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Abstract

It is well known that the least absolute value (‘1) and the least sum of absolute deviations (‘1) algorithms produce esti-
mators that are not necessarily unique. In this paper it is shown how the set of all solutions of the ‘1 and ‘1 regression
problems for moderately large sample sizes can be obtained. In addition, if the multiplicity of solutions wants to be
avoided, two new methods giving the same optimal ‘1 and ‘1 values, but supplying unique solutions, are proposed.
The idea consists of using two steps: in the first step the optimal values of the ‘1 and ‘1 errors are calculated, and in
the second step, in case of non-uniqueness of solutions, one of the multiple solutions is selected according to a different
criterion. For the ‘1 the procedure is used sequentially but removing, in each iteration, the data points with maximum
absolute residual and adding the corresponding constraints for keeping these residuals, and this process is repeated until
no change in the solution is obtained. In this way not only the maximum absolute residual values are minimized in the
modified method, but also the maximum absolute residual values of the remaining points sequentially, until no further
improvement is possible. In the ‘1 case a least squares criterion is used but restricted to the ‘1 residual condition. Thus,
in the modified ‘1 method not only the ‘1 residual is minimized, but also the sum of squared residuals subject to the ‘1

residual. The methods are illustrated by their application to some well known examples and their performances are tested
by some simulations, which show that the lack of uniqueness problem cannot be corrected for some experimental designs
by increasing the sample size.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the regression model

y ¼ f ðx; bÞ þ e; ð1Þ
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where y is the response variable, x is the vector of p predictor variables, b is the parameter vector, e is the error
term, and we assume that the Jacobian determinant jJ j ¼ jof ðx; bÞ=obj is non-null. If f ðx; bÞ ¼ Xb with X the
design matrix, we have the linear regression model.

Several estimation methods are used for estimating the parameters of linear and non-linear regression mod-
els of the form (1). Among them, the least squares (‘2), the least sum of absolute deviations (‘1) and the least
absolute value (‘1) are the most common (see, for example, Laplace, 1789; Meketon, 1986; Belsley et al., 1980;
Bloomfield and Steiger, 1980; Dodge, 1987, 1992, 1997; Dodge and Falconer, 2002; Rao and Toutenburg,
1999 or Chatterjee et al., 2000 for recent papers).

The most popular method for estimating the regression parameters b of the models in (1) is the ‘2 method,
where the sum of squared distances between observed and predicted values is minimized, that is,

minimize
b

Z‘2
¼
Xn

i¼1

ðyi � f ðxi; bÞÞ2: ð2Þ

Though ‘1 and ‘1 methods had initially a great success, they were obscured by the appearance of the ‘2

method. Later they recovered some prestige (see Edgeworth, 1887, 1888), when it was discovered that they
correspond to maximum likelihood estimators for the uniform and double exponential residuals, respectively,
and gave iterative methods for finding the solution, but soon they returned to obscurity mainly due to their
associated computational complexities.

A posterior prestige recovery of these methods and a more frequent use of them took place because of the
important contribution of Mosteller et al. (1950), who discovered the possibility of stating these problems as
linear programming problems. Since then, the advances of mathematical programming were applied to these
regression problems and many new results appeared. Recently, Portnoy and Koenker (1997) have shown the
interesting result that there are algorithms that make them competitive with the ‘2 method, and even superior
for some sample sizes.

One important property of the ‘1 and ‘1 methods is that they are less sensitive to extreme errors (outliers)
than the ‘2 method, as already pointed out by Bowditch (see Eisenhart, 1961). Some interesting sensitivity
measures are given, for example, in Chatterjee and Hadi (1988), and a recent sensitivity analysis of the three
regression methods has been presented by Castillo et al. (2004).

All three regression models can be seen as particular cases of the weighted regression model

minimize
b

Z ¼
Xn

i¼1

wijyi � f ðxi; bÞj; ð3Þ

where the weights are wi ¼ jyi � f ðxi; bÞj for the least squares, wi = 1 if jyi � f ðxi; bÞj ¼ maxjjyj � f ðxj; bÞj and
wi = 0, otherwise, for the ‘1 method, and wi = 1 for the ‘1 method. Thus, the least squares method gives much
more weight to large residuals, the ‘1 method gives only weight to the maximum residual, and the ‘1 method
gives equal weight to all residuals. This immediately suggests when each method should be used in a particular
application.

1.1. The ‘1 regression method

In the ‘1 regression problem, the sum of absolute residuals is minimized, i.e.

minimize
b

Z‘1
¼
Xn

i¼1

jyi � f ðxi; bÞj: ð4Þ

The ‘1 method is very old. The first idea seems to be attributed to Boscovich in 1760 (see Stigler, 1984,
1986), who added to (4) the condition of the regression line to pass through the centroid of the mass of points.
However, the first written solution to this problem is due to Laplace (1789).

One century later, Edgeworth (1887, 1888) removed the constraint and stated the unconstrained problem.
So, we must give the credit for the first proposal of the ‘1 method to Edgeworth. He also proposed a numerical
method for solving problem (4). However, as indicated by Hawley and Gallagher (1994), his method cycles
when the data have some special degeneracies. Other efficient methods for solving this problem were given

E. Castillo et al. / European Journal of Operational Research 188 (2008) 460–484 461



Author's personal copy

by Bloomfield and Steiger (1980) and Wesolowsky (1981). For some detailed analysis of the ‘1 method and
some applications (see Dodge, 1987, 1992, 1997; Dodge and Falconer, 2002).

It can be shown that the ‘1 method is a maximum likelihood approach for the case of a double exponential
distribution (see, for example, Yinbo and Arce, 2004).

Since the important work of Mosteller et al. (1950), one can state this problem as a linear programming
problem, and nowadays it is well known that the ‘1 problem (4) can be written as

minimize
b;ei

Z‘1
¼
Xn

i¼1

ei ð5Þ

subject to

yi � f ðxi; bÞ 6 ei; i ¼ 1; . . . ; n; ð6Þ
f ðxi; bÞ � yi 6 ei; i ¼ 1; . . . ; n; ð7Þ

where ei are the residuals.

1.2. The ‘1 regression method

This method has a long history. It was proposed even before the least squares method (Euler, 1749) and has
also been used in other areas of research as artificial intelligence (see, for example, Castillo et al., 2000a). It can
also be seen as a maximum likelihood method for the uniform distribution of errors.

The ‘1 method minimizes the maximum absolute residual, that is,

minimize
b

Z‘1 ¼ max
i
jyi � f ðxi; bÞj; ð8Þ

which, even though it is an awful model because of the absolute value and maximum functions, can be written
as

minimize
b;e

Z‘1 ¼ e ð9Þ

subject to

yi � f ðxi; bÞ 6 e : lð1Þi i ¼ 1; . . . ; n; ð10Þ
f ðxi; bÞ � yi 6 e : lð2Þi i ¼ 1; . . . ; n; ð11Þ

where e is the maximum error, and lð1Þi ; lð2Þi ; i ¼ 1; . . . ; n are the dual variables corresponding to constraints
(10),(11), respectively (Luenberger, 1989).

Note that this method gives and infinite weight to the largest error. In other words, users of this method are
only concerned of the maximum error. This gives an important hint on when this method must be used instead
of other alternative regression methods.

Note that the constraints ei > 0 and e > 0 have not been included in the problems (5),(6),(7) and
(9),(10),(11), respectively, because these constraints are implied by (6), (7) and (10),(11), respectively (see Cas-
tillo et al., 2001). This saves one-third of the number of constraints utilized by many researchers.

1.3. The set of all solutions and the uniqueness problem

The fact that more than one solution exists has been the concern of many researchers and users of these
regression methods, because different people using the same model, data and method can obtain different
results, that even though they share the same value of the objective function, lead to different models. This
concern has led to some proposals for having a unique solution in the past for the ‘1 and the ‘1 problems.
For example, Giloni and Padberg (2002) proposed the center of gravity of all extreme points of the solution
to solve the uniqueness problem. However, this is very costly computationally.

Though uniqueness of solution is in general very convenient, in some cases, one could be more interested in
the information about all possible feasible solutions than in one particular solution. Thus, another interesting
problem consists of identifying the set of all possible solutions to the ‘1 and ‘1 regression problems.
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To illustrate the lack of uniqueness and the set of feasible solutions when they exist, the following data set is
considered

fð1; 7Þ; ð1; 5Þ; ð2; 13Þ; ð2; 9Þ; ð3; 22Þ; ð3; 14Þg ð12Þ

and the simple regression model

yi ¼ aþ bxi þ cx2
i þ ei; ð13Þ

where fðxi; yiÞ; i ¼ 1; 2; . . . ; ng is the sample. Fig. 1 shows this simple set with six data points and the corre-
sponding ‘2 regression model, which is unique.

Fig. 2a shows some of the infinitely many optimal ‘1 models. In fact, as it will be shown in Section 3, it
shows the four solutions generating, by linear convex combinations, all feasible optimal solutions. Thus, all
of them have the same optimal value for the ‘1 error e = 4. The black squares in the figures show the points
defining the four regression models, apart from the data points; they are at a distance of e = 4 from some par-
ticular data points.

Finally, Fig. 2b illustrates the multiplicity of solutions of the ‘1 regression model. In fact, as it will be shown in
Section 3, it shows the eight solutions generating, by linear convex combinations, all the feasible optimal solu-
tions. Note that the optimal value of the objective function Z�‘1

¼
Pn

i¼1ei ¼ 14 coincides with the sum of the abso-
lute values of the differences of the ordinates associated with the pairs of points with abscissas 1, 2 and 3.

So, in this paper we do not deal with the properties of the ‘1 and ‘1 methods, which have been sufficiently
described in the existing literature (see Sielken and Hartley, 1973; Meketon, 1986 or Portnoy and Koenker,
1997, for example). The aim of this paper is to show some uniqueness problems associated with the ‘1 and
the ‘1 regression methods, and to provide; (a) some methods for obtaining all possible solutions, (b) additional
constraints to have unique solutions, and (c) efficient methods to obtain them.

To avoid this multiplicity of solutions without modifying the optimal value of the ‘1 objective function, we
propose in Sections 4 and 5 of this paper the sequential ‘1 (SLI) and the revised ‘1 methods, which for the
above simple example lead to the same parameter estimates as the ‘2 method in Fig. 1. The main idea is that
if several solutions minimize the objective function, one can benefit by adding extra desirable conditions to
chose only one and get uniqueness.

The proposed methods allow us to: (a) obtain a unique solution for the ‘1 and ‘1models, and (b) determine
if the ‘1 and ‘1 methods have more than one solution for a given set of data.

The proposed methods lead to uniqueness of the modified ‘1 and ‘1 methods and can be solved by efficient
methods. The fact that extra desirable conditions can be enforced in addition to the minimization of the ‘1 and
‘1 errors make them competitive with alternative uniqueness proposals.

So, the present paper tries to propose better alternatives for obtaining this uniqueness. To this end, we ben-
efit from the important results in the recent paper by Giloni and Padberg (2002), who survey traditional
regression techniques using the ‘1, ‘2 and ‘1 norms and discuss uniqueness and coincidence of models. In par-
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Fig. 1. Scatter plot of yi versus xi, for the illustrative example and the resulting ‘2 fitted model.
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ticular they analyze the conditions under which the ‘1 and ‘1 solutions coincide, which are relevant to this
paper.

The paper is organized as follows. In Section 2 a general method for obtaining the set of all their possible
solutions is given. In Section 3 the uniqueness problems of the ‘1 and the ‘1 regression methods are described.
In Sections 4 and 5 the SLI and the revised ‘1 methods aimed at solving the uniqueness problems are intro-
duced, and two algorithms for implementing these methods in a computer are given. Section 6 is devoted to
illustrating these methods with the help of some data samples in the existing literature. Section 7 presents some
theoretical discussion and the results of a simulation to show the performance of the two methods for small
and large samples. Finally, in Section 8, some conclusions are given.

2. Obtaining the set of all solutions for the ‘1 and ‘‘ methods

In this section we show how the set of all solutions of the problems ‘1 and ‘1 can be obtained.
In the case of linear regression, the general solution of the problem (9)–(11) can be obtained by solving the

linear system of inequalities (10), (11) and replacing this solution into (9). In addition, since one can know the
value of the objective function e*, one must add the corresponding constraint e ¼ e�, because all solutions must
share the same objective function value.

Since the methods for solving systems of linear inequalities are not well known by some researchers and
references are scarce and difficult to find, we supply the following references: Padberg (1995), Castillo et al.
(1999, 2000, 2002), or Castillo and Jubete (2004), where the methods and techniques can be consulted.

The general solution of a system of inequalities is a polyhedron, i.e., the sum of three components: a linear
space (generated by linear combinations of vectors), a cone (generated by non-negative linear combinations of
vectors) and a polytope (generated by linear convex combinations of vectors). However, in the particular case
of the ‘1 (6), (7) and ‘1 (10), (11) systems, they lack the linear space component, i.e., they are of the form

b

e

� �
¼
X

s

ps
bs

es

� �
þ
X

j

kj
bj

ej

 !
; ps P 0 8s; kj P 0 8j;

X
j

kj ¼ 1; ð14Þ

where bs and bj are the generators of the cone and the extremes of the polytope, respectively.

2.1. The ‘1 method

Replacing (14) into the objective function (5) one gets
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Fig. 2. Scatter plot of yi versus xi, for the illustrative example and the regression models generating the infinitely many ‘1 (a) and ‘1 (b)
resulting models.
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Z‘1
¼
Xn

i¼1

ei ¼
X

s

ps

Xn

i¼1

es
i

 !
þ
X

j

kj

Xn

i¼1

ej
i

 !
; ps P 0 8s; kj P 0 8j;

X
j

kj ¼ 1: ð15Þ

To obtain the p and k coefficients leading to a minimum of Z‘1
, one must look for the polytope generators with

minimum value of ð
Pn

i¼1e
s
i Þ, which corresponds to ps ¼ 0 8s and the non-null kjs such that

Pn
i¼1e

j
i is a mini-

mum. Let Q* be the set of j indices where the minimum of
Pn

i¼1e
j
i is attained. If Q* contains a single element,

the problem has a unique solution; otherwise it has multiple solutions corresponding to the polytope generated
by such vectors, i.e., the solution is

b ¼
X
j2Q�

kjb
j; kj P 0 8j 2 Q�;

X
j2Q�

kj ¼ 1: ð16Þ

As one example, using the data in (12) and the model in (13), the general solution of the ‘1 problem (5)–(7)
is the polytope

a

b

c

0
B@

1
CA ¼

4 �4 16 8 �2 �10 10 2
3
2

27
2
� 29

2
� 5

2
13
2

37
2

� 19
2

5
2

3
2
� 5

2
11
2

3
2

1
2

� 7
2

9
2

1
2

0
B@

1
CA

k1

k2

k3

k4

k5

k6

k7

k8

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

; kj P 0; j ¼ 1; 2; . . . ; 8;
X8

j¼1

kj ¼ 1;

ð17Þ

Fig. 2b shows the eight generating solutions in (17).
Note that the complexity of the problem of obtaining the solution of a system of inequalities can be very

high and increases exponentially with the sample size, so solving the problem using this method for very large
samples could be intractable.

In Section 6 one example with n = 50, which was obtained without any problem with Mathematica and
exact precision (rational numbers), is shown. A much larger sample size can be dealt with using, for example,
the GNU Multiple Precision Arithmetic Library (http://www.swox.com/gmp/) for any arbitrary precision
and rational representation limited by the space.

2.2. The ‘1 method

In this case (14) transforms to

b

e

� �
¼
X

s

ps
bs

es

� �
þ
X

j

kj
bj

ej

 !
; ps P 0 8s; kj P 0 8j;

X
j

kj ¼ 1; ð18Þ

which replaced into the objective function (9) leads to

Z‘1 ¼ e ¼
X

s

pse
s þ
X

j

kje
j; ps P 0 8s; kj P 0 8j;

X
j

kj ¼ 1: ð19Þ

Then, the solution is as in (16) and a similar discussion for the uniqueness problem remains valid.
As one example, the general solution of the linear system of inequalities (10) and (11) for the model (13) and

data in (12) is the polyhedron:
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a

b

c

e

0
BBB@

1
CCCA ¼

� 5
2

1
2

1
2

7
2
� 7

2
� 1

2
� 1

2
5
2
�12 0 6 18

5
2

0 � 3
2
�4 4 3

2
0 � 5

2
35
2

3
2

5
2
� 27

2

� 1
2

0 1
2

1 �1 � 1
2

0 1
2

� 5
2

3
2

1
2

9
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

4 4 4 4

0
BBB@

1
CCCA

p1

p2

p3

p4

p5

p6

p7

p8k1

k2

k3

k4

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

; ð20Þ

where pi P 0; i ¼ 1; 2; . . . ; 8; kj P 0; j ¼ 1; 2; 3; 4;
P4

j¼1kj ¼ 1:
Replacing now this solution into (9) one gets

Z‘1 ¼ e ¼ 1

2
ðp1 þ p2 þ � � � þ p8Þ þ 4ðk1 þ k2 þ k3 þ k4Þ ¼

1

2
ðp1 þ p2 þ � � � þ p8Þ þ 4;

which obviously attains a minimum for pi ¼ 0; i ¼ 1; 2; . . . ; 8. Then, the set of all solutions of the general ‘1
problem (9)–(11), obtained from (20) is:

a

b

c

0
B@

1
CA ¼

�12 0 6 18
35
2

3
2

5
2
� 27

2

� 5
2

3
2

1
2

9
2

0
B@

1
CA

k1

k2

k3

k4

0
BBB@

1
CCCA; kj P 0; j ¼ 1; 2; 3; 4;

X4

j¼1

kj ¼ 1; ð21Þ

which is a polytope. Fig. 2(a) shows the four generating solutions in (21).

3. Uniqueness of the ‘1 and ‘‘ problems

It is well known that the ‘2 method shows a good behavior in linear and in some non-linear regression mod-
els because it has a unique solution. However, the ‘1 and ‘1 regression methods, due to their lack of unique-
ness, can have problems. For example, Sielken and Hartley (1973) pointed out the lack of uniqueness problem,
and proposed an algorithm for obtaining unbiased estimates when the solution is unique. However, they did
not solved the uniqueness problem.

For example, the ‘1 estimator of a model consisting of only an intercept is the sample median. When there is
an even number of observations, any value in the closed interval defined by the two middle observations would
serve as a ‘1 estimate. In order to solve the regression problem one must select one of the resulting optimal ‘1

models.
As it is shown in Section 6, the uniqueness problem does not disappear increasing the sample size and it is

more related to the experimental design (repeated or random samples) than to the sample size itself. More pre-
cisely, the experiments presented in Section 6 show the interesting (and surprising?) result that the uniqueness
problem can become worse when increasing sample sizes.

If the ‘1 problem has more than one solution, it is convenient to provide a way to select one of them sat-
isfying some extra conditions. However, before proceeding to this selection it is good to have a way to check
the uniqueness. Apart from the methods given in Section 2 to check uniqueness of the ‘1 and ‘1 methods,
there is an interesting proposition in Giloni and Padberg (2002), which allows checking uniqueness once
the ‘1 problem has been solved. The proposition is as follows:

Proposition 1 (Uniqueness of the ‘1-problem). (Giloni and Padberg, 2002). Let b* be an extreme point solution
of the ‘1-problem in (9)–(11). Let A be the set

A ¼ i 2 N ; jrij ¼ ky� Xb�k1
� �

;
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let

fi ¼
1 if ri P 0;

�1 if ri < 0;

�
and FA be the diagonal matrix with diagonal elements fi; i 2 A, and XA be the submatrix of X containing the rows

which indices are in A.

Then, b* is unique if and only if the system of inequalities in n

F�AXAn P 0; nk < 0 ð22Þ

is inconsistent for all k ¼ 1; 2; . . . ; p.

Though it can appear that Proposition 1 leads to a too laborious computation because it implies checking
the compatibility of many systems, it can be done much easily, as suggested by the following proposition.

Proposition 2 (Uniqueness of the ‘1-problem). Under the conditions of Proposition 1, b* is unique if and only if
the set of solutions of F�AXAn P 0 is an acute cone and all the components of its edges (generators) are strictly

positive.

Proof 1. The proof of this proposition is immediate if one uses the C-algorithm (see Castillo and Jubete, 2004)
to solve the system of inequations of the form

F�AXAn P 0; nk < 0:

In a first step, system F�AXAn P 0 is solved and the dual cone of the cone generated by the rows of F�AXA is
obtained, then, in the last step, the vector associated with the constraint nk < 0 is introduced. Thus, in order
to get no solution (incompatibility), the kth components of the generators must be strictly positive, because
otherwise, a solution is obtained. Since this must hold for all k, the result in the proposition holds. h

The practical importance of this proposition is that to check uniqueness, one needs only to solve the system
F�AXAn P 0. This is illustrated in the following example.

Example 1. Consider the data and the simple regression model in (12) and (13), respectively. One ‘1 solution
is the model in Fig. 2(a) passing through points A, 4 and C, which data estimated values and residuals are
given in Table 1. Then one has

X ¼

1 1 1

1 1 1

1 2 4

1 2 4

1 3 9

1 3 9

0
BBBBBBBB@

1
CCCCCCCCA
;

and A � f1; 3; 5; 6g, F�A ¼

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

0
BB@

1
CCA and XA ¼

1 1 1
1 2 4
1 3 9
1 3 9

0
BB@

1
CCA, and Eq. (22) becomes

Table 1
Data, estimated y-values, residuals and f-values, for the example in Fig. 1

i xi yi ŷi ri fi

1 1 7 3 4 1
2 1 5 3 2 1
3 2 13 9 4 1
4 2 9 9 0 1
5 3 22 18 4 1
6 3 14 18 �4 �1
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1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

0
BBB@

1
CCCA

1 1 1

1 2 4

1 3 9

1 3 9

0
BBB@

1
CCCAn ¼

1 1 1

1 2 4

1 3 9

�1 �3 �9

0
BBB@

1
CCCA

n1

n2

n3

0
B@

1
CA P 0; nk < 0; k ¼ 1; 2; 3:

The cone

1 1 1
1 2 4
1 3 9
�1 �3 �9

0
BB@

1
CCA

n1

n2

n3

0
@

1
A P 0 can be written as

n1

n2

n3

0
B@

1
CA ¼ p1

�3

4

�1

0
B@

1
CAþ p2

6

�5

1

0
B@

1
CA; p1; p2 2 Rþ;

which is not an acute cone, and then it is obvious that the system (22) is compatible for k ¼ 1; 2; 3. Thus, this
‘1 problem has not a unique solution.

Similarly, Giloni and Padberg (2002), provide a proposition that allows checking uniqueness once the ‘1

problem has been solved. This proposition uses the fact that for any optimal extreme point solution of the
‘1-problem, there exists a non-singular p · p submatrix XB of X such that

b� ¼ X�1
B yB;

i.e., the regression surface passes through p points and the parameters of the model can be calculated from
them.

The proposition is as follows:

Proposition 3 (Uniqueness of the ‘1-problem). (Giloni and Padberg, 2002).Let b* be a solution of the ‘1-problem

in (5)–(7).

Then b* is unique if and only if

�eT
p �

X
i2D

jxiX�1
B j < ðeT

U XU � eT
L XLÞX�1

B < eT
p þ

X
i2D

jxiX�1
B j; ð23Þ

where ep, eU and eL are vectors with all unit components, D ¼ Z � B, jxj ¼ ðjx1j; jx2j; . . . ; jxpjÞT, Z, U and L are
the sets

Z � fi 2 N ; ri ¼ 0g; U � fi 2 N ; ri > 0g; L � fi 2 N ; ri < 0g
and xi is the row i of X.

This proposition, once the solution to the ‘1 problem is known allows testing its uniqueness of solution.
Note that in order to apply it, the sets Z, U, L and B, which cannot be identified without knowledge of
one solution, must be known.

This proposition explains also that grouping data (coincidence of the predicting variable values) is not con-
venient under the point of view of uniqueness, because it leads to large values of the term ðeT

U XU � eT
L XLÞX�1

B

for extreme point solutions and makes it difficult to satisfy (23), i.e., the uniqueness (see the example below).

Example 2. Consider again the data and the model in (12) and (13), respectively, and the extreme point
solution to the ‘1 problem passing through points 1, 4 and 5 in Fig. 2b. Then, the following sets and matrices
result (see Table 2)

Z � B � f1; 4; 5g; U � f3g; L � f2; 6g; XU ¼ ð 1 2 4 Þ; XL ¼
1 1 1

1 3 9

� �
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and

XB ¼
1 1 1

1 2 4

1 3 9

0
B@

1
CA; b� ¼

1 1 1

1 2 4

1 3 9

0
B@

1
CA
�1

7

9

22

0
B@

1
CA

and then, since D � ;, condition (23) becomes

ð�1 �1 �1 Þ¥ 1ð 1 2 4 Þ � ð 1 1 Þ
1 1 1

1 3 9

� �
< ð 1 1 1 Þ;

that is,

ð�1 �1 �1 Þ¥ ð�1 �2 �6 Þ < ð 1 1 1 Þ;

which proves the non-uniqueness of the solution.

4. The SLI method

If the ‘1 has more than one solution, it is convenient to provide a way to select one of them satisfying some
extra conditions. In this section we present the sequential ‘1model. The name sequential ‘1 (SLI) comes from
the fact that the ‘1 method is applied sequentially to different sets of decreasing number of data points and an
increasing number of constraints are considered to keep the residuals of the remaining points at their corre-
sponding values. In this way not only the maximum absolute residual values are minimized, but also the abso-
lute values of the residuals of the remaining points sequentially, until no further improvement is possible.

The method is described in detail in the following algorithm.

Algorithm 1 (The SLI model). The SLI estimation method is as follows:

Input. A data set and a parametric regression model.
Output. The estimates of the corresponding parameters using the SLI method.

Step 1: Solve the ‘1 problem. The standard ‘1 problem is solved using all data points.
Step 2: Find the set of data points that leads to the ‘1 error. To this end, we find the set of data associated

with the non-null dual variables (lð1Þ and lð2Þ), which correspond to the data points whose absolute
values of the residuals coincide with the actual value of the objective ‘1 function for all existing
solutions of the ‘1 problem.

Step 3: Remove points from the actual data set. This set of data points are removed from the actual data set
(sample).

Table 2
Data, estimated y-values, residuals and f values, for the example in Example 2

i xi yi ŷi ri

1 1 7 7 0
2 1 5 7 �2
3 2 13 9 4
4 2 9 9 0
5 3 22 22 0
6 3 14 22 �8
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Step 4: Test for convergence. Compare the actual solution with the previous solution. If there is coincidence
or there are no points remaining in the actual sample, stop the process and return the parameter
estimates. Otherwise continue with Step 5.

Step 5: Add the corresponding residual constraints. Add to the optimization problem one constraint per
removed data point forcing the corresponding residuals to remain constant and equal to the actual
optimal value of the objective function.

Step 6: Solve the constrained ‘1 problem. The standard ‘1 problem is solved again but considering only the
actual data set and the actual constraints. Next, go to Step 2.

Note that this algorithm allows us to determine if the standard ‘1 method has no unique solution. This
occurs when the solutions of the ‘1 and the SLI methods do not coincide, i.e., when the algorithm stops later
than the second iteration.

Since the analytical definition of the SLI estimates is complicated and involves iteration and optimization
problems, it is practically impossible to give closed formulas for the confidence intervals or the variances of the
estimates, even for the asymptotic case. However, the bootstrap method can be easily used to derive these vari-
ances and confidence intervals. Note that the bootstrap method cannot behave well for the ‘1 estimators,
because of its lack of uniqueness, however, the uniqueness of the SLI solves this problem.

4.1. Illustrative example

To illustrate the proposed method, the example given in Section 1 for the regression model is used

yi ¼ aþ bxi þ cx2
i þ ei:

The SLI algorithm in this case proceeds as follows:

First iteration

Step 1: Solve the initial ‘1 problem. The standard ‘1 problem is solved with all data points and an optimal
value e�1 ¼ 4, where the subindex refers to the iteration number, and the following estimates and
non-null values of the dual variables are obtained

â1 ¼ 0; b̂1 ¼ 1:5; ĉ1 ¼ 1:5; lð1Þ6 ¼ �0:5; lð2Þ5 ¼ �0:5: ð24Þ
Step 2: Find the set of data points that leads to the ‘1 error. The data points with absolute value of the resid-

ual jeij ¼ 4 and non-null dual variables are data points 5 and 6.
Step 3: Remove points from the actual data set. Data points 5 and 6 are removed, so that the actual data set

uses cases f1; 2; 3; 4g.
Step 4: Test for convergence. Since it is the first iteration, we continue.
Step 5: Add the corresponding residual constraints. We add the two constraints

y5 � a1 � b1x5 � c1x2
5 ¼ �4; y6 � a1 � b1x6 � c1x2

6 ¼ 4:

Second iteration

Step 1: Solve the constrained ‘1 problem. The standard ‘1 problem is solved again but considering only the
actual set of data and the actual constraints. After this process we get an optimal value e�2 ¼ 2 and
the following estimates and non-null values of the dual variables are obtained

â2 ¼ 1:2; b̂2 ¼ 3:5; ĉ2 ¼ 0:7; lð1Þ4 ¼ �0:5; lð2Þ3 ¼ �0:5: ð25Þ
Step 2: Find the set of data points that leads to the ‘1 error. The data points with absolute value of the resid-

ual jeij ¼ 2 and non-null dual variables are data points 3 and 4.
Step 3: Remove points from the actual data set. Data points 3 and 4 are removed, so that the actual data set

uses cases f1; 2g.
Step 4: Test for convergence. Since the process has not converged yet, we continue.
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Step 5: Add the corresponding residual constraints. We add the constraints

y3 � a2 � b2x3 � c2x2
3 ¼ �2; y4 � a2 � b2x4 � c2x2

4 ¼ 2:

Third iteration

Step 1: Solve the constrained ‘1 problem. The standard ‘1 problem is solved again but considering only the
actual set of data and the actual constraints. After this process we get an optimal value e�3 ¼ 1 and
the following estimates and non-null values of the dual variables are obtained

â3 ¼ 3; b̂3 ¼ 2; ĉ3 ¼ 1; lð1Þ2 ¼ �0:5; lð2Þ1 ¼ �0:5: ð26Þ
Step 2: Find the set of data points that leads to the ‘1 error. The data points with absolute value of the resid-

ual jeij ¼ 1 and non-null dual variables are data points 1 and 2.
Step 3: Remove points from the actual data set. Data points 1 and 2 are removed, so that the actual data set

becomes empty fg.
Step 4: Test for convergence. Since the actual data set is empty, we stop the process and return the actual

estimates:

â3 ¼ 3; b̂3 ¼ 2; ĉ3 ¼ 1: ð27Þ
Note that these estimates coincide with those of the ‘2 method.

Fig. 3 shows the three regression models corresponding to the three iterations.

5. The revised ‘1 regression method

In this section we present the revised least sum of absolute deviations (RLSAD), i.e., the ‘1 regression
model, which is described in detail in the following algorithm.

Algorithm 2 (The revised ‘1 model). The revised ‘1 estimation method is as follows:

Input. A data set and a parametric regression model.
Output. The estimates of the corresponding parameters using the revised ‘1 regression method.

Step 1: Solve the initial ‘1 problem. The standard ‘1 problem is solved using all data points and the resulting
‘1 error d is stored, i.e., solve the problem:

minimize
b;e

Z‘1
¼
Xn

i¼1

ei ð28Þ

subject to

yi � f ðxi; bÞ 6 ei; i ¼ 1; . . . ; n; ð29Þ
f ðxi; bÞ � yi 6 ei; i ¼ 1; . . . ; n; ð30Þ
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Fig. 3. ‘1 models resulting in the three iterations of the illustrative example.
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and store the optimal value d� ¼
Pn

i¼1e
�
i , where e�i are the residuals corresponding to the optimal

estimates, and e is the vector containing all ei.
Step 2: Solve the least squares regression problem subject to the above ‘1 error. In other words, solve the

problem:

minimize
b;e

Z‘2
¼
Xn

i¼1

yi � f ðxi; bÞð Þ2; ð31Þ

subject to

yi � f ðxi; bÞ 6 ei; i ¼ 1; . . . ; n; ð32Þ
f ðxi; bÞ � yi 6 ei; i ¼ 1; . . . ; n; ð33ÞXn

i¼1

ei ¼ d�: ð34Þ

Note that this algorithm allows us to determine if the standard ‘1 method has no unique solution. This
occurs when the solutions of the ‘1 and the RLSAD methods do not coincide.

Since the analytical definition of the revised ‘1 estimates involves two optimization problems, it seems dif-
ficult to give formulas for confidence intervals or variances of the estimates, even for the asymptotic case. For-
tunately, since all ‘1 solutions are asymptotically equivalent, the standard ‘1 theory applies, because the
RLSAD solution is a ‘1 solution. Alternatively, the bootstrap method can be easily used to derive these vari-
ances and confidence intervals for small samples.

The proposed method can fail if the least squares estimate is also an ‘1 estimate. In such a case, it might be
possible that the solutions of the ‘1 and RLSAD problems coincide and yet the ‘1 problem may not have a
unique solution. To understand how and when the RLSAD helps to solve the problem, we use the following
proposition from Giloni and Padberg (2002):

Proposition 4 (Coincidence of solutions of the ‘2 and ‘1 problems (Giloni and Padberg, 2002)). The ‘2 estimate

b is an optimal solution of the ‘1 problem if and only if there exist v 2 RjZj such that

vXZ ¼ �eT
U XU þ eT

L XL; �eT
Z 6 v 6 eT

Z : ð35Þ
If Z ¼ ;, condition (35) simplifies to

eT
U XU ¼ eT

L XL: ð36Þ
This proposition allows us not only checking particular cases, but also choosing a X design matrix such that

the uniqueness of the proposed algorithm be guaranteed.

In conclusion, apart from very seldom cases in which (35) or (36) hold, Proposition 4 guarantees the
uniqueness of the proposed method.

The following example illustrates the use of Proposition 4.

Example 3. Consider again the data and the model in (12) and (13), respectively. To check the coincidence of
the regression model with one of the ‘1 models, we use Proposition 4, and since we have Z ¼ ;, we need to
check (36).

For this case we have

X ¼
1 1 1

1 2 4

1 3 9

0
B@

1
CA; XL ¼

1 1 1

1 2 4

1 3 9

0
B@

1
CA;

which implies

1 1 1ð Þ
1 1 1

1 2 4

1 3 9

0
B@

1
CA ¼ 1 1 1ð Þ

1 1 1

1 2 4

1 3 9

0
B@

1
CA;

i.e., that the ‘2 solution is also a ‘1 solution.
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This is in agreement with the solution given by the algorithm. In effect, the solution to the problem (28)–
(30) in Step 1 for this case is not unique and leads to d� ¼ Z�‘1

¼ 14, and the solution to the constrained least
squares problem (31)–(34) leads to Z‘2

¼ 42, and the regression line coincides with the unique unconstrained
least squares regression line.

Proposition 4 is also useful to explain how the design matrix X plays an important role in the uniqueness
problem. A coincidence of the values of the predictive variables X, that is, grouping data, leads to coincidence
of the corresponding rows of the matrix X, and to redundant equations in the system of equations (35) and
(36), which makes the solution of these system possible, and consequently to the coincidence of solutions
of the ‘2 and ‘1 problems. On the contrary, a Random selection of the predictive variables X makes the solu-
tion of (35) or (36) difficult or impossible and then it leads to no coincidence of solutions. This is illustrated in
the simulation examples in the following section. Thus, Proposition 4 allows us choosing a design matrix X
such that the coincidence is impossible.

6. Examples of application

In this section we apply the SLI and the RLSAD methods to some real examples.

6.1. A model for ultrasonic data

The data used here is the result of a NIST study involving ultrasonic calibration. The data consists of 54
observations on two variables. The response variable (y) is ultrasonic response and the predictor variable (x) is
metal distance.

The data can be found in http://www.itl.nist.gov/div898/strd/nls/data/LINKS/DATA/Chwirut2.dat.
In this website, a non-linear regression model of the form

yi ¼ f ðxi; bÞ þ ei ¼
e�b1xi

b2 þ b3xi
þ ei; i ¼ 1; 2 . . . ; n ð37Þ

was fitted to the data.
This is not a regular case and the ‘1 regression problem has infinitely many solutions. So, looking for

uniqueness the SLI method is used.
The optimal value of the ‘1 error bound is 8.55, which is attained at points 1 and 28. The second ‘1 bound

(after removing these points) is 8.003, which is attained at points 6,36 and 39. The third ‘1 bound (after
removing these points) is 7.703, which is attained at point 29. Since the parameter values coincide with the
previous iteration ones, the SLI reaches the solution at the third iteration, which proves that the ‘1 estimators
do not have a unique solution.

The following ‘2 and SLI estimates for the ultrasonic data are obtained:

‘2 : Z‘2
¼ 513:05; b̂1 ¼ 0:16658; b̂2 ¼ 0:00517; b̂3 ¼ 0:01215;

SLI : ZSLI ¼ 8:55; b̂1 ¼ �0:01029; b̂2 ¼ 0:00361; b̂3 ¼ 0:01662:

Fig. 4 shows the ‘2 (upper left plot) and the SLI (upper right plot) regression models for the ultrasonic cal-
ibration data. In addition to the regression lines, the lower and the upper bands (dashed lines) at a distance
e ¼ �8:55, i.e., the ‘1 error, for the ‘2 and sequential ‘1 estimates, are shown.

Note that data point 1 is outside the upper band for the least squares model and that the ‘2 method gets a
better fit of the data points on the right while the SLI method gets a better fit with respect to the ‘1 fit of the
data points on the left.

The RLSAD estimates are

ZLSAD ¼ 105:49; Z‘2
¼ 521:16; b̂1 ¼ 0:15110; b̂2 ¼ 0:00499; b̂3 ¼ 0:01283;

which coincide with the ‘1 estimates. The RLSAD model is shown in Fig. 4 (lower plot).
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6.2. A model for calibration data

According to Seber and Wild (1989), Tiede and Pagano (1979) fit the calibration model

yi ¼ aþ bð1þ cxd
i Þ
�1 þ ei; i ¼ 1; 2; . . . ; 14; a; b; c; d > 0; ð38Þ

to the set of data in Table 3. As can be seen from the scatter plot of yi versus xi in Fig. 5, observation 9 is a
clear outlier.

The optimal value of the ‘1 error bound is 1.041, which is attained at points 9 and 10. The second ‘1
bound (after removing these points) is 1.012, which is attained at points 1, 4, 8 and 11. The third ‘1 bound
(after removing these points) is 0.937, which is attained at point 12. Since the parameter values coincide with
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Fig. 4. Scatter plots of yi versus xi, for the ultrasonic calibration data set and the ‘2 (upper left plot), the SLI fitted models (upper right
plot) and the RLSAD (lower plot). Lower and upper bands (dashed lines) at a distance e ¼ �8:55, i.e., the ‘1 error, for the ‘2, sequential
‘1 and RLSAD models are shown.

Table 3
Calibration data

i xi yi i xi yi

1 0 7.720 8 10 3.208
2 0 8.113 9 20 4.478
3 2 6.664 10 20 2.396
4 2 6.801 11 50 1.302
5 5 4.994 12 50 1.377
6 5 4.948 13 100 1.025
7 10 3.410 14 100 1.096
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the previous iteration ones, the SLI reaches the solution at the third iteration, which proves that the ‘1 esti-
mators do not have a unique solution.

The following estimates of the calibration data are obtained:

‘2 : Z‘2
¼ 4:31; â ¼ 0:444; b̂ ¼ 7:551; ĉ ¼ 0:133; d̂ ¼ 0:958;

SLI : ZSLI ¼ 1:041; a ¼ �12:545; b̂ ¼ 22:578; ĉ ¼ 0:194; d̂ ¼ 0:251:

The scatter plot of y versus x for the calibration data set in Table 3 and the ‘2 (left plot) and SLI (right plot)
fitted models are shown in Fig. 5. In addition to the regression lines, the lower and the upper bands (dashed
lines) at a distance e ¼ �1:041, i.e., the ‘1 error, for the ‘2 and SLI estimates, are shown.

Note that data point 9 is outside the upper band for the least squares model and that the ‘2 gets a better fit
with respect to the ‘1 fit of the data points on the right, while the SLI gets a better fit of the data points on the
left.

The RLSAD estimates are

Z‘1
¼ 3:36785; Z‘2

¼ 5:2842; â ¼ 0:8731; b̂ ¼ 7:2425; ĉ ¼ 0:1064; d̂ ¼ 1:2356;

which coincide with the ‘1 estimates. The RLSAD model is shown in Fig. 5 (lower plot).

6.3. The Weibull data

Castillo (2004) studies the dependence of the shape parameter b of a Weibull model when using data from
the SUPERTANK project (see Kraus and McKee Smith, 1994) and fits the regression model
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Fig. 5. Scatter plots of yi versus xi, for the Calibration data set in Table 3 and the ‘2 (upper left plot), the SLI fitted models (upper right
plot) and the RLSAD fitted models (lower plot). Lower and upper bands (dashed lines) at a distance e ¼ �1:041, i.e., the ‘1 error, for the
‘2, SLI and RLSAD models are shown.
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Table 4
Weibull shape parameter data

i xi yi i xi yi i xi yi i xi yi

1 0.5440 �0.2218 21 0.9013 �0.3452 41 1.0879 �0.4686 61 1.2358 �0.5205
2 0.6702 �0.2539 22 0.9374 �0.4130 42 1.1322 �0.4678 62 1.2697 �0.5310
3 0.7776 �0.2907 23 0.9866 �0.4348 43 1.1579 �0.4617 63 1.3362 �0.4959
4 0.8570 �0.3144 24 1.0336 �0.4220 44 1.1997 �0.4530 64 1.5044 �0.5697
5 0.9026 �0.3490 25 1.0840 �0.4751 45 1.2355 �0.4791 65 0.5320 �0.1677
6 0.9340 �0.3989 26 1.1308 �0.4663 46 1.2710 �0.5104 66 0.5536 �0.1764
7 0.9874 �0.3941 27 1.1560 �0.5123 47 1.3382 �0.5091 67 0.7142 �0.3020
8 1.0327 �0.4191 28 1.1994 �0.4955 48 1.5044 �0.5722 68 0.8543 �0.3245
9 1.0854 �0.4594 29 1.2369 �0.4732 49 0.5849 �0.1769 69 0.9073 �0.3518

10 1.1303 �0.4662 30 1.2694 �0.5294 50 0.5312 �0.2573 70 0.9456 �0.3839
11 1.1573 �0.4890 31 1.3393 �0.4970 51 0.7399 �0.3065 71 0.9869 �0.3915
12 1.1993 �0.5158 32 1.5044 �0.5246 52 0.8558 �0.3197 72 1.0428 �0.4258
13 1.2356 �0.4852 33 0.5736 �0.1663 53 0.9020 �0.3499 73 1.0955 �0.4726
14 1.2698 �0.4855 34 0.6064 �0.3004 54 0.9342 �0.3960 74 1.1336 �0.4585
15 1.3388 �0.5281 35 0.7672 �0.3165 55 0.9827 �0.3964 75 1.1663 �0.4520
16 1.5044 �0.5377 36 0.8568 �0.3304 56 1.0336 �0.4293 76 1.2043 �0.4620
17 0.4974 �0.1901 37 0.9054 �0.3477 57 1.0889 �0.4530 77 1.2383 �0.5140
18 0.6451 �0.2674 38 0.9261 �0.3854 58 1.1295 �0.4468 78 1.2717 �0.4937
19 0.7722 �0.3128 39 0.9817 �0.3959 59 1.1602 �0.4578 79 1.3385 �0.4963
20 0.8574 �0.3234 40 1.0338 �0.4199 60 1.1993 �0.4736 80 1.5044 �0.5809
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Fig. 6. Scatter plots of yi versus xi, for the Weibull data set in Table 4 and the ‘2 (upper left plot), SLI fitted models (upper right plot) and
RLSAD fitted models (lower plot). Lower and upper bands (dashed lines) at a distance e ¼ �0:0578, i.e., the ‘1 error, for the ‘2, SLI and
RLSAD models are shown.

476 E. Castillo et al. / European Journal of Operational Research 188 (2008) 460–484



Author's personal copy

bi ¼ aþ bxi þ cx2
i þ ei:

In this case, the SLI method stops after the second iteration, because the ‘1 regression model for these data
has a unique solution and the following parameter estimates (variances in parenthesis) are obtained:

‘2 : Z‘2
¼ 0:044; â ¼ 0:149; b̂ ¼ �0:730; ĉ ¼ 0:171:

SLI : ZSLI ¼ 0:0578; â ¼ 0:170ð0:0066Þ; b̂ ¼ �0:801ð0:0398Þ; ĉ ¼ 0:200ð0:0115Þ:

The variances have been calculated by the bootstrap method by resampling and using 1000 simulations.
The scatter plot of y versus x for the Weibull data set in Table 4 and the ‘2 (left plot) and SLI (right plot)

fitted models are shown in Fig. 6. In addition to the regression lines, the lower and the upper bands (dashed
lines) at a distance e ¼ �0:0578, i.e., the ‘1 error, for the ‘2 and SLI estimates are shown.

Note that data points 34 and 50 are outside the lower band for the least squares model and that the ‘2 gets a
better fit with respect to the ‘1 fit of the data points on the right, while the SLI gets a better fit of the data
points on the left.

The RLSAD estimates are

Z‘1
¼ 1:515; Z‘2

¼ 0:046; â ¼ 0:159; b̂ ¼ �0:727; ĉ ¼ 0:161;

which coincide with the ‘1 estimates.

7. Small sample and asymptotic performance of the SLI method

It is clear that, being the SLI and the RLSAD methods defined as the solution of a sequence of linear or
non-linear programming problems (see Bazaraa et al. (1993)), their statistical properties for small and large
samples seem practically intractable in an analytical way at a first look. Fortunately, some results are possible,
both theoretically and using simulations.

7.1. Simulation experiments and results

Initially, the statistical properties of the estimates are tested using simulations. It is shown that their per-
formances are good for the two regression models.

7.1.1. Linear regression model

First, the following regression model is considered

yi ¼ aþ bxi þ ei; i ¼ 1; 2; . . . ; n:

Next, the SLI and RLSAD methods performance for three sampling designs are analyzed. The case of
a = 0, b = 1 and �i � Nð0; 0:1Þ, and the case of Random replicated data with Random and equally spaced
X i; i ¼ 1; 2; . . . ; k with k = 5 and k = 10 levels are considered. Fig. 7 illustrates one example for n = 50 and
5 X-levels, and shows the true model.

Table 5 shows the results of 10000 simulations with the averages over simulation replicate values and mean
squared errors (MSE) of the parameter estimates for different sample sizes and sampling designs for this
model. The expected numbers of iterations required for the SLI method and the percentage of simulations
for which the ‘1 has a unique solution appear in the last two columns. Note that one iteration means that
the SLI method coincides with the standard ‘1 method. They show that increasing the number of levels
decreases the expected number of iterations and increases the uniqueness frequency. However, unexpectedly,
the sample size has a reverse effect. This confirms that the uniqueness problem is not due to small sample sizes.
Note that the Random selection of the X values leads to practically almost sure uniqueness. This was
explained in Section 5 based on Proposition 4.

Table 6 is the corresponding table for the RLSAD method, where the last column shows the percentage of
samples for which the ‘1 estimates are unique. Note that in this case the Random allocation of the X values
does not lead to sure uniqueness and that this becomes worse with increasing sample size. However, the fre-
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quency of non-uniqueness is much less than the one for grouped designs. This was explained in Section 5,
based on Proposition 4.

All these tables show that uniqueness problems for the ‘1 and ‘1 are not rare but a frequent event, that does
not disappear with increasing the sample size.

The fact that Random selection of the predicting variable X leads to much more cases in which the estimate
is unique has a theoretical explanation as it will shown later.

7.1.2. Quadratic regression model

Next, we consider the regression model

yi ¼ aþ bxi þ cx2
i þ ei; i ¼ 1; 2; . . . ; n; ð39Þ

and compare how the SLI method performs for various sampling designs. We consider the case of a = 0,
b = 1, c ¼ �2 and �i � Nð0; 0:1Þ, and the case of random replicated data equally spaced X i; i ¼ 1; 2; . . . ; n
with k = 5 and 10 levels. Fig. 8 illustrates one example for n = 50 and 5 X-levels, and shows the true model.

Table 7 shows the results of 10000 simulations with the expected values and mean squared errors (MSE) of
the parameter estimates for different sample sizes and sampling designs for this model. The expected numbers

Table 5
Results of 10000 simulations showing the averages over simulation replicate values and mean squared errors (MSE) of the parameter
estimates for different sample sizes and sampling designs for the model yi ¼ aþ bxi þ ei with a ¼ 0; b ¼ 1 and e � Nð0; 0:1Þ together with
the expected number of iterations required for the SLI method and the percentage of simulations for which the ‘1 has a unique solution

Levels n �E½â� MSE½â� �E½b̂� MSE½b̂� E½iter� %

5 20 0.00058 0.00483 0.99944 0.01391 2.429 63
5 40 0.00053 0.00374 0.99976 0.01062 2.488 60
5 100 0.00019 0.00290 2.00034 0.00834 2.530 58
5 200 0.00035 0.00244 0.99979 0.00682 2.529 59
5 500 0.00117 0.00199 0.99853 0.00557 2.539 58

10 20 0.00014 0.00526 1.00081 0.01516 2.127 87
10 40 0.00047 0.00409 1.00003 0.01172 2.188 82
10 100 0.00041 0.00317 0.99982 0.00881 2.220 80
10 200 0.00092 0.00264 0.99869 0.00733 2.228 79
10 500 0.00108 0.00218 0.99862 0.00611 2.238 79
Random 20 0.00082 0.00514 0.99857 0.02547 2.000 100
Random 40 0.00091 0.00408 0.99866 0.01429 2.000 100
Random 100 0.00021 0.00331 1.00018 0.01063 2.000 100
Random 200 0.00002 0.00270 1.00023 0.00818 2.000 100
Random 500 0.00047 0.00230 1.00012 0.00642 2.000 100
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Regression line: y = a + bx

Fig. 7. Illustration of a typical simulated sample of size n = 50 showing the k = 5 X equally spaced levels and the true model: yi ¼ xi þ ei.
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of iterations required for the SLI method and the percentage of simulations for which the ‘1 has a unique
solution appear in the last two columns. Similar conclusions as those for Table 5 can be obtained.

Table 8 is the corresponding table for the RLSAD method, where the last column shows the percentage of
samples for which the ‘1 estimates are unique.

The analysis of both tables shows that:

1. The expected values of the estimates are very close to the true values, suggesting an unbiased or a very low
bias estimates.

2. The mean squared errors (MSE) of the estimates decrease with sample size, suggesting that they are
consistent.

3. The number of X-levels has a small influence on the quality of the parameter estimates, but a larger effect on
the number of iterations required for the SLI method.

7.1.3. All possible solutions for the ‘1 method

To illustrate the case of several solutions, we have selected one of the simulated samples, which is shown in
Table 9.

For this data set, the set of all possible solutions of the problem (9)–(11) for the quadratic model (39) can be
obtained using the techniques described in Section 2, i.e., solving the system of inequalities (10) and (11) and

Table 6
Results of 10000 simulations showing the averages over simulation replicate values and mean squared errors (MSE) of the parameter
estimates for different sample sizes and sampling designs for the model yi ¼ aþ bxi þ ei with a ¼ 0; b ¼ 1 and e � Nð0; 0:1Þ together with
the percentage of samples for which the ‘1 estimates are unique

Levels n �E½â� MSE½â� �E½b̂� MSE½b̂� %

5 20 0.00323 0.00329 0.99956 0.00990 66
5 40 0.00226 0.00159 1.00005 0.00482 67
5 100 0.00049 0.00064 1.00084 0.00194 69
5 200 0.00035 0.00031 1.00028 0.00096 69
5 500 0.00017 0.00013 0.99999 0.00038 70

10 20 0.00171 0.00318 0.99969 0.00951 83
10 40 0.00122 0.00161 1.00006 0.00479 84
10 100 0.00025 0.00063 1.00052 0.00189 84
10 200 0.00031 0.00031 1.00007 0.00094 84
10 500 0.00002 0.00013 1.00007 0.00038 83
Random 20 0.00088 0.00306 0.99831 0.00957 99
Random 40 0.00025 0.00164 1.00047 0.00562 99
Random 100 0.00021 0.00056 0.99998 0.00214 98
Random 200 0.00013 0.00027 0.99999 0.00104 96
Random 500 �0.00001 0.00011 1.00005 0.00038 93
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y Regression line: y = a + bx  + cx2

Fig. 8. Illustration of the simulation examples for n = 50 showing the five X-levels and the true model: yi ¼ xi � 2x2
i þ ei.
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replacing this solution into (9), removing its cone part and identifying its polytope components (those with the
minimum e component). Then, one obtains the general solution as

a

b

c

e

0
BBB@

1
CCCA ¼

0:03331 0:05563 0:03725 0:06700

0:97333 0:91667 0:92833 0:78667

�2:01458 �1:97917 �1:95833 �1:81667

0:19050 0:19050 0:19050 0:19050

0
BBB@

1
CCCA

k1

k2

k3

k4

0
BBB@

1
CCCA;

X4

i¼1

ki ¼ 1; ki P 0 8i: ð40Þ

Note that all the generators of the cone part of the polyhedral solution of the system (10) and (11) have dis-
appeared, as it occurred in the illustrative example in Section 1, and the polytope components with associated
values larger than 0.19050 have also disappeared.

Fig. 9 shows the selected data together with the four generating solutions in (40). In this case, due to the
almost coincidence of the four solutions, the uniqueness problem is not important from a practical point of
view.

Table 8
Results of 10000 simulations showing the expected values and mean squared errors (MSE) of the parameter estimates for different sample
sizes and sampling designs for the model yi ¼ aþ bxi þ cx2

i þ ei with a ¼ 0; b ¼ 1; c ¼ �2 and e � Nð0; 0:1Þ together with the percentage of
samples for which the ‘1 estimates are unique

X-levels n E½â� MSE½â� E½b̂� MSE½b̂� E½ĉ� MSE½ĉ� LSAD (%)

5 20 0.00215 0.00709 0.99100 0.15558 �1.99105 0.14663 46
5 40 0.00582 0.00410 0.97735 0.09005 �1.97692 0.08516 54
5 100 0.00224 0.00163 0.98989 0.03621 �1.98908 0.03453 59
5 200 0.00131 0.00081 0.99448 0.01802 �1.99429 0.01705 60
5 500 0.00044 0.00034 0.99802 0.00756 �1.99791 0.00718 62

10 20 �0.00016 0.00685 1.00181 0.14759 �2.00250 0.13857 81
10 40 0.00031 0.00368 0.99999 0.07766 �1.99962 0.07232 87
10 100 �0.00063 0.00147 1.00335 0.03125 �2.00265 0.02919 88
10 200 �0.00009 0.00074 1.00103 0.01604 �2.00087 0.01504 87
10 500 �0.00001 0.00029 0.99989 0.00639 �1.99983 0.00606 86
Random 20 �0.00033 0.00879 1.00348 0.17717 �2.00440 0.14784 99
Random 40 0.00201 0.00501 0.99192 0.10494 �1.99218 0.09450 99
Random 100 �0.00020 0.00134 1.00290 0.03253 �2.00318 0.03287 97
Random 200 �0.00018 0.00058 1.00181 0.01442 �2.00191 0.01486 95
Random 500 �0.00020 0.00025 1.00127 0.00565 �2.00126 0.00554 90

Table 7
Results of 10000 simulations showing the averages over simulation replicate values and mean squared errors (MSE) of the parameter
estimates for different sample sizes and sampling designs for the model yi ¼ aþ bxi þ cx2

i þ ei with a ¼ 0; b ¼ 1; c ¼ �2 and e � Nð0; 0:1Þ
together with the expected number of iterations required for the SLI method and the percentage of simulations for which the ‘1 has a
unique solution

Levels n �E½â� MSE½â� �E½b̂� MSE½b̂� �E½ĉ� MSE½ĉ� E[iter] %

5 20 �0.00079 0.01109 1.00253 0.22684 �2.00154 0.20989 3.050 38.82
5 40 0.00006 0.00826 0.99953 0.17090 �1.99864 0.15861 3.265 34.58
5 100 0.00024 0.00612 0.99954 0.12865 �1.99942 0.11972 3.382 32.90
5 200 �0.00042 0.00492 0.99917 0.10480 �1.99837 0.09806 3.412 32.00
5 500 �0.00009 0.00407 1.00150 0.08697 �2.00120 0.08068 3.459 30.60

10 20 �0.00129 0.01150 1.00663 0.23162 �2.00534 0.21165 2.245 78.03
10 40 �0.00064 0.00884 1.00449 0.17371 �2.00323 0.15660 2.377 69.96
10 100 0.00058 0.00663 0.99766 0.13644 �1.99703 0.12493 2.449 66.76
10 200 0.00042 0.00542 1.00013 0.11184 �2.00096 0.10213 2.481 64.57
10 500 0.00130 0.00436 0.99734 0.08873 �1.99915 0.08047 2.492 64.49
Random 20 �0.00067 0.00694 1.00100 0.14948 �1.99924 0.16214 2.000 100.00
Random 40 0.00093 0.01005 0.99790 0.22872 �1.99775 0.22139 2.000 100.00
Random 100 0.00028 0.00656 0.99966 0.15245 �1.99981 0.14014 2.000 100.00
Random 200 �0.00049 0.00546 1.00394 0.11322 �2.00409 0.10432 2.000 100.00
Random 500 0.00058 0.00425 1.00201 0.09173 �2.00355 0.08798 2.000 100.00
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7.2. Some asymptotic results for the RLSAD

Many multiple linear regression estimators b̂ satisfy

ffiffiffi
n
p
ðb̂� bÞ!D N pð0; V ðb̂; F ÞWÞ; ð41Þ

where

XTX

n
!W�1

and when the residuals ei are iid with a cdf F and a unimodal pdf f that is symmetric with a unique maximum
at 0. If the variance V ðeiÞ exists (see Koenker and Bassett, 1978; Bassett and Koenker, 1978),

V ð‘2; F Þ ¼ V ðeiÞ ¼ r2; ð42Þ

V ð‘1; F Þ ¼
1

4½f ð0Þ�2
: ð43Þ

Broffitt (1974) compares ‘2, ‘1, and ‘1 in the location model and shows that the rate of convergence of the
Chebyshev estimator is often very poor.

The ‘1 asymptotic theory holds whether the solution is unique or not, and this result could suggest that the
‘1 solutions are asymptotically equivalent and that the asymptotic theory for the RLSAD estimator should be
the same as that for the ‘1 estimator. Though later some results in favor of this statement for some designs are
obtained, the simulation results indicate that this is not always the case. Note that the percentage of unique-
ness of solution decreases with sample size for some experimental designs.

Table 9
One example of the simulated data

i xi yi i xi yi i xi yi i xi yi i xi yi

1 0.100 0.049 11 0.100 �0.011 21 0.100 �0.035 31 0.100 0.301 41 0.100 0.180
2 0.300 0.153 12 0.300 0.154 22 0.300 0.191 32 0.300 0.058 42 0.300 0.045
3 0.500 0.046 13 0.500 �0.066 23 0.500 0.102 33 0.500 �0.022 43 0.500 0.076
4 0.700 �0.463 14 0.700 �0.329 24 0.700 �0.352 34 0.700 �0.376 44 0.700 �0.160
5 0.900 �0.793 15 0.900 �0.532 25 0.900 �0.820 35 0.900 �0.731 45 0.900 �0.636
6 0.100 �0.017 16 0.100 0.008 26 0.100 0.081 36 0.100 0.054 46 0.100 �0.063
7 0.300 0.081 17 0.300 �0.010 27 0.300 0.021 37 0.300 0.067 47 0.300 0.330
8 0.500 0.093 18 0.500 �0.138 28 0.500 �0.091 38 0.500 �0.104 48 0.500 0.067
9 0.700 �0.356 19 0.700 �0.248 29 0.700 �0.214 39 0.700 �0.082 49 0.700 �0.263

10 0.900 �0.720 20 0.900 �0.601 30 0.900 �0.563 40 0.900 �0.637 50 0.900 �0.555
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Fig. 9. Scatter plot of yi versus xi, for the illustrative example and the resulting four solutions generating the polytope for the ‘1.
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If the RLSAD and ‘1 estimators were asymptotically equivalent, then the RLSAD estimator will not be
used for large samples since the ‘1 estimator is much faster to compute (see for example, Portnoy and Koen-
ker, 1997). However, the simulations in Section 6 indicate that this is not always the case.

The ‘1 estimator behaves very erratically even for the location model (see Broffitt, 1974). The authors are
not aware of asymptotic theory (of the form equation (41)) for the ‘1 estimator in the regression setting. If
there is such theory, then again the ‘1 estimator and the SLI estimator are not asymptotically equivalent
as the simulations in Section 6 indicate because the percentage of uniqueness of solution decreases with the
sample size.

As a practical check of formulas (41)–(43) for the linear regression model the results in Table 6 for k ¼ 5
with those resulting from (41)–(43) are compared:

XTX

n

� ��1

¼
4:125 �6:25

�6:25 12:5

� �
V ð‘1; F Þ ¼ 0:015708;

and then

Var½ðâ; b̂Þ� ¼ 1

n

0:06480 �0:09817

�0:09817 0:19635

� �
;

that leads to

VarðâÞ � 0:0648=n; Varðb̂Þ � 0:196375=n:

Table 10 shows that these approximations are nearly identical to the MSEs for RLSAD reported in Table 6.
Similarly, for the quadratic regression model one has

XTX

n

� ��1

¼
10:576 �44:196 37:946

�44:196 235:714 �223:214

37:946 �223:214 223:214

0
B@

1
CA;

V ð‘1; F Þ ¼ 0:015708;

and then

Var½ðâ; b̂; ĉÞ� ¼ 1

n

0:166 �0:694 0:596

�0:694 3:703 �3:506

0:596 �3:506 3:506

0
B@

1
CA;

that leads to

VarðâÞ � 0:166=n; Varðb̂Þ � 3:703=n; VarðĉÞ � 3:506=n:

Table 11 shows that these approximations are nearly identical to the MSEs for RLSAD reported in Table 8.

Table 10
Linear regression case

n 0:0648=n 0:196375=n

20 0.00324 0.0098
40 0.00162 0.0049

100 0.00065 0.00196
200 0.00032 0.00098
500 0.00013 0.00039

Asymptotic variances of the parameter estimates for the RLSAD.
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8. Conclusions

The main conclusions of this paper are

1. The set of all solutions of the ‘1 and ‘1 linear regression have a polytope structure, i.e., a linear convex
combination of some extreme solutions.

2. This set can be found by obtaining the general polyhedral solution of the system of linear inequalities,
removing its cone parts, and identifying its polytope components as those with minimum e for the ‘1
and

Pn
j¼1ej for the ‘1.

3. The previous method has been shown to be feasible for sample sizes of moderate size, but can be clearly
infeasible for very large sample sizes. Fortunately, the critical sample size value can be large because each
constraint of the ‘1 and ‘1 in (10), (11) and (6), (7) contains only p + 1 non-zero terms each.

4. The SLI and the RLSAD regression models, which give the same optimal values for the optimization
function as the standard ‘1 regression and ‘1 methods, respectively, and lead to a unique solution that
has other important properties, have been introduced as alternatives for the ‘1 and ‘1 methods.

5. The propositions in Giloni and Padberg are crucial to check the uniqueness of the ‘1 and ‘1 methods
and to guarantee if and when the RSLAD method leads to uniqueness.

6. Application of these methods to several examples in the existing literature and the performed simulations
have shown to have a good behavior for small and moderately large sample sizes.

7. The proposed methods allow one to determine when the ‘1 and ‘1 regression estimators have no unique
solution for a given set of data, information that is not given by standard existing regression methods.

8. Simulation experiments indicate that increasing the number of levels leads to a less frequent uniqueness
problem, which can completely disappear when the number of levels increases or the sample is chosen
Randomly for X.

9. Increasing the sample size decreases the uniqueness frequency in the ‘1 method, but increases that fre-
quency for the ‘1, with the exception of the Random level samples.

10. The uniqueness problems of the ‘1 and ‘1 methods are more related to the experimental design than to
the sample size.

11. The proposed methods apart from leading to uniqueness of the modified ‘1 and ‘1 methods, in addition
to the minimization of the ‘1 and ‘1 errors, enforce extra desirable conditions and lead to efficient solu-
tion methods, which make them competitive with alternative uniqueness proposals.
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