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Abstract

This paper presents a method for estimating density functions that improves other
existing methods by expressing the estimation issue as an optimization problem
and incorporating extra information not considered by standard estimation meth-
ods. We include here three types of such information: bounds for the cumulative
distribution function (cdf), bounds for the quantiles, and any restrictions on the
parameters, as for example, those imposed by the support of the random variable
under consideration. The method is quite general and can be applied to many esti-
mation methods such as the maximum likelihood, the method of moments, the least
squares, the least absolute values, and the minimax methods. The performances of
the obtained estimates from several families of distributions are investigated for the
maximum likelihood and the method of moments, using simulations. The simula-
tion results show that for small sample sizes important gains can be achieved with
respect to the case where the above information is ignored.

Key Words: Least absolute value, Least squares, Maximum likelihood, Method of mo-

ments, Minimax, Normal distribution, Uniform distribution, Weibull distribution.

1 Introduction

Consider a family of probability density functions (pdfs), {f(x; θ)|θ ∈ Θ}, with the

corresponding family of cdfs, {F (x; θ)|θ ∈ Θ}, with support S, where θ = (θ1, θ2, . . . , θm)

is an m-dimensional vector of parameters belonging to a parameter space Θ. We wish to

estimate the parameter θ based on an iid random sample x = (x1, x2, . . . , xn) drawn from

a member of such a family. Several classical as well as robust methods are available. These
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include the maximum likelihood, the method of moments in its variants, the least squares,

least absolute value, minimax, etc. See, for example, the classical books by Cramér (1946),

Mann et al. (1974), and Bickel and Doksum (2000), or any standard or recent statistical

inference/regression books such as Arthanari and Dodge (1993), Hogg and Craig (2000),

Mukhopadhyay (2000), Casella and Berger (2001), Wackerly et al. (2001), Rao (2002),

Miller and Miller (2003), and Silvapulle and Sen (2004).

The above methods have good asymptotic properties, but for small samples the quali-

ties of the estimates degenerate and their performances become very poor. Small samples

are frequently encountered in practice especially when modeling extreme events data,

where the data are minima or maxima of monthly or yearly samples, hence the sample

sizes are usually small. In such cases, one could use domain knowledge to improve the es-

timates. Common pieces of knowledge that can be easily incorporated into the estimation

method are bounds on quantiles or cumulative distribution functions (cdfs).

In addition to incorporating bounds on the cdf and quantiles in the estimation process,

an important feature of the proposed method is that it allows incorporating any restric-

tions on the parameter space. This occurs e.g. when the support of the random variable

depends on the unknown parameters, as for example, when we have a uniform U(α, β)

population, where we must have α ≤ min(x1, x2, . . . , xn) and β ≥ max(x1, x2, . . . , xn).

Incorporating such restrictions is not always possible in standard estimation methods.

Domain experts and/or statistical users who are familiar with the variables being

analyzed can easily give bounds that will improve the performance of any estimators,

even though these bounds may not be so precise. As a motivating example, we use the

car speed data found in Castillo et al. (2005), p. 17, and given in Table 1. The data

are the maximum car speeds registered at a mountain road for 200 dry weeks. Since the

observed data are maxima, the maximal Weibull distribution is used to model these data

and estimate the corresponding cumulative distribution function (cdf). The cdf of the

maximal Weibull random variable is

F (x; λ, δ, κ) = exp


−

(
λ− x

δ

)1/κ

 , if x ≤ λ, κ > 0, (1)

This cdf depends on three parameters: a location parameter, λ, a scale parameter, δ, and

a shape parameter κ.
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Table 1: Car speed data and subsample used in the analysis.

51.6 56.6 63.3 61.1 66.8 54.5 60.9 56.9 46.3 51.0
59.5 64.8 65.7 56.1 63.4 67.0 69.0 60.2 64.5 57.4
62.6 59.3 53.3 61.2 65.3 64.8 61.6 59.0 65.1 65.6
60.6 62.6 61.3 62.1 61.1 67.8 54.9 54.4 67.4 63.2
60.0 53.1 51.8 62.6 60.1 65.0 68.9 68.2 66.1 64.7
57.1 63.3 57.9 55.7 66.9 42.0 55.4 63.3 55.7 48.7
61.6 57.6 58.5 64.0 59.0 49.5 52.4 57.3 59.4 56.7
53.4 55.0 55.0 64.4 56.2 65.0 57.0 56.6 59.5 62.7
63.1 62.9 61.9 59.7 43.2 52.0 48.1 58.2 62.3 64.2
58.8 61.8 61.7 64.3 66.8 66.6 65.4 59.6 56.2 60.5
57.0 66.7 55.9 57.8 55.0 58.8 53.3 67.6 65.2 64.0
62.7 58.8 63.3 61.7 61.7 57.8 60.8 57.2 56.8 47.4
51.4 57.1 60.2 63.1 57.3 52.2 62.4 63.4 60.8 54.4
57.5 65.0 67.4 60.8 55.7 55.4 50.0 59.9 65.2 67.7
61.6 64.2 55.9 63.5 54.3 62.7 65.7 61.8 55.9 57.3
49.7 56.2 54.4 48.1 64.7 61.0 59.2 60.5 57.3 53.1
55.8 62.1 64.4 56.0 64.5 60.5 55.2 62.2 58.8 67.3
59.3 62.4 61.2 59.5 55.5 63.4 67.4 56.1 61.9 64.8
54.7 53.2 50.3 56.9 59.3 52.1 60.1 42.6 68.0 62.6
64.5 57.1 65.8 64.7 51.3 51.9 62.3 53.8 67.2 65.2

As can be seen in Figure 1, the maximum likelihood method gives a very good estimate

of the cdf. This is because the sample size here is relatively large (n = 200). To illustrate

that the maximum likelihood can give a very bad fit when the sample size is small, we

use a subsample of size 20 consecutive maxima (given in bold face in Table 1) to estimate

the maximal Weibull cdf. The obtained cdf is also shown in Figure 1. Note that although

this curve fits the 20 points rather well, it is very far from the curve based on all n = 200

points. This usually happens when one has small samples; in those cases, the chances of

getting a non-representative sample and consequently a model far from the real one are

large.

The maximum likelihood estimates can be substantially improved if one incorporates

important information not present in the data set. For example, suppose that an engineer,

based on the road and weather conditions, concludes that the 10% percentile cannot

exceed 54 km/hour. Incorporating this simple information into the estimation problem

can lead to substantial improvements. In this paper we present a method that improves

the standard estimation methods by incorporating these types of information into the
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Figure 1: The Weibull models fitted to the whole sample and a subsample of size n = 20,
and the constrained Weibull model after constraining the 10% percentile to 54 Km/hour.

estimation process. For example, as can be seen in Figure 1, the cdf obtained using

the constrained maximum likelihood is much closer to the cdf based on n = 200 points

than the one obtained by the unconstrained maximum likelihood using n = 20 points.

This illustrates how the model estimated from small samples can be easily corrected by

incorporating information not available in the data. These performance improvements

are confirmed by the simulation results given later in the paper.

The proposed method is similar to Bayesian statistics in the sense that information

not contained in the data is used in the estimation process. But in Bayesian statistics,

the information is in the form of a prior distribution on the parameters and gives a

posterior distribution on the parameters. The proposed method, however, incorporate

the information above which is provided by either the domain expert or the data analyst.

The rest of the paper is organized as follows. Section 2 presents the proposed method

in its general form, where it is shown that it can be used to improve many of the available

estimation methods. In Section 3 the method is applied to the maximum likelihood

method and in Section 4, to the method of moments. Three families of distributions

(normal, uniform and Weibull) are used as illustrative examples. Section 5 extends the

method to the case of infinitely many continuous bounds. Some conclusions are given in
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Section 6.

2 The Proposed Method

Let θ̂ be an estimator of a parameter vector θ obtained using a given estimation method

(such as the maximum likelihood or the method of moments) based on an iid random

sample x = (x1, x2, . . . , xn) drawn from a family of pdfs, {f(x; θ)|θ ∈ Θ}, with support

S. Here we propose a method that improves the estimator θ̂ by incorporating extra

information in the estimation process. As we mentioned earlier, these information can

be in the form of either bounds on the cdf, the quantile function or restrictions on the

parameters imposed by the support of the random variable under consideration. The

proposed method involves three simple steps:

1. Express the given estimation method as an optimization problem.

2. Add the available extra information as constraints.

3. Obtain the new estimators by solving the constrained optimization problem.

Step 1: Optimization Problems. The first step in the procedure consists of express-

ing the given estimation method as an optimization problem. We note here that many

estimation methods are already stated as optimization problems. For example, the maxi-

mum likelihood, the least squares, the least absolute values, and minimax method. Other

methods, such as the method of moments, can be expressed as optimization problems

even though they are initially formulated as the solutions of a set of equations. This step

is illustrated by its application to the following estimation methods:

1. The Maximum Likelihood Method. This method is already stated as an opti-

mization problem, where the estimators are obtained by maximizing the log likelihood

function:

Maximize
θ∈Θ

`(θ|x1, x2, . . . , xn) =
n∑

i=1

log f(xi; θ). (2)
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2. The Method of Moments. Let

gr
a(θ) = E(X − a(θ))r, r = 1, 2, . . . ,m,

be a set of moments of order r of the random variable X with respect to the point a(θ).

For example, gr
0(θ) = E(Xr) is the rth population moment with respect to the origin and

gr
µ(θ) = E(X −µ)r is the rth moment with respect to the mean µ = E(X). Similarly, let

hr
a(x) = n−1

n∑

i=1

(xi − a(x))r, r = 1, 2, . . . , m,

be the corresponding set of sample moments of order r with respect to the point a(x).

For example, hr
0(x) = n−1 ∑n

i=1 xr
i is the rth sample moment with respect to the origin

and

hr
x̄(x) = n−1

n∑

i=1

(xi − x̄)r

is the rth sample moment with respect to the sample mean x̄ = n−1 ∑n
i=1 xi.

The method of moments estimates are obtained by solving the system of equations:

gr
a(θ̂) = hr

a(x), r = 1, 2, . . . , m. (3)

The method of moments can be equivalently formulated as the optimization problem:

Minimize
θ∈Θ

∑̀

r=1

[
gr

a(θ)

hr
a(x)

− 1

]2

, ` ≥ m. (4)

In fact this is a generalization of the standard method of moments because with this

formulation the number of moments, `, can be larger than the number of parameters m

to be estimated. In this paper we have not included examples where ` > m because our

intention is to compare our results with the classical method of moments where l = m.

3. The Least Squares Method. The random variables Xi can be expressed as

Xi = µ(θ) + εi, i = 1, 2, . . . , n,

where µ(θ) is the mean of X, which depends on θ, and εi are random errors assumed to

be independent with mean zero and constant variance. Then the least squares estimators

of θ are obtained by minimizing the sum of squared errors, that is,

Minimize
θ∈Θ

n∑

i=1

ε2
i =

n∑

i=1

[xi − µ(θ)]2 . (5)
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This method gives more attention to large errors.

4. The Least Absolute Values Method. The least absolute values estimators of θ

are obtained by minimizing the sum of the absolute errors instead of their squares, i.e.:

Minimize
θ∈Θ

n∑

i=1

|εi| =
n∑

i=1

|xi − µ(θ)|, (6)

thus treating all errors equally. Due to the presence of the non-differentiable absolute-

value function, it is difficult to solve (6) using standard techniques. It can be shown,

however, that the problem in (6) is equivalent to the following optimization problem (see,

e.g., Arthanari and Dodge (1993), Castillo et al. (2001)):

Minimize
θ, εi

ZLAV =
n∑

i=1

εi (7)

subject to

xi − µ(θ) ≤ εi, i = 1, . . . , n, (8)

µ(θ)− xi ≤ εi, i = 1, . . . , n. (9)

We note that it is not necessary to add the set of constraints (added by some authors)

εi ≥ 0, because they are implied by (8) and (9).

5. The Minimax Method. The minimax method estimates the parameters θ by

minimizing the maximum error, that is,

Minimize
θ

max
i
|xi − µ(θ)|, (10)

where now the function is non-differentiable due to the absolute and the maximum func-

tions in it. Fortunately, the problem in (10) is equivalent to the optimization problem:

Minimize ε
θ, ε

(11)

subject to

xi − µ(θ) ≤ ε, i = 1, . . . , n, (12)

µ(θ)− xi ≤ ε, i = 1, . . . , n, (13)
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where again the constraint (ε ≥ 0) is implied by (12) and (13).

Note that the objective functions in (2), (4), and (5) have no constraints, but each of

the objective functions in (7) and (11) has two sets of constraints.

Step 2: Incorporating Constraints. Once a given estimation method is stated as

an optimization problem such as those in (2), (4), (5), (7)-(9), and (11)-(13), in Step 2

the available information is incorporated by imposing the following constraints on the

optimization problem:

t
(1)
i ≤ F (ui; θ) ≤ t

(2)
i , i = 1, 2, . . . , p, (14)

x
(1)
j ≤ F−1(vj; θ) ≤ x

(2)
j , j = 1, 2, . . . , q, (15)

g(θk) ≤ ck(x), k = 1, 2, . . . , m, (16)

where ui are given values of the random variable X; vj are given probability (percentile)

values; t
(1)
i and t

(2)
i are bounds on the cdf at ui; x

(1)
j and x

(2)
j are given bounds on the

quantiles at vj; and ck(x) are functions of the observed data. Note that the constraints

in (16) represent restrictions on the parameters as, for example, those imposed by the

cdf in cases where the support of the random variable depends on the parameters. These

constraints are included only in cases where such restrictions exist. For example, when

X ∼ U(α, β), we must have α ≤ x(1) and β ≥ x(n), where x(1) and x(n) are the sample

minimum and maximum, respectively.

Note that the above constraints can be stated in a simpler form as

pi ≤ F (zi; θ), i = 1, 2, . . . , r,

F (wj; θ) ≤ qj, j = 1, 2, . . . , s, (17)

g(θk) ≤ ck(x), k = 1, 2, . . . , m,

where pi and qj are given probability values; and zi and wj are given values for the random

variable.

Step 3: Solving the Constrained Problem. After expressing the estimation problem

as a constrained optimization problem in Steps 1 and 2, we need to solve the constrained
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optimization problem to find the improved estimators. For this purpose, one can use any

standard optimization package. The proposed method has been implemented in GAMS

(General Algebraic Modeling System) (see Castillo et al. (2001)), but other alternatives

could be used. GAMS is a very powerful software system especially designed for solving

optimization problems (linear, non-linear, integer and mixed integer) of small to very

large size. All the examples in this paper have been solved using the generalized reduced

gradient method implemented in the CONOPT solver, which has good convergence prop-

erties for models with highly nonlinear constraints (for more details see, for example,

Vanderplaats (1984), Bazaraa et al. (1993), and Drud (1996)).

Clearly, the method is quite general and can be applied to any estimation method that

can be expressed as an optimization problem.

Assessing the Performance of Estimators. The proposed method is applied below to

improve the maximum likelihood and method of moments estimators in three families of

distributions (normal, uniform, and Weibull). The performance of the proposed method

is compared with the corresponding standard methods and is assessed using simulated

data generated from these three distributions. In each case, 10,000 samples of sizes

n = 5, 10, 20, 50, 100 from the given population were simulated, and the performance of

the methods based on the bias and the mean square error over the 10,000 samples, were

analyzed.

3 Constrained Maximum Likelihood Methods

In this section, we apply the proposed method to the maximum likelihood method using

the bounds for the cdf and/or the quantiles in (17). Then, the resultant constrained

maximum likelihood method can be stated as:

Maximize
θ∈Θ

n∑

i=1

log f(xi; θ) (18)

subject to the constraints in (17).
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3.1 Asymptotic Distribution

It is clear that if the constraints are not asymptotically active, the asymptotic distribution

coincides with that of the unconstrained maximum likelihood estimates. Otherwise, the

asymptotic distribution of the parameter estimates and the dual variables can be obtained

using the results of Aitchison and Silvey (Aitchison and Silvey, 1958). To this end, we

write the active constraints in (17), which asymptotically coincide with probability one,

as

hj(θ) = 0; j = 1, 2, . . . , t. (19)

The Karush-Kuhn-Tucker (KKT) conditions for the problem (18)–(19) are:

`θ + λTHθ = 0, (20)

hj(θ) = 0, j = 1, 2, . . . , t, (21)

where Hθ is an s × t matrix with elements hij =
∂hj

∂θi

, and `θ is an s × 1 vector with

elements `i =
∂L

∂θi

.

Then, we have (see Aitchison and Silvey (Aitchison and Silvey, 1958)):



θ̂ − θ0
1

n
λ̂n


 =

(
P Q
QT R

) 


1

n
`θ
0


 , (22)

where θ0 is the true value, and

(
P Q
QT R

)
=

(
B −Hθ

−HT
θ 0

)−1

, (23)

where B is an s× s matrix with elements bij = − 1

n

∂2L

∂θi∂θj

.

Asymptotically, we have




θ̂ − θ0
1

n
λ̂n


 ∼ N







1

n
P`θ

1

n
QT `θ


 ,

1

n

(
P 0
0 −R

)

 . (24)

In addition, we can test the null hypothesis H0: θ0 satisfies (19), using the acceptance

region

− 1

n
λ̂

T
R−1λ ≤ k, Pr[χ2

r ≤ k] = 0.95. (25)

In addition, for n →∞, the system (20)–(21) gives the asymptotic solution when the

parent population does not satisfy the constraints.
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To illustrate the gain in the precision of the estimates using the above constraints, we

consider here the normal, uniform, and Weibull distributions.

3.2 Application to the Normal Distribution

Suppose that we have a sample of size n coming from a normal population, N(µ, σ), and

that we want to estimate the mean µ and the standard deviation σ. The log likelihood

function to be maximized is

`(α, β|x1, . . . , xn) = −n

2
− n ln σ − 1

2σ2

n∑

i=1

(xi − µ)2 , (26)

which gives the following maximum likelihood estimates of µ and σ:

µ̂ = x̄ and σ̂ =

√√√√n−1
n∑

i=1

(xi − x̄)2. (27)

To obtain the constrained maximum likelihood estimates, we first note that the support

of X in the normal case does not depend on the parameters, hence the constraints in (16)

do not exist in this case. Now, one way to obtain the CDF and quantile bounds, consists of

using results from the literature on extreme value theory. It is well-known that the normal

distribution belongs to domains of attractions of the Gumbel distribution for maxima and

minima (see, for example, Galambos (1987), Coles (2001), and Castillo et al. (2005)). The

cdf of the Gumbel distribution for maxima is

H(x; λmax, δmax) = exp

(
− exp

(
λmax − x

δmax

))
, −∞ ≤ x ≤ ∞, (28)

and the cdf of the Gumbel distribution for minima is

L(x; λmin, δmin) = 1− exp

(
− exp

(
x− λmin

δmin

))
, −∞ ≤ x ≤ ∞, (29)

where λmax, δmax, λmin, and δmin are the parameters associated with the maximal and

minimal Gumbel distributions, respectively. Since the normal distribution belongs to the

maximal and minimal Gumbel domain of attraction, then the normal cdf F (zi; µ, σ) can

be bounded by:

H(zi; λmax, δmax) ≤ F (zi; µ, σ), i = 1, 2, . . . , r, (30)

F (wj; µ, σ) ≤ L(wj, λmin, δmin), j = 1, 2, . . . , s. (31)
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Thus, the constrained maximum likelihood (CML) estimators in this case are obtained

by maximizing the log likelihood function in (26) subject to the constraints in (30)–(31).

As an illustrative example, we consider the following sample of size n = 10:

1.0044, –0.7523, 0.7560, 1.2004, 0.8435,
–1.4305, 2.0993, 0.6734, 0.1690, 1.6492,

(32)

generated from N(0, 1). As a particular example of the constraints in (30)–(31), we set

r = s = 6, z = w = (−3,−2,−1, 1, 2, 3) (i.e., plus and minus one, two and three standard

deviations from the mean), λmax = −0.05, δmax = 1, λmin = 0 and δmin = 1. These values

have been selected for illustration purposes, however, for real world applications, bounds

should be selected based on experience and knowledge of the problem under study. With

these values, the constraints in (30) and (31) become

1× 10−8 ≤ F (−3; µ, σ) ≤ 0.04857,
0.00089 ≤ F (−2; µ, σ) ≤ 0.12658,
0.07534 ≤ F (−1; µ, σ) ≤ 0.30780,
0.70473 ≤ F ( 1; µ, σ) ≤ 0.93401,
0.87921 ≤ F ( 2; µ, σ) ≤ 0.99938,
0.95375 ≤ F ( 3; µ, σ) ≤ 1.00000.

(33)

The upper and lower limiting points belonging to the maximal and minimal Gumbel

distributions (dashed lines) are shown in Figure 2.

We used the standard ML and the CML with the constraints (33) to estimate the

parameters and obtained the following estimates:

ML: µ̂ = 0.6214, σ̂ = 1.0047,
CML: µ̂ = 0.4552, σ̂ = 1.0126.

(34)

Note that the CML estimate is closer to the N(0, 1) distribution function than the ML

estimate (see Figure 2).

To investigate the performance of the constrained maximum likelihood method, a

simulation study is conducted. The results, based on 10,000 samples drawn from N(0, 1)

population, are shown in Table 2. These results show that the constrained ML method

(CML) is more efficient than the standard ML for small sample sizes (n = 5, 10, 20) but

these advantages disappear for large sample sizes (n = 50, 100). Note that the relative

efficiency of the CML with respect to the standard ML method is large in spite of the

very wide intervals given in (33), and that the relative improvement with respect to the

12
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Figure 2: Illustration of the upper and lower limiting points belonging to the maximal
and minimal Gumbel distributions (dashed lines), CDF of the N(0, 1) together with the
ML and CML estimated cumulative distribution functions for the sample of size n = 10
in (32).

Table 2: Performance of the maximum likelihood (ML) and constrained maximum likeli-
hood (CML) estimates for a normal parent and different sample sizes n.

n Method Bias(µ̂) MSE(µ̂) Bias(σ̂) MSE(σ̂)
5 CML –0.00967 0.07267 –0.05554 0.04604

ML 0.00454 0.19961 –0.16224 0.11839
10 CML –0.00799 0.05853 –0.04091 0.03314

ML –0.00111 0.09992 –0.07910 0.05464
20 CML –0.00229 0.04049 –0.03010 0.02153

ML 0.00015 0.04986 –0.04055 0.02640
50 CML 0.00361 0.01942 –0.01393 0.00980

ML 0.00403 0.01982 –0.01450 0.01001
100 CML 0.00160 0.01002 –0.00678 0.00507

ML 0.00165 0.01002 –0.00669 0.00507

standard ML method increases substantially with decreasing sample size. This shows that

our method has the same asymptotic properties as the ML method.

3.3 Application to the Uniform Distribution

Suppose that we have a sample of size n coming from a uniform population, U(α, β), and

that we wish to estimate the parameters α and β. In this case, the log likelihood function

13



to be maximized is:

`(α, β|x1, . . . , xn) = −n log(β − α),

from which the maximum likelihood estimates of α and β can be found to be α̂ = x(1)

and β̂ = x(n), where x(1) and x(n) are the sample minimum and maximum, respectively.

The constrained maximum likelihood in this case becomes

Maximize
α,β;α≤β

`(α, β|x1, . . . , xn) = −n log(β − α) (35)

subject to
F (zi; α, β) ≥ pi, i = 1, 2, . . . , r,
F (wj; α, β) ≤ qj, j = 1, 2, . . . , s,

α ≤ x(1),
x(n) ≤ β.

(36)

For illustration purposes, we have selected the following constraints:

0.05 ≤ 0.1− α

β − α
≤ 0.30,

0.80 ≤ 0.9− α

β − α
≤ 0.95,

α ≤ x(1),

x(n) ≤ β.

(37)

Simulation results, based on 10,000 samples drawn from a uniform U(0, 1), are shown in

Table 3.

Note that the constrained maximum likelihood method (CML) clearly outperforms

the standard maximum likelihood method for small sample sizes (n = 5, 10, 20), but

the efficiency decreases with increasing sample size. Note also that the results for large

samples (n = 100) are almost the same.

3.4 Application to the Weibull Distribution

To further illustrate the method, consider the case of estimating the parameters of a

minimal Weibull distribution, which appears very frequently in practical problems when

we observe data that represent minima values (see, e.g., Castillo et al. (2005)). The pdf

of the minimal Weibull random variable, W (λ, δ, κ), is

f(x; λ, δ, κ) =
1

δκ

(
x− λ

δ

)1/κ−1

exp


−

(
x− λ

δ

)1/κ

 , x ≥ λ (38)
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Table 3: Performance of the maximum likelihood (ML) and constrained maximum likeli-
hood (CML) estimates for a uniform parent and different sample sizes n.

n Method Bias(â) MSE(â) Bias(b̂) MSE(b̂)
5 CML 0.04798 0.00252 –0.04795 0.00252

ML 0.16656 0.04778 –0.16773 0.04819
10 CML 0.04202 0.00209 –0.04176 0.00207

ML 0.09100 0.01511 –0.09097 0.01519
20 CML 0.03287 0.00146 –0.03270 0.00145

ML 0.04755 0.00433 –0.04726 0.00427
50 CML 0.01822 0.00057 –0.01840 0.00059

ML 0.01928 0.00072 –0.01958 0.00076
100 CML 0.00965 0.00018 –0.00984 0.00019

ML 0.00970 0.00019 –0.00988 0.00019

and the corresponding cdf is

F (x; λ, δ, κ) =





0, if x < λ,

1− exp


−

(
x− λ

δ

)1/κ

 , otherwise.

(39)

The W (λ, δ, κ) depends on three parameters: a location parameter, λ, a scale parameter,

δ, and a shape parameter κ.

Suppose now that we have a sample of size n from a Weibull population, W (λ, δ, κ),

and that we want to estimate the three parameters. In this case, the log likelihood function

is

`(λ, δ, κ|x1, . . . , xn) = −n(ln κ+ln δ)−
n∑

i=1

(
xi − λ

δ

)1/κ

+(1/κ−1)
n∑

i=1

ln

(
xi − λ

δ

)
, (40)

and then, the constrained maximum likelihood estimates are the solution to the following

optimization problem:

Maximize
λ,δ>0,κ>0

`(λ, δ, κ|x1, . . . , xn) = −n(ln κ+ln δ)−
n∑

i=1

(
xi − λ

δ

)1/κ

+(1/κ−1)
n∑

i=1

ln

(
xi − λ

δ

)

subject to
pi ≤ F (zi; λ, δ, κ), i = 1, 2, . . . , r,

F (wj; λ, δ, κ) ≤ qj, j = 1, 2, . . . , s,
λ ≤ x(1),

(41)

where x(1) is the sample minimum and F (x; λ, δ, κ) is the cdf of W (λ, δ, κ) in (39).

To obtain the constrained ML estimates, we consider z = (1.85, 2.3, 3.3, 4.1) and

w = (1.65, 2.1, 3, 3.7). With these values, the constraints in (41) become:
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Table 4: Performance of the maximum likelihood (ML) and constrained maximum likeli-
hood (CML) estimates for a Weibull parent and different sample sizes n.

n Method Bias(κ̂) MSE(κ̂) Bias(δ̂) MSE(δ̂) Bias(λ̂) MSE(λ̂)

5 CML 0.01435 0.01457 0.14788 0.88455 –0.17046 0.76792

ML –0.03679 0.05229 –0.85557 1.20083 0.92786 1.65385

10 CML 0.02099 0.01452 0.10732 0.78413 –0.12698 0.68582

ML –0.00118 0.03947 –0.50784 1.01087 0.56413 1.29943

20 CML 0.01914 0.01251 0.07692 0.59047 –0.09215 0.51693

ML 0.01494 0.02515 –0.20455 0.73897 0.22791 0.84505

50 CML 0.01782 0.00757 –0.00612 0.24192 –0.00494 0.20557

ML 0.01577 0.01163 –0.06983 0.31721 0.07370 0.33316

100 CML 0.01271 0.00392 –0.03092 0.09708 0.02335 0.07966

ML 0.00701 0.00645 –0.06744 0.14434 0.07530 0.17738

F (1.65; λ, δ, κ) ≤ 0.05 ≤ F (1.85; λ, δ, κ),
F (2.10; λ, δ, κ) ≤ 0.20 ≤ F (2.30; λ, δ, κ),
F (3.00; λ, δ, κ) ≤ 0.70 ≤ F (3.30; λ, δ, κ),
F (3.70; λ, δ, κ) ≤ 0.95 ≤ F (4.10; λ, δ, κ),

λ ≤ x(1).

(42)

To investigate the performance of the constrained maximum likelihood estimators, we

simulated 10,000 samples for each sample size n = 5, 10, 20, 50 and 100 from a Weibull

W (1, 2, 1/3).

The maximum likelihood estimators of λ, δ and κ are obtained numerically using

GAMS. The simulation results are shown in Table 4. These results show that the con-

strained ML method (CML) is more efficient than the standard ML for all the samples

but the relative efficiency is better for the smallest ones (n = 5, 10, 20).

4 Constrained Method of Moments

As mentioned above, a modified version of the method of moments can be formulated as

the following optimization problem:

Minimize
θ∈Θ

∑̀

r=1

[
gr

a(θ)

hr
a(x)

− 1

]2

, ` ≥ m, (43)

subject to

pi ≤ F (zi; θ), i = 1, 2, . . . , r,
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F (wj; θ) ≤ qj, j = 1, 2, . . . , s,

θk ≤ ck(x), k = 1, 2, . . . , m.

Note that the function (43) has been written in adimensional form, preventing numerical

difficulties to occur and some moments from having much more weight than others, when

` ≥ m.

In the following sections we apply the method to data coming from normal, uniform,

and Weibull parents.

4.1 Application to the Normal Distribution

The method of moments estimators in the normal case are the same as the maximum

likelihood estimators given in (27). The constrained method of moments problem in this

case can be formulated as:

Minimize
µ,σ>0

[
µ

x̄
− 1

]2

+

[
σ2 + µ2

h2
0(x)

− 1

]2

, (44)

subject to the constraints in (30) and (31), where h2
0(x) = n−1 ∑n

i=1 x2
i and ` = m = 2.

Using the same constraints in (33) with the simulated data, we obtain the simulation

results in Table 5, which are based on 10,000 samples of sizes n = 5, 10, 20, 50, 100 from a

normal N(0, 1). The results show that the constrained MOM method (CMOM) is more

efficient than the standard MOM for small sizes (n = 5, 10, 20) but these advantages

disappear for large sample sizes (n = 50, 100). Note that the relative efficiency of the

CMOM with respect to the standard MOM method is large in spite of the very wide

intervals given in (33), and that the relative improvement with respect to the standard

MOM method increases substantially with decreasing sample size.

Again this shows that our method and the standard method of moments are asymp-

totically equivalent if the constraints are really satisfied by the parent population.

4.2 Application to the Uniform Distribution

Suppose we have an iid sample of size n from the uniform distribution U(α, β). The first

two moments with respect to the origin are

E(X) =
α + β

2
and E(X2) =

α2 + αβ + β2

3
.
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Table 5: Performance of the method of moments (MOM) and the constrained method of
moments (CMOM) estimates for a normal parent and different sample sizes n.

n Method Bias(µ̂) MSE(µ̂) Bias(σ̂) MSE(σ̂)
5 CMOM –0.00607 0.08013 –0.05860 0.03697

MOM 0.00454 0.19961 –0.16224 0.11839
10 CMOM –0.00510 0.06453 –0.03836 0.02802

MOM –0.00111 0.09992 –0.07910 0.05464
20 CMOM –0.00100 0.04321 –0.02682 0.01982

MOM 0.00015 0.04986 –0.04055 0.02640
50 CMOM 0.00392 0.01974 –0.01301 0.00967

MOM 0.00403 0.01982 –0.01450 0.01001
100 CMOM 0.00162 0.01015 –0.00585 0.00504

MOM 0.00165 0.01002 –0.00669 0.00507

Then, the method of moments estimators of α and β are:

α̂ = x̄−
√

3
√

h2
0 − x̄2 and β̂ = x̄ +

√
3
√

h2
0 − x̄2.

Setting ` = m = 2, the optimization problem of the constrained method of moments

becomes:

Minimize
α,β

Z =

(
α + β

2x̄
− 1

)2

+

(
α2 + αβ + β2

3h2
0(x)

− 1

)2

, (45)

subject to the constraints in (36), where h2
0(x) = n−1 ∑n

i=1 x2
i are the first and second

sample moments with respect to the origin, respectively, and x(1) and x(n) are the sample

minimum and maximum, respectively.

To see the improvement in parameter estimation when using the constrained method

of moments, we simulated 10,000 samples for each sample size n = 5, 10, 20, 50, and 100

from U(0, 1). Using the same constraints in (37) with the simulated data, the results are

given in Table 6.

Note that the constrained method of moments outperforms both the maximum likeli-

hood method (Table 3) and the standard method of moments (Table 6) for small sample

sizes (n = 5, 10, 20), but is clearly inferior than the maximum likelihood method estimates

for large samples (n = 50, 100). It is also important to note that the constrained MOM

corrects the inconsistent estimates given by the standard MOM when θ̂ /∈ Θ), that is,

when α̂MOM > x(1) or β̂MOM < x(n).
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Table 6: A comparison of the performance of the standard method of moments estimates
(MOM), and the constrained method of moments (CMOM) estimates for a uniform parent
and different sample sizes n. The percentages of inconsistent estimates for the standard
method of moments are shown.

Inconsistent

n Method Bias(α̂) MSE(α̂) Bias(β̂) MSE(β̂) α(%) β(%) α or β(%)
5 CMOM –0.07316 0.02185 0.02413 0.00545

MOM 0.06941 0.03674 –0.07129 0.03676 12.53 12.19 24.72
10 CMOM –0.05509 0.01512 0.02110 0.00458

MOM 0.03195 0.01540 –0.03261 0.01570 22.94 23.61 44.86
20 CMOM –0.03795 0.00885 0.01787 0.00344

MOM 0.01586 0.00713 –0.01494 0.00712 31.11 30.52 56.10
50 CMOM –0.02654 0.00394 0.01586 0.00193

MOM 0.00704 0.00276 –0.00538 0.00271 38.68 36.92 65.61
100 CMOM –0.02228 0.00217 0.01376 0.00107

MOM 0.00359 0.00136 –0.00283 0.00134 42.11 40.60 69.89

4.3 Application to the Weibull Distribution

To further illustrate the method, consider the case of estimating the parameters λ, δ, and

κ of the minimal Weibull distribution whose pdf is given in (38). Since we have three

parameters to estimate, we need at least three moments to obtain the MOM estimates

of the three parameters. We consider the first three moments with respect to the origin.

These moments are:

g1
0(θ) = λ + δΓ (1 + κ) = µ,

g2
0(θ) = λ2 + 2λδΓ (1 + κ) + δ2Γ (1 + 2κ) ,

g3
0(θ) = λ3 + 3λδ [λΓ (1 + κ) + δΓ (1 + 2κ)] + δ3Γ (1 + 3κ) .

To obtain the constrained MOM estimates, we consider z = w = (1.5, 2, 3, 4). With

` = m = 3, the optimization problem then becomes:

Minimize
λ,δ>0,κ>0

Z =
(

µ

x̄
− 1

)2

+

(
g2
0(θ)

h2
0(x)

− 1

)2

+

(
g3
0(θ)

h3
0(x)

− 1

)2

, (46)

subject to the constraints in (42), where h2
0(x) = n−1 ∑n

i=1 x2
i and h3

0(x) = n−1 ∑n
i=1 x3

i .

To see the improvement in parameter estimation when using the constrained method

of moments, we simulated 10,000 samples for each sample size n = 5, 10, 20, 50 and 100

from a Weibull population with parameters λ = 1, δ = 2, and κ = 1/3.
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Table 7: A comparison of the performance of the standard method of moments estimates
(MOM), and the constrained method of moments estimates (CMOM) for a Weibull parent
and different sample sizes n.

Inconsistent

n Method Bias(κ̂) MSE(κ̂) Bias(δ̂) MSE(δ̂) Bias(λ̂) MSE(λ̂) λ(%)
5 CMOM –0.01264 0.00234 0.09734 0.07845 –0.09630 0.05609

MOM –0.03704 0.03363 –0.04633 1.89658 0.04221 1.92322 2.70
10 CMOM –0.00669 0.00316 0.07720 0.10040 –0.07589 0.07538

MOM –0.01497 0.03064 0.15113 1.69464 –0.15022 1.66388 2.31
20 CMOM –0.00094 0.00379 0.05216 0.11672 –0.05194 0.09038

MOM –0.00696 0.01991 0.20467 1.08618 –0.20802 1.01208 3.69
50 CMOM 0.00304 0.00377 0.02967 0.11123 –0.03091 0.08983

MOM –0.00403 0.00890 0.10572 0.38653 –0.10812 0.34006 5.18
100 CMOM 0.00252 0.00300 0.01966 0.08445 -0.02156 0.07000

MOM -0.00236 0.00451 0.04474 0.17421 -0.04643 0.14779 5.78

The results of the simulation are given in Table 7. Note that the constrained method

of moments clearly outperforms standard method of moments for small sample sizes (n =

5, 10, 20), but showing a similar behavior for large samples (n = 50, 100). It is also

important to notice that the constrained MOM corrects the inconsistent estimates given

by the standard MOM (i.e., θ̂ /∈ Θ), where λ̂MOM > x(1).

To investigate the behavior of the method further, 200 samples are generated for

each of four sample sizes (5, 10, 20, and 100). For each of these samples, the density

is estimated and plotted. Figure 3, shows the plots of the estimated densities using the

standard method (lighter curves) and the constrained method (darker curves). It can be

seen from these graphs that the variability of the constrained estimates is much less than

that of the standard estimates specially for small samples. These variabilities are similar

for large sample sizes.

5 The Case of Infinitely Many Continuous Constraints

In this case we assume that we have bounds for the cdf or all quantiles instead of a finite

number of quantiles. Then, incorporating the available information by imposing these

constraints the optimization problem becomes:

Minimize
θ∈Θ

f(x,θ), (47)
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Figure 3: Illustration of the upper and lower limiting points in (42), together with the
MOM and CMOM estimated cumulative distribution functions for 200 simulations and
different sample sizes.

subject to

L(u) ≤ F (u; θ) ≤ H(u), ∀u ∈ S, (48)

θk ≤ ck(x), k = 1, 2, . . . , m, (49)

where L(u) and H(u) are the lower and upper quantile bound functions. This way the

estimation problem becomes an infinitely constrained optimization problem.

Condition (48) can be replaced by

`(p) ≤ x(p; θ) ≤ h(p), ∀p ∈ [0, 1], (50)

where x(p; θ) is the quantile function and `(p) and h(p) are the corresponding bound

functions. They are the inverse functions of p = L(u) and p = H(u), respectively.

Figure 4(a) illustrates the constrained estimation problem showing the lower and up-

per cumulative distribution functions L(x) and H(x), respectively, together with one

admissible cumulative distribution function F (x).

The constraints (48) and (50) can be considered on all S or [0, 1] or only in some

subsets of them. Figure 4(b) illustrates one of these cases where the constraints have been
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Figure 4: An illustration of the constrained estimation problem showing the lower and
upper cumulative distribution functions L(x), H(x) and the admissible F (x) cumulative
distribution function F (x): (a) constraints on all S, and (b) constraints just on the tails.

considered only in the tails. This is a common case when one is dealing with extreme

value models.

The problem (47)–(49) is difficult to solve because it has infinitely many constraints.

However, it is equivalent to the following problem

Minimize
θ∈Θ

f(x,θ), (51)

subject to

Maximum
u∈S

L(u)− F (u; θ) ≤ 0, (52)

Minimum
u∈S

H(u)− F (u; θ) ≥ 0, (53)

θk ≤ ck(x); k = 1, 2, . . . , m, (54)

which has only three constraints. However, the price we pay for this is that we obtain two

complicated constraints (52) and (53), so called because standard optimization packages

do not admit such a type of constraints, and they are difficult to implement because they

involve other optimization problems.

One possibility for solving this problem consists of using the approximating hyperplane

decomposition method (see, e.g., Castillo et al. (2005) or Conejo et al. (2005)) To this

end, we use an iterative process in which we solve two types of problems: the master

problem and the subproblems. We proceed as follows:
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• Step 0: Initialization. Initialize the iteration counter ν = 1 and set the value of

the feasibility tolerance ε.

• Step 1: Master problem solution for iteration ν. The master problem is

solved:

Minimize
θ∈Θ

f(x, θ), (55)

subject to

α(`) +
m∑

j=1

λ
(`)
1j (θj − θ

(`)
j ) ≤ 0, ` = 1, 2, . . . , ν − 1, (56)

β(`) +
m∑

j=1

λ
(`)
2j (θj − θ

(`)
j ) ≥ 0, ` = 1, 2, . . . , ν − 1, (57)

θk ≤ ck(x); k = 1, 2, . . . , m, (58)

obtaining the optimal value θ(ν).

Note that the two constraints of the original problem in (52) and (53) have been

replaced by linear approximations in (56) and (57).

• Step 2: Subproblem solution. Solve the two subproblems. The first is

α(ν) = Maximum
u∈S, θ∈Θ

L(u)− F (u; θ) (59)

subject to

θ = θ(ν), (60)

and the second is

β(ν) = Minimum
u∈S, θ∈Θ

H(u)− F (u; θ) (61)

subject to

θ = θ(ν), (62)

¿From these problems we obtain the mismatches α(ν) and β(ν) associated with con-

straints (52) and (53), respectively.

• Step 3: Convergence checking. If constraints (52) and (53) are feasible, that

is, α(ν) ≤ ε and β(ν) ≥ −ε then stop and return the estimates θ(ν). Otherwise, let

ν = ν + 1, go to Step 1 and repeat the process until convergence.
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Note that at iteration ν = 1 there is no hyperplane approximation (56) and (57) of

constraints (52) and (53), respectively, so that the first master problem coincides with the

ML method.

It should be noted that the problem in (55)–(58) is a relaxation of the problem in

(51)–(54) in the sense that the functions (52) and (53) are approximated using cutting

hyperplanes and they become more precisely approximated as the iterative procedure

progresses, which implies that the problem in (55)–(58) reproduces more exactly the

problem in (51)–(54) (see Kelley (1960)). Additionally, observe that cutting hyperplanes

are constructed using the dual variable vector associated with constraints (60) and (62)

in problems (59)–(60) and (61)–(62) (the subproblems), respectively.
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Figure 5: Illustration of some of the estimated densities and the lower and upper bounds.
Left figures: unconstrained estimation. Right figures: Corresponding constrained estima-
tion.
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Figure 5 shows the resulting estimated cdfs for 4 particular samples of the standard

(left side) and the constrained (right sides) methods. Comparing the corresponding figures

(those located in the same places) one can see how the constrained method corrects the

estimates. Note that the last ones (those in the lower part) are not corrected at all because

the initial optimal solution satisfies the bounds.

5.1 Infinitely Constrained Maximum Likelihood Methods

In this section, we apply the proposed method to the maximum likelihood method subject

to the bounds for the cdf and/or the quantiles in (48). Then, the resultant constrained

maximum likelihood method can be expressed as the optimization problem:

Maximize
θ∈Θ

n∑

i=1

log f(xi; θ) (63)

subject to (48).

To illustrate the gain in the precision of the estimates, we consider a sample of size n

from a N(µ, σ) population. We wish to estimate the mean µ and the standard variation

σ, but in this case we know that the cdf is bounded by

H(u) = exp

(
− exp

(
λmax − u

δmax

))
, −∞ < u < ∞,

L(u) = 1− exp

(
− exp

(
u− λmin

δmin

))
, −∞ < u < ∞,

(64)

where λmax = −0.05, δmax = 1, λmin = 0 and δmin = 1 are the parameters associated with

the maximal and minimal Gumbel distributions, respectively.

We have simulated 10,000 samples of size n = 5, 10, 20, 50, 100, from a normal N(0, 1)

population, and used both methods of estimations and obtained the results shown in

Table 8, where it can be seen that the ICML method is more efficient than the standard

ML for small sizes (n = 5, 10, 20) but these advantages disappear for large sample sizes

(n = 50, 100). Note that the results are very similar to those in Table 3 but the estimates

are more accurate because in this case the problem is more restricted. Note in Figure 6

that the ICML distribution function estimate is closer to the N(0, 1) distribution function

than the CML distribution function estimate.

25



Table 8: Performance of the maximum likelihood (ML) and the continuously constrained
maximum likelihood (ICML) estimates for a normal parent and different sample sizes n
(10,000 simulations).

n Method Bias(µ̂) MSE(µ̂) Bias(σ̂) MSE(σ̂)
5 CCML –0.00800 0.09375 –0.10922 0.10683

ML 0.00454 0.19961 –0.16224 0.11839
10 CCML –0.00635 0.06561 –0.06141 0.05125

ML –0.00111 0.09992 –0.07910 0.05464
20 CCML –0.00112 0.04262 –0.03712 0.02593

ML 0.00015 0.04986 –0.04055 0.02640
50 CCML 0.00387 0.01951 –0.01436 0.00999

ML 0.00403 0.01982 –0.01450 0.01001
100 CCML 0.00165 0.01001 –0.00669 0.00507

ML 0.00165 0.01002 –0.00669 0.00507
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Figure 6: Illustration of the upper and lower limiting maximal and minimal Gumbel
distributions (dashed lines), together with the ML, CML and ICML estimated cumulative
distribution functions for a sample of size 10.

5.2 Infinitely Constrained Method of Moments Methods

In this section, we apply the proposed method to the method of moments subject to the

bounds for the cdf and/or the quantiles in (48). Then, the resultant infinitely constrained

method of moments can be expressed as the optimization problem:

Minimize
θ∈Θ

∑̀

r=1

[
gr

a(θ)

hr
a(x)

− 1

]2

, ` ≥ m, (65)
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Table 9: Performance of the method of moments (MOM) and the continuously constrained
method of moments (CCMOM) estimates for a normal parent and different sample sizes
n (10,000 simulations).

n Method Bias(µ̂) MSE(µ̂) Bias(σ̂) MSE(σ̂)
5 ICMOM –0.00793 0.09791 –0.09148 0.11295

MOM 0.00454 0.19961 –0.16224 0.11839
10 ICMOM –0.00572 0.06849 –0.05264 0.05318

MOM –0.00111 0.09992 –0.07910 0.05464
20 ICMOM –0.00089 0.04353 –0.03421 0.02635

MOM 0.00015 0.04986 -0.04055 0.02640
50 ICMOM 0.00392 0.01958 –0.01415 0.01000

MOM 0.00403 0.01982 –0.01450 0.01001
100 ICMOM 0.00165 0.01001 –0.00668 0.00507

MOM 0.00165 0.01002 –0.00669 0.00507

subject to (48).

To illustrate the gain in the precision of the estimates, we consider a sample of size n

from a normal N(µ, σ) population and we wish to estimate the mean µ and the standard

deviation σ, but in this case we know that the cdf is bounded by the constraints in (64).

We have simulated 10,000 samples of size n = 5, 10, 20, 50, 100, from the N(0, 1), and

used both methods of estimations and obtained the results shown in Table 9, where it

can be seen that the ICML method is more efficient than the standard ML for small sizes

(n = 5, 10, 20) but these advantages disappear for large sample sizes (n = 50, 100).

6 Conclusions

In this paper we have introduced a new estimation method that allows incorporating extra

information in the parameter estimation problem in terms of bounds for the cdf or the

quantile functions and also in terms of constraints imposed by the support of the random

variable of interest. The application of the method to two methods of estimation (the

maximum likelihood method and the method of moments) and using three families of

distributions (the normal, uniform, and Weibull) have been discussed. But the proposed

method is general in the sense that it can be applied to improve any method of estimation

as long as it can be expressed as an optimization problem.

The examples and simulations show that important gains can be achieved with respect
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to the case where this information is lacking for small sample sizes even when the bounds

are not very precise. When the sample size is large, there is practically no gain.
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