can be assumed to be a generalized
Pareto distribution.

(b) The conditional distribution Hmax|Hsmax of Hmax given Hsmax . Based on a regres-
sion analysis combined with a probability paper analysis (see Appendix C), we assume
Hmax|Hsmax to be the maximal Weibull distribution.

(c) The conditional distribution Tzmax |Hmax,Hsmax of Tzmax given Hmax,Hsmax . Based on
a regression analysis combined with a probability paper analysis (see Appendix B), we
assume that the distribution of Tzmax |Hmax,Hsmax is normal.

(d) The water depth h1, considering the tidal elevation, is modelled as a random variable
with cumulative distribution function

Fh1(x) =
arccos (2(hlo − x)/tr + 1)

π
(80)

where hlo is the minimum value of h1 (zero port reference level) and tr is the tidal range.

(e) The meteorological tide h2 caused by barometrical effects is assumed to be a normal
random variable with mean µh2 and standard deviation σh2 .

(f) The incident wave angle θw is assumed to be normal N(0, σ2
θw

).

(g) The coefficient A in (45) for modelling the change in the maximum wave height due to
random wave breaking is modelled as a normal random variable. As there is no clear
information on the variance but only reasonable extreme values, the simple rule that
two standards deviations account for the difference between the maximum (minimum)
and the mean value was adopted. Thus, µA = (0.18 + 0.12)/2 = 0.15 and σA = (0.18−
0.12)/4 = 0.015.

3. The soil strength is modelled using the following assumptions:

(a) The friction factor µc between the caisson base and the rubble is assumed log-normal
distributed with mean µµc and standard deviation σµc .

(b) The friction coefficient µs between the rubble bedding layer and the rock subsoil is
assumed log-normal distributed with mean µµs and coefficient of variation vµs .

(c) Since the breakwater foundation is made of friction material an statistical model for
the angle of internal friction of rubble is required. This angle is modelled by a normal
random variable with mean µφr and coefficient of variation vφr . We do not take into
account spatial variation.

18



(d) The average unit weight of caisson γc and the unit weight of the rubble γs are consid-
ered normal random variables with means µγc , µγs , and standard deviations σγc , σγs ,
respectively.

4. In an attempt to consider all the sources of uncertainty, the uncertainties of the formulas used
in the computations have to be examined. Some models are based on empirical relations and
show a certain scatter, other are physically based by rely on assumptions or simplifications.
In any case a calibration factor is applied to the result of the formula providing the true value.

(a) The Goda formulae for pulsating wave forces are biased in order to provide a safe relation
(see Van der Meer [43] and Oumeraci et al. [37]). The uncertainty is taken into account
using the calibration factors Ag, Bg, MAg , MBg and Sg affecting horizontal forces (Fh),
uplift forces (Fv), horizontal moments (Mh), uplift moments (Mv) and seepage horizontal
forces, respectively.

(b) The reliability of the overtopping prediction formula (62) can be expressed assuming a
normal distribution for the random variable bo, thus bo ∼ N(µbo , σbo) (see Franco and
Franco [40]). Note that the coefficient a in (62) is considered deterministic.

(c) The berm stability function φe in (64) uncertainty is considered due to the normal
random coefficient Car ∼ N(µCar , σ

2
Car

).

5. To consider model uncertainties for the limit state equations model factors equivalent to
global safety factors are considered. These will be random parameters Fm (m refers to failure
mode) log-normally distributed with expected values µFm and coefficients of variation vFm .
Note, for example, that in the overtopping failure, Fo takes into account the uncertainty of
the critical structural safety discharge q0.

All these assumptions and the numeric values used in the example are listed in Table 1.
Dependence assumptions The group of random variables {Hsmax ,Hmax, Tzmax} are assumed
to be dependent with the marginal and conditional distributions given above. For the sake of
simplicity, the tidal water level is assumed to be independent of the remaining variables, and the
same assumption is used for the meteorological tide; note however that this hypothesis is not really
valid because it is dependent on Hsmax . The same would be applicable if storm surge effect in
shallow waters were considered.

The remaining variables will be considered independent in this paper (correlation coefficients
ρAg = 0 and ρBg = 0) though, for example, some authors (see Burcharth and Sorensen [24])
consider dependence between Fh and Mh, and Fv and Mv. It is important to remember here that,
in addition, the correlation of the different modes of failure stems from the fact that they depend
on common variables that can be dependent or independent. Thus, even in the case of assuming
independent variables, the modes of failure will become correlated because of their dependence on
common variables. In other words, the main source of mode of failure correlation is its dependence
on common variables and not the dependence on the variables themselves.

The above probability functions and the value of their parameters have been chosen solely for
illustration purposes. In order to apply the method to real cases, a more careful selection has to be
done, using long term data records. Only a few countries have enough information to infer these
functions adequately.
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Table 1: Statistical model and random model parameters κ.

i Xi Meaning Mean (µ) Parameters Distrib.
1 b Leeward berm width (m) b̄ vb = 0.1 Normal
2 Bm Seaward berm width (m) B̄m vBm

= 0.1 Normal
3 e Armor protection thickness (m) ē ve = 0.1 Normal
4 hn Rubble core height (m) h̄n vhn = 0.1 Normal
5 α` Leeward slope angle (rad) ᾱ` vα`

= 0.1 Normal
6 αs Seaward slope angle (rad) ᾱs vαs = 0.1 Normal

Maximum significant κs = −0.1197
7 Hsmax wave height (m) δs = 0.446 Pareto

λs = 3
Hmax obtained from ar = −0.641855
linear regression of Hmax|Hsmax

br = 1.92856
Residual between the maximum κw = 0.172482

8 Hmax wave height (m) & the one δw = 0.470151 Weibull
obtained from above λw = −0.201646
Tzmax

obtained from at = 5.66953
linear regression of bt = 3.5765
Tzmax

|Hmax,Hsmax
ct = −1.35536

9 Tzmax Hmax wave period (seg) σTzmax
= 1.6128 Normal

10 h1 Tidal water level (m) hlo = 20 Cosine
tr = 5

11 h2 Meteorological water level (m) 0.02414 σh2 = 0.11597 Normal
12 θw Incident wave angle (rad) 0.0 σθw = π/18 Normal
13 A Random wave breaking coefficient 0.15 σA = 0.015 Normal
14 µc Friction factor caisson-rubble 0.636 σµc = 0.0954 LN
15 µs Friction factor rubble-rock 0.5 vµs = 0.1 LN
16 φr Rubble friction factor (rad) 0.601 vφr = 0.1 Normal
17 γc Average density of caisson (kN/m3) 22.3 σγc = 0.11 Normal
18 γs Rubble unit weight (kN/m3) 21 σγs = 0.11 Normal
19 Ag Fh model uncertainty 0.9 σAg = 0.2 LN
20 Bg Fv model uncertainty 0.77 σBg = 0.2 LN
21 MAg Mh model uncertainty 0.72 σMAg

= 0.37 LN
22 MBg Fv model uncertainty 0.72 σMBg

= 0.34 LN
23 Sg Seepage model uncertainty 0.65 σSg = 0.30 LN
24 bo Overtopping model uncertainty 3 σbo = 0.26 Normal
25 Car Stability function uncertainty 1 σCar = 0.1 Normal

Fm m = s, t, b, c, d, sea 1 vFm = 0.2 LN
32 Fa Armor failure uncertainty, m = a 1 vFa = 0.1 LN
33 Fo Overtopping failure uncertainty, m = o 1 vFo = 0.1 LN

7 Numerical example

The proposed method has been implemented in GAMS (General Algebraic Modelling System)
(see Castillo, Conejo, Pedregal, Garćıa and Alguacil [44]). GAMS is a software system especially
designed for solving optimization problems (linear, non-linear, integer and mixed integer) of small
to very large size. All the examples have been solved using the generalized reduce gradient method
(for more details see VanderPlaats [45] or Bazaraa, Jarvis y Sherali [46]) that has shown good
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Table 2: Fixed deterministic parameters used in the numerical example.

i Xi Meaning Value (µ) Units
1 a Structure shape coefficient 0.082 −−
2 Ca` Armor layer construction cost per unit volume 70 $/m3

3 Cc Sand filled caisson construction cost per unit volume 123 $/m3

4 Cco Rubble core construction cost per unit volume 2.4 $/m3

5 q0 Maximum allowable mean overtopping discharge 0.2 m3/s/m.l.
for structural damage

6 R0
s Sliding failure rate upper bound, m = s 0.01 −−

R0
m m = {t, b, c, d, sea} failure rate upper bound 0.001 −−

12 R0
o Overtopping repair percentage, m = o 0.01 −−

13 R0
a Armor failure rate upper bound, m = a 0.01 −−

14 rst Mean number of storms per year 45.3427 storms/year
15 wo Caisson parapet width 2 m
16 γw Water unit weight 10.35 kN/m3

17 tan θb Mean angle tangent of the sea bottom 1/50 −−

convergence properties including constraints to the variables. The main advantages of GAMS are:

1. It is a high quality software package (reliable, efficient, fast, widely tested, etc.)

2. It allows the problem to be defined as it is stated mathematically, i.e., without difficult
transformations.

3. It allows relations to be handled in implicit or explicit forms.

4. It allows very large (in terms of number of variables or constraints) problems to be solved.

5. Unlike level II methods FORM the proposed method does not need to invert the Rosen-
blatt transformation and the failure region need not be written in terms of the normalized
transformed variables.

Of course, other optimization programs such as AIMMS [47, 48], AMPL [49, 50], LINDO, What’s
Best, MPL or the Matlab Optimization Toolbox, can be used instead.

To illustrate the method, the automatic optimal design (see Figure 1) of a composite breakwater
with the statistical model and random model parameters κ and the fixed deterministic parameters
shown in Tables 1 and 2, respectively, has been performed. Note that the maximum yearly failure
rates have been defined depending on the importance of the corresponding failure.

Analysis of results The following conclusions can be drawn from the analysis of the results:

1. The proposed method leads to the solution of the breakwater design showing a good behavior,
the number of reliability evaluations is 72, lower than the the typical number used in these
king of problems (100 − 500) (see Voortman et al. [11]). Note that in the computational
example we have used 9 design variables, 33 statistical variables and 8 failure modes.

2. Table 3 shows the convergence of the process that is attained after 9 iterations with an error
tolerance lower than 3 × 10−6. The first column shows the initial/construction cost (C0),
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Figure 3: Scaled optimal solution for the vertical breakwater example.

Table 3: Illustration of the convergence of the iterative method.

ITERATIONS
Variable Units 1 2 3 8 9 (end)

C0 $ 92019.5 104321.8 115128.7 127926.5 127926.2
b m 30.00 32.62 26.79 9.59 9.47
B m 30.00 34.03 34.08 35.00 35.00

Bm m 5.00 3.72 3.06 3.29 3.29
e m 2.00 1.86 1.53 1.65 1.65
hb m 22.00 22.38 25.69 28.46 28.46
hn m 7.00 6.97 5.97 6.11 6.11
ho m 3.00 3.90 2.73 1.00 1.00
α` m 0.59 0.59 0.59 0.57 0.56
αs m 0.59 0.59 0.59 0.59 0.59
rs – 0.00697 0.00376 0.00136 0.00046 0.00046
rt – 0.00034 0.00009 0.00004 0.00001 0.00001
rb – 0.00958 0.00384 0.00204 0.00100 0.00100
rc – 0.00403 0.00191 0.00103 0.00100 0.00100
rd – 0.00272 0.00145 0.00105 0.00075 0.00075

rsea – 0.00000 0.00000 0.00000 0.00000 0.00000
ro – 0.08185 0.03614 0.01833 0.01000 0.01000
ra – 0.03102 0.01161 0.01102 0.01000 0.01000

the optimized design variables d, and the yearly failure rates of the different failure modes
resulting after each iteration. The last column gives the corresponding final values. The scale
optimal breakwater design is shown in Figure 3.

3. It is interesting to see that as in the first iterations the failure rate constraints do not hold
(they are greater than the maximum failure rates R0

m), the construction cost is increased in
order to increase the safety levels until the final design is obtained, where all the reliability
constraints hold.

4. At the optimal solution four reliability constraints are active, rotation failure (b), rupture
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Table 4: Failure or maximum likelihood points for each failure mode corresponding to the optimal
design.

xi z0 = 0 s t b c d sea o a
b 9.4724 9.4724 9.4724 9.4724 9.4171 9.4426 9.4724 9.4724 9.4724
Bm 3.2909 3.2909 3.2909 3.2909 3.2909 3.2909 3.2401 3.2909 3.4629
e 1.6454 1.6510 1.6498 1.6503 1.6469 1.6482 1.6280 1.6454 1.5108
hn 6.1123 6.0956 5.9922 6.1060 6.1709 6.0585 7.1086 5.9409 6.2666
α` 0.5637 0.5637 0.5637 0.5637 0.5676 0.5651 0.5637 0.5637 0.5637
αs 0.5880 0.5880 0.5880 0.5880 0.5880 0.5880 0.6289 0.5880 0.5880
Hsmax 3.3223 9.4296 7.4917 9.2105 9.2521 9.3759 3.3223 8.9424 8.0122
Hmax 5.7308 17.4631 13.8981 17.0571 17.1345 17.3602 5.7308 16.5694 14.9467
Tzmax 9.7846 16.5194 14.7098 16.2080 16.2649 16.4660 9.7846 15.1945 13.8174
h1 22.5000 24.0418 24.0841 23.8242 23.8992 23.9551 22.5000 24.3648 20.7681
h2 0.0241 0.0277 0.0279 0.0267 0.0270 0.0273 0.0241 0.0303 0.0193
θw 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
A 0.1500 0.1585 0.1500 0.1570 0.1571 0.1582 0.1500 0.1500 0.1625
µc 0.6290 0.5417 0.6290 0.6290 0.6290 0.6290 0.6290 0.6290 0.6290
µs 0.4975 0.4975 0.4975 0.4975 0.4975 0.4652 0.4975 0.4975 0.4975
φr 0.6010 0.6010 0.6010 0.5205 0.5432 0.6007 0.3651 0.6010 0.6010
γc 22.3000 22.2941 22.2914 22.2966 22.2951 22.2951 22.3000 22.3000 22.3000
γs 21.0000 21.0000 21.0000 20.9972 20.9993 20.9987 21.0000 21.0000 20.9907
Ag 0.8786 1.2141 0.8786 1.0615 1.1634 1.1919 0.8786 0.8786 0.8786
Bg 0.7453 0.7935 0.7453 0.7253 0.7724 0.7825 0.7453 0.7453 0.7453
MAg 0.6404 0.6404 2.7363 1.0185 0.6865 0.6487 0.6404 0.6404 0.6404
MBg 0.6511 0.6511 1.2600 0.8749 0.6854 0.6574 0.6511 0.6511 0.6511
Sg 0.5902 0.5902 0.5902 0.5902 0.6044 0.6392 0.5902 0.5902 0.5902
bo 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 2.8816 3.0000
Car 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0264
Fs 0.9806 1.2758 0.9806 0.9806 0.9806 0.9806 0.9806 0.9806 0.9806
Ft 0.9806 0.9806 1.5182 0.9806 0.9806 0.9806 0.9806 0.9806 0.9806
Fb 0.9806 0.9806 0.9806 1.0786 0.9806 0.9806 0.9806 0.9806 0.9806
Fc 0.9806 0.9806 0.9806 0.9806 1.2382 0.9806 0.9806 0.9806 0.9806
Fd 0.9806 0.9806 0.9806 0.9806 0.9806 1.2773 0.9806 0.9806 0.9806
Fsea 0.9806 0.9806 0.9806 0.9806 0.9806 0.9806 0.3849 0.9806 0.9806
Fo 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 1.0092 0.9950
Fa 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 0.9950 1.0223

surface through rubble only (c), overtopping (o) and armor instability failure (a). Thus, it can
be concluded that the ultimate limit state failure of the composite breakwater is determined
by subsoil failure as was pointed out by Voortman et al [11], Martinelli et al. [51]. The safety
requirements corresponding to the remaining failure modes are ensured with the satisfaction
of these four failure modes, this implies, for example, that sliding and overturning failure
modes are correlated with then.

5. Table 4 shows the failure points or points of maximum likelihood per failure mode, that is the
most probable values of the random variables that induce the failure of the structure. The
second column show the most probable values of the random variables (z0) for comparing with
the failure points. See for example, that the most probable significant wave height Hsmax is
3.3223 (m), but the storms which cause the failure of the structure are characterized by design
wave conditions with significant wave heights between 7.4917 and 9.4296 (m), maximum wave
heights between 13.8981 and 17.4631 (m), and wave periods between 13.8174 and 16.5194 (s)
depending on the failure mode, that coincide with the range of design wave conditions which
caused disasters in the vertical breakwaters built before World War II (see Oumeraci [52]).

6. The cost sensitivities with respect to the cost of materials and some parameters of the model
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Table 5: Sensitivities of the total expected cost with respect η̃ and κ parameters.

Xi
∂E[cost]

∂xi
|xi| ($)

µh2 123.2
µθw -
µA 141887.2
µµc -
µµs -
µφr -235770.3
µγc -138398.5
µγs -178656.6
µAg 72939.1
µBg -7304.3
µMAg

30221.0

µMBg
25769.2

µSg 300.9
µbo -33985.9
µCar 14233.7
µFs -
µFt -
µFb

45505.5
µFc 12597.3
µFd

-
µFsea -
µFo 9207.3
µFa 14609.7
a 9207.3
Cal 4349.0
Cc 122752.6
Cco 824.5
q0 -9207.3
rst 30948.2
wo -427.5
γw 316982.4
θb 18545.2
R0

s -
R0

t -
R0

b -17858.1
R0

c -2018.9
R0

d -
R0

sea -
R0

o -6039.9
R0

a -5031.4

Xi
∂E[cost]

∂xi
|xi| ($)

vb 7.2
vBm 1473.0
ve 3622.2
vhn 873.0
vα` 10.2
vαs -
κS 86380.4
δS 156116.5
λS 78796.3
ar -569.0
br 8052.8
κW -64.2
δW 789.1
λW -178.8
aT 29653.9
bT 174599.7
cT -122459.2
σTzmax

4249.2
hlo 102092.0
tr 27067.6
σh2 38.3
σθw -
σA 8243.9
σµc -
vµs -
vφr 35582.4
σγc 22.7
σγs 50.0
σAg 12918.6
σBg 665.1
σMAg

7502.5

σMBg
2273.3

ρAg 15860.7
ρBg -1278.7
σSg -40.1
σbo 1341.4
σCar 376.0
vFs -
vFt -
vFb 2500.9
vFc 2397.4
vFd -
vFsea -
vFo 38.6
vFa 247.6

(η̃ and κ) are given in Table 5. It allows one to know how much a small change in a single
design factor value changes the optimal expected cost per running meter of the composite
breakwater. This information is extremely useful during the construction process to control
the cost, and for analyzing how the changes in the yearly failure rates required by the codes
influence the total cost of maritime works. For example, a change of one unit in the cost of
concrete Cc leads to a relative cost increase of 122752.6 $ (see the corresponding entry in Table
5). Similarly, while an increase in the unit weight of the rubble mound γs decreases the cost
(−178656.6 $), both the tidal range (tr) and the zero port (hlo) increase the cost by 27067.6
and 102092.0 $ per relative unit increase, respectively. Note that the most restricted failure
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Table 6: Sensitivities of the the yearly failure rates rm with respect the design variables (d̄).

Xi
∂rs

∂xi
|xi| ($)

∂rt

∂xi
|xi| ($)

∂rb

∂xi
|xi| ($)

∂rc

∂xi
|xi| ($)

∂rd

∂xi
|xi| ($)

∂rsea

∂xi
|xi| ($)

∂ro

∂xi
|xi| ($)

∂ra

∂xi
|xi| ($)

b - - - -0.000609 -0.000245 - - -
B -0.003236 -0.000130 -0.010785 -0.007704 -0.004960 - - -
Bm - - - - - - - 0.058918
e 0.000163 0.000002 0.000313 0.000092 0.000130 - - -0.080433
hb -0.003224 -0.000059 -0.001518 -0.005433 -0.004000 - -0.139787 -
hn -0.000132 -0.000016 -0.000108 0.001015 -0.000682 - -0.029183 0.027702
ho 0.000060 0.000002 0.000143 0.000120 0.000094 - -0.004912 -
α` - - - 0.000734 0.000197 - - -
αs - - - - - - - -

Table 7: Sensitivities of the yearly failure rates rm with respect the η̃ parameters.

Xi
∂rs

∂xi
|xi| ($)

∂rt

∂xi
|xi| ($)

∂rb

∂xi
|xi| ($)

∂rc

∂xi
|xi| ($)

∂rd

∂xi
|xi| ($)

∂rsea

∂xi
|xi| ($)

∂ro

∂xi
|xi| ($)

∂ra

∂xi
|xi| ($)

µh2 0.000003 - 0.000005 0.000005 0.000004 - 0.000119 -0.000093
µθw - - - - - - - -
µA 0.002747 - 0.004877 0.004962 0.004282 - - 0.088997
µµc -0.003798 - - - - - - -
µµs - - - - -0.005261 - - -
µφr - - -0.012172 -0.009118 -0.000039 - - -
µγc -0.005248 -0.000131 -0.006670 -0.009550 -0.007113 - - -
µγs - - -0.005026 -0.001191 -0.001752 - - -0.171919
µAg 0.002374 - 0.003550 0.004723 0.003701 - - -
µBg 0.000466 - -0.000476 0.000592 0.000592 - - -
µMAg

- -0.000006 0.001652 0.000357 0.000052 - - -

µMBg
- 0.000016 0.001409 0.000304 0.000044 - - -

µSg - - - 0.000149 0.000355 - - -
µbo - - - - - - -0.056269 -
µCar - - - - - - - 0.028290
µFs 0.003247 - - - - - - -
µFt - 0.000093 - - - - - -
µFb

- - 0.002548 - - - - -
µFc - - - 0.006240 - - - -
µFd

- - - - 0.005261 - - -
µFsea - - - - - - - -
µFo - - - - - - 0.015244 -
µFa - - - - - - - 0.029037
a - - - - - - 0.015244 -
Ca` - - - - - - - -
Cc - - - - - - - -
Cco - - - - - - - -
q0 - - - - - - -0.015244 -
rst 0.000465 0.000008 0.001000 0.001000 0.000746 - 0.010000 0.010000
wo -0.000011 - -0.000035 -0.000024 -0.000015 - - -
γw 0.005247 0.000131 0.011694 0.010739 0.008864 - - 0.171843
θb 0.000373 - 0.000654 0.000668 0.000580 - - 0.010959

mode is the rotation one (b) because its absolute value sensitivity is the greater (17858.1),
obviously, if the maximum yearly failure rate is increased, the cost decrease (negative value
of the sensitivity). It is important to mention that as the weakest link in the optimal design
is the subsoil failure the relative sensitivity with respect the rubble friction factor (µφr) is the
greatest in absolute value (−235770.3), thus, it can be concluded that the uncertainty in the
subsoil properties plays a very important role (see Voortman et al. ?).
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Table 8: Sensitivities of the yearly failure rates rm with respect κ parameters.

Xi
∂rs

∂xi
|xi| ($)

∂rt

∂xi
|xi| ($)

∂rb

∂xi
|xi| ($)

∂rc

∂xi
|xi| ($)

∂rd

∂xi
|xi| ($)

∂rsea

∂xi
|xi| ($)

∂ro

∂xi
|xi| ($)

∂ra

∂xi
|xi| ($)

vb - - - 0.000004 - - - -
vBm - - - - - - - 0.002928
ve - - - - - - - 0.007166
vhn - - - 0.000010 0.000006 - 0.000842 0.000682
vα` - - - 0.000005 - - - -
vαs - - - - - - - -
κS -0.001395 -0.000040 -0.002906 -0.002928 -0.002228 - -0.028183 -0.022953
δS 0.002389 0.000089 0.005104 0.005118 0.003840 - 0.051111 0.047227
λS 0.001115 0.000060 0.002466 0.002456 0.001807 - 0.025803 0.028268
ar -0.000056 0.000002 -0.000078 -0.000085 -0.000090 - - 0.004236
br -0.001599 0.000056 -0.002154 -0.002372 -0.002524 - - 0.101973
κW - - - - - - - -0.000145
δW -0.000011 0.000001 -0.000017 -0.000018 -0.000017 - - 0.002232
λW -0.000018 - -0.000024 -0.000027 -0.000028 - - 0.001331
aT 0.000837 0.000020 0.001636 0.001666 0.001349 - - -0.005824
bT 0.004979 0.000093 0.009507 0.009724 0.007980 - - -0.029435
cT 0.003495 0.000065 0.006672 0.006825 0.005600 - - -0.020809
σTzmax

0.000117 0.000004 0.000207 0.000214 0.000189 - - 0.000256
hlo 0.002557 0.000047 0.004050 0.004501 0.003629 - 0.098245 -0.076851
tr 0.000517 0.000010 0.000774 0.000877 0.000718 - 0.021441 -0.002951
σh2 - - - - - - 0.000030 0.000019
σθw - - - - - - - -
σA 0.000156 - 0.000227 0.000235 0.000235 - - 0.007397
σµc 0.000551 - - - - - - -
vµs - - - - 0.000403 - - -
vφr - - 0.001883 0.000970 - - - -
σγc 0.000001 - 0.000001 0.000002 0.000002 - - -
σγs - - - - - - - 0.000076
σAg 0.000872 - 0.000567 0.001387 0.001238 - - -
σBg -0.000001 - 0.000039 -0.000016 -0.000009 - - -
σMAg

- 0.000071 0.000425 -0.000046 -0.000009 - - -

σMBg
- 0.000011 0.000131 -0.000036 -0.000007 - - -

ρAg - - 0.000866 0.000193 0.000029 - - -
ρBg - - -0.000074 0.000017 0.000003 - - -
σSg - - - -0.000020 -0.000033 - - -
σbo - - - - - - 0.002221 -
σCar - - - - - - - 0.000747
vFs 0.000713 - - - - - - -
vFt - 0.000036 - - - - - -
vFb

- - 0.000140 - - - - -
vFc - - - 0.001188 - - - -
vFd

- - - - 0.001162 - - -
vFsea - - - - - - - -
vFo - - - - - - 0.000064 -
vFa - - - - - - - 0.000492

7. Note that increases of the variable dispersions usually lead to cost increases except for some
parameters related to the Goda formulae uncertainty.

8. The sensitivities of the yearly failure rates with respect to the optimized design variables
and d̄, non-optimized design variables η̃ and parameters κ are given in tables 6, 7 and 8,
respectively. As an example, the influence of the freeboard on the verification equation for
overtopping (63) and, therefore, on the corresponding yearly failure rate will be analyzed.
This equation shows how this failure occurrence depends only on hc, q0, a, bo and Hsmax . Note
that increasing only the freeboard will lead to a safer structure. The freeboard is defined as
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hc = hn+hb+ho−h with h = h1+h2 and hlo ≤ h1 ≤ hlo+tr. Any increase on variables related
to water depth hlo, tr, h2 will provide an increase on yearly failure rate for overtopping while
any increase on variables related to breakwater heights hn, hb, ho will generate a decrease of
yearly failure rate for overtopping due to the fact that all of them appear in the freeboard
definition with negative sign for water depths and positive sign for breakwater heights.

8 Conclusions

The methodology presented in this paper, denoted optimal dual method failure-rate versus failure-
probability, provides a rational and systematic procedure for automatic and optimal design of
maritime works. The engineer is capable of observing simultaneous bounds for the yearly failure
rates and probabilities of failure against different modes of failure, so that the most stringent
conditions prevail. In addition, a sensitivity analysis can be easily performed by transforming the
input parameters into artificial variables, which are constrained to take their associated constant
values. The provided example illustrates how this procedure can be applied and proves that it is
very practical and useful.

Some additional advantages of the proposed method are:

1. The method allows and easy connection with optimization frameworks.

2. The responsibility for iterative methods is given to the optimization software.

3. The reliability analysis takes full advantage of the optimization packages, which allows the
solution of huge problems without the need of being an expert in optimization techniques.

4. Sensitivity values with respect to the target reliability levels are given, without additional
cost, by the values of the dual problem.

5. It can be applied to different types of problems such as linear, non-linear, mixed-integer
problems. The designer needs just to choose the adequate optimization algorithm.
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A Appendix: Set of variables

As an illustration, for the composite breakwater example (see Figure 1), the optimized design vari-
ables, d, are the geometric variables defining the dimensions of the main elements of the composite
breakwater, i.e., (see Figure 1):

d = {b,B, Bm, e, hb, hn, ho, α`, αs}, (81)
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the non-optimized design variables, η, include other geometric variables, costs of materials, unit
weights, etc., i.e.:

η = {Hmax,Hsmax , Tzmax , h1, h2, θw, A, µc, µs, φr, γc, γs, Ag, Bg,MAg ,MBg , Sg, bo, Car}
∪{Fm, a, Ca`, Cc, Cco, q0, rst, wo, γw, tan θb, R

0
m},

the random model parameters, κ, include the coefficients of variations, standard deviations, pa-
rameters of the joint probability density function, etc.:

κ = {vb, vBm , ve, vhn , vα`
, vαs , κs, δs, λs, ar, br, κw, δw, λw, at, bt, ct, σTzmax

, hlo, tr, σh2 , σθw}
∪{σA, σµc , vµs , vφr , σγc , σγs , σAg , σBg , σMAg

, σMBg
, ρAg , ρBg , σSg , σbo , σCar , vFm},

and the dependent variables, ψ, include redundant geometric variables, volumes, moments, etc.,
that can be written in terms of variables d and η :

ψ = {Bz, c, d, Fh, Fv, Fhu, h, h0, h
′, hc,Hbreak,Hd, `e, L, L0,Mh,Mv, p1, p3, p4, pu}

∪{q, R, Vc, Va`, Vco, W,W1, y, yFh
, yFv , θs, Φe}.

B Appendix: Cost function

Consider the composite breakwater in Figure 1. To derive the cost function the following parts are
considered:

Concrete volume: The caisson volume is

Vc = Bhb + woho (82)

Armor layer volume: The armor layer volume is

Va` = e[Bm + b + hn(1/ sinαs + 1/ sinα`) + 0.5e(1/ tanαs + 1/ tanα`)] (83)

Core volume: The core volume is

Vco = hn(b + B + Bm − e(tan(αs/2) + tan(α`/2)) + hn(1/ tanαs + 1/ tanα`)/2) (84)

Then, the construction cost per unit length becomes

C0 = CcVc + Ca`Va` + CcoVco (85)

C Appendix: Statistical definition of Storms

In this appendix we derive the joint distribution of (Hsmax , Hmax, Tzmax) based on Gijón buoy data.
The data correspond to 5.69 years of observations.

The analysis was done as follows:

1. First, data record with a one missed data point were completed by interpolation. This led to
recover 6 data records and discarded only three incomplete and not extreme storms.
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2. A threshold level of Hs = 3 m was selected and a storm defined for the duration of wave height
conditions above this level without going down. This led to 258 storms (with significant wave
height > 3m) which implies a yearly rate rst = 45.3427 storms/year.

3. The peak value Hsmax of Hs and the pair maximum observed wave height Hmax and associated
zero-up-crossing mean period Tzmax during each storm were registered. This means that a
sample of three values Hsmax , Hmax and Tzmax per storm was used.

From these data, the joint distribution of the three-variate random variable (Hsmax ,Hmax, Tzmax)
need to be defined. Instead of defining the joint density or cumulative distribution function of
(Hsmax ,Hmax, Tzmax), that is difficult to visualize, without loss of generality, we define:

1. The marginal distribution of Hsmax .

2. The conditional distribution Hmax|Hsmax of Hmax given Hsmax .

3. The conditional distribution Tzmax |Hmax,Hsmax of Tzmax given Hmax, Hsmax .

The selection of the adequate marginal and conditional distributions is based on extreme value
theory and probability paper techniques (see Castillo [53]), as shown below.

C.1 Marginal distribution of Hsmax

To make a proper selection of the marginal distribution of Hsmax and since the data come from left
truncation at 3 m. of a sample of maxima, first we use theoretical considerations that lead to a
maximal generalized Pareto distribution (GPDM ) with cumulative distribution function:

FHsmax
(Hsmax) = 1−

(
1− κs(Hsmax − λs)

δs

)1/κs

; 1− κs(Hsmax − λs)
δs

≥ 0. (86)

Thus, we have fitted a GPDM by least squares and obtained the following estimates:

κ̂s = −0.1197; δ̂s = 0.446; λ̂s = 3.

To check the goodness of the model we have plotted the data on P-P and Q-Q plots, as shown
in Figure 4. The plots show a reasonable fit, so that based on theory and data evidence we accept
the model (86).

C.2 Conditional distribution of Hmax given Hsmax

To choose a conditional distribution Hmax|Hsmax of Hmax given Hsmax , we first plot the data
(Hsmax ,Hmax) and observe that they exhibit a linear regression (see Figure 5):

Hmax = ar + br Hsmax , (87)

where the estimated parameters are âr = −0.641855 and b̂r = 1.92856.
Next, we calculate the residuals and find that they follow a maximal Weibull model (see the

Maximal Weibull probability plot in Figure 6):

FX(x) =exp

{
−

[
1− κw

(
x− λw

δw

)]1/κw
}

; 1− κw

(
x− λw

δw

)
≥ 0. (88)
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Figure 4: P-P and Q-Q plots corresponding to the maximal generalized Pareto model with cdf in
(86).
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Figure 5: Data (Hsmax ,Hmax) and regression line for the Gijón buoy resulting storms.

Combining this expression with the regression equation (87) leads to the final model for Hmax|Hsmax

FHmax|Hsmax=y(x|y)exp

{
−

[
1− κw

(
x− ar − bsy − λw

δw

)]1/κH
}

; 1− κw

(
x− ar − bsy − λw

δw

)
≥ 0.

(89)
Then, estimation of the Weibull parameters using the maximum likelihood method leads to

κ̂w = 0.172482; δ̂w = 0.470151; λ̂w = −0.201646.

C.3 Conditional distribution of Tzmax given Hmax, and Hsmax

To derive the conditional distribution Tzmax |Hmax,Hsmax of Tzmax given Hmax, Hsmax , we first tried
several regression models for Tzmax given Hmax,Hsmax and find as the best model

Tzmax = at + bt Hsmax + ct Hmax, (90)
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Figure 6: Hmax residuals given Hsmax on a Maximal Weibull probability plot.
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Figure 7: Plot of Tzmax residuals of the regression equation (90).

where the estimated parameters are ât = 5.66953 and b̂t = 3.5765 and ĉt = −1.35536.
Next, we obtain the residuals εi; i = 1, . . . , 258 (see Figure 7) and plot them on a normal

probability paper, obtaining the plot in Figure 8, that confirms their normality. Once estimated
the corresponding parameters by maximum likelihood we get

εi ∼ N(0, σ2
Tzmax

),

where σTzmax
= 1.6128 that leads to the final model for Tzmax |Hmax,Hsmax :

Tzmax |Hmax,Hsmax ∼ N
(
at + bt Hsmax + ct Hmax, σ2

Tzmax

)
. (91)

D Simulation of random storms

If one is interested in simulating random storms, i.e., random values of (Hsmax ,Hmax, Tzmax), for
example to run a Monte Carlo simulation, one can use the following algorithmic process:
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Figure 8: Plot of the Tzmax residuals of the regression equation (90) on a normal probability plot.

1. Simulate Hsmax using

Hsmax = λS +
δS

κS
(1− (1− u1)κS ) ,

where u1 is a random uniform U(0, 1) number.

2. Simulate Hmax using

Hmax = ar + br Hsmax + λw +
δw

κw
(1− (− log(u2))κw) ,

where u2 is a random uniform U(0, 1) number independent of u1.

3. Simulate Tzmax using
Tzmax = at + bt Hsmax + ct Hmax + v

where v is a random normal N(0, 1.612822) number,

The process must be repeated as many times as the number of desired storms (sample size).
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E Appendix C: Notation

a: Coefficient used in the overtopping formula
(62) that depends on the structure shape
and on the water surface behavior at the
seaward face.

ar: Linear regression coefficient between HSmax

and Hmax.

at: Linear regression coefficient between Tzmax

and HSmax ,Hmax.

A: Coefficient in (45) for modelling the change
in the maximum wave height due to ran-
dom wave breaking.

Ag: model uncertainty of the horizontal forces
for the Goda pressure formula.

b: leeward berm width.

bo: Coefficient used in the overtopping formula
(62) that depends on the structure shape
and on the water surface behavior at the
seaward face.

br: Linear regression coefficient between HSmax

and Hmax.

bt: Linear regression coefficient between Tzmax

and HSmax ,Hmax.

B: Breakwater caisson width.

Bg: model uncertainty of the vertical forces for
the Goda pressure formula.

Bm: seaside berm width.

Bz: distance of the resultant vertical force com-
ponent to the harbor side edge.

c: Auxiliary variable defined in (68).

ct: Linear regression coefficient between Tzmax

and HSmax ,Hmax.

Ca`: cost of the armor layer per unit volume.

Car: model uncertainty for the overtopping for-
mula.

Cc: cost of the concrete per unit volume.

Cco: cost of the core per unit volume.

d: berm depth in front of the caisson.

d: design or geometric variables.

e: armor layer thickness.

Fh: horizontal force due to water pressure.

Fhu: horizontal seepage force on the rubble.

Fm: Model uncertainty parameters related to
the different failure modes m = {s, t, b, c, d,
sea, o, a}.

Fv: vertical force due to water pressure.

g: Acceleration of gravity.

h: design water level.

h0: water height at five times Hsmax from the
breakwater.

h1: water level owing to the astronomical tide.

h2: water level owing to the barometrical or
storm surge effects.

hb: breakwater caisson height.

hc: seaward freeboard.

hlo: zero port reference level.

hn: core height.

ho: crownwall parapet height.

h′: is the submerged height of the crownwall.

Hbreak: maximum wave height by breaking condi-
tions.

Hmax: Design wave height.

Hd: Design wave height.

Hmax: Maximum wave height.

Hsmax : maximum significant wave height.

`e: equivalent cubic block side.
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L: wave length.

L0: deep water wave length.

Me: moment of the forces acting on the foun-
dation.

Mh: moment with respect to O of the horizontal
water pressure forces.

Mv: moment with respect to O of the vertical
water pressure forces.

p1: wave pressure at the water level.

p3: wave pressure at the caisson’s bottom level.

p4: wave pressure at the freeboard level.

pm
st : Yearly failure rate for mode m = {s, t, b, c, d,

sea, o, a}.
pu: Uplift pressure on the base of the crown-

wall.

q: mean overtopping volume per unit break-
water length.

q0: maximum mean overtopping volume per
unit breakwater length allowed.

rst: Mean number of storms per year.

R: dimensionless constant depending on γc and
γw.

R0
m: upper bound of yearly failure rate per fail-

ure mode m = {s, t, b, c, d, sea, o, a}.
rst: storm yearly rate.

rm: yearly failure rate for mode m = {s, t, b, c, d,
sea, o, a}.

Sg: model uncertainty of the seepage horizon-
tal forces for the Goda pressure formula.

tr: tidal range.

Tzmax : wave period related to the maximum wave
height.

u1, u2: standard uniform random variables.

v: standard normal random variable.

Vc: caisson concrete sand filled volume.

Va`: armor layer total volume.

Vco: core total volume.

vx: variation coefficient of the random variable
X.

wo: caisson parapet width.

W : individual armor block weight.

W1: crownwall weight.

y: offset of W1.

yFh
: offset of Fh.

yFv : offset of Fv.

α`: leeward slope angle.

αs: seaward slope angle.

βm: reliability factor for mode m = {s, t, b, c, d,
sea, o, a}.

γc: concrete unit weight.

γs: rubblemound unit weight.

γw: water unit weight.

δS : scale parameter of the Pareto distribution
for HSmax .

δw: scale parameter of the Weibull distribution
for Hmax.

η: non-optimized design variables.

η̃: mean or characteristic value of η.

θb: mean angle of the sea bottom.

θs: angle between the bottom of the sea and
the rupture surface for failure mode c.

θw: Incidence wave angle.

θ: Parametric vector.

κS : shape parameter of the Pareto distribution
for HSmax .
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κw: shape parameter of the Weibull distribu-
tion for Hmax.

κ: the set of parameters associated with the
random variability and dependence struc-
ture of the random variables involved.

λS : shape parameter of the Pareto distribution
for HSmax .

λw: shape parameter of the Weibull distribu-
tion for Hmax.

µc: friction factor between concrete structure
and rubble foundation.

µs: friction factor between rubble foundation
and rock sea bottom.

µx: mean value of the random variable X.

ρAg : correlation coefficient between Fh and Mh.

ρBg : correlation coefficient between Fv and Mv.

σx: standard deviation of the random variable
X.

φr: angle of internal friction of rubble.

ψ: the auxiliary (non-basic) variables the val-
ues of which can be obtained from those of
the basic variables.

φ̃: mean value of φ.

Φe: stability function.
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