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Abstract

The paper presents a new method for engineering design that allows controlling safety factors and

failure probabilities with respect to different modes of failure. Since failure probabilities are very

sensitive to tail assumptions, and safety factors can be insufficient, a double check for the safety of

the engineering structure is done. The dual method uses an iterative process that consists of repeating

a sequence of three steps: (a) an optimal (in the sense of optimizing an objective function) classical

design, based on given safety factors, is done, (b) failure probabilities or bounds of all failure modes are

calculated, and (c) safety factors bounds are adjusted. The three steps are repeated until convergence,

i.e. until the safety factors lower bounds and the mode failure probability upper bounds are satisfied.

In addition, a sensitivity analysis of the cost and reliability indices to the data parameters is done.

The proposed method is illustrated by its application to the design of a rubble-mound breakwater.
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1 Introduction

The phases that an engineering structure undergoes are: construction, useful life, maintenance and repair,

dismantling, etc. Each phase has an associated duration. During each of these phases, the structure and

the environment experiment a continuous sequence of outcomes, that have to be analyzed in the project
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Granada, Spain. e-mail: mlosada@ugr.es

3Assistant Professor, Department of Applied Mathematics, University of Castilla-La Mancha, 13071 Ciudad Real, Spain.
e-mail: roberto.minguez@uclm.es

4Assistant Professor, Grupo de Puertos y Costas, CEAMA, University of Granada, Avda. del Mediterráneo s/n, 18071
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(Ditlevsen (1997)). The objective of the project design is to verify that the structure fulfills the project

requirements during these phases. Initially, the engineer must decide the duration of the useful life of the

work being designed. This duration determines the resulting design.

Next, the modes of failure of the structure must be defined. A mode describes the form or mechanism

in which the failure of a part of the structure or one of its elements is produced. Each mode of failure is

defined by its corresponding verification (non-failure) equation, that admits different representations as,

for example:

g∗i (x1, x2, . . . , xn) =
hsi(x1, x2, . . . , xn)

hfi(x1, x2, . . . , xn)
− 1 > 0 (1)

where hsi(x1, x2, . . . , xn) and hfi(x1, x2, . . . , xn) are two opposing magnitudes (as stabilizing to overturn-

ing forces, strengths to ultimate stresses, etc.) that avoid and produce the associated mode of failure,

respectively, i refers to the mode of failure, and (x1, x2, . . . , xn) are the values of the variables involved.

Checking whether or not this equation is satisfied, the safety of the structure with respect to such a mode

of failure can be determined. If equation (1) holds, the failure does not occur; otherwise it occurs.

This check can be done from two different points of view, denoted here as (1) classic or deterministic,

and (2) probability based.

In the former, and since an engineering design cannot be strictly safe, verification equations cannot

be used for design. So, they are modified to increase safety and this leads to the safety constraint:

hsi(x
d
1, x

d
2, . . . , x

d
n)

hfi(xd
1, x

d
2, . . . , x

d
n)

− F > 0; F > 1

where xd
1, x

d
2, . . . , x

d
n are the design values of the variables (X1,X2, · · · ,Xn), and F is the safety factor

associated with the mode of failure. Thus, in a classic design the design equations or constraints are

written in terms of safety factors.

In the case of climatic actions, xd
1, x

d
2, . . . , x

d
n can be obtained from the state variables Hs and T z.

Definition of these state variables requires a stochastic model.

Safety factors have the advantage of being easily interpretable in terms of their physical or engineering

meaning, but have the inconvenience of not giving a clear information on the reliability of the structure.

In the probabilistic based design, a joint probability fX1,X2,...,Xn
(x1, x2, . . . , xn) is assumed for all the

random variables involved, and the engineer calculates the probabilities of the different modes of failure:

Pfi
=

∫

g∗
i
(x1,x2,...,xn)≤0

fX1,X2,...,Xn
(x1, x2, . . . , xn)dx1dx2 . . . dxn. (2)

If the design variables lead to reasonable probabilities of these occurrences, i.e. probabilities below given

upper bounds, the design is said to be safe. The main advantage of probabilistic based design is that
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the reliability of the structure can be evaluated if statistics are well defined. However, they have the

shortcoming of being very sensitive to tail assumptions, and in some cases, as, for example, rubble-

mound stability, runup, overtopping, geotechnical stability, etc., parametric dependencies and statistics

are difficult to define.

In this paper the choice of the density fX1,X2,...,Xn
(x1, x2, . . . , xn) is not discussed. We assume it to

be known.

Classic and probabilistic designs consider the useful life in a different manner, the former by selecting

the “extreme” sea state descriptors (Hs and T z) expected to occur during the expected life, and the

latter by considering the random distribution of all random variables during the useful life.

Generally speaking an engineering design follows an iterative scheme, starting with an initialization

phase, in which the design variables are chosen, followed by the verification of whether the safety factor

or probability constraints are satisfied. If they are not, the engineer modifies his/her design variables

and checks again. The process stops once either the safety factor or the safety probability constraints are

fulfilled.

However, the process is usually stopped as soon as a reasonable solution is obtained. In the last

years both methods have been improved by applying optimization techniques. The main advantage is

that optimization techniques lead to optimal design and automation, i.e. the design variables are chosen

by the optimization procedure and not by the engineer. His/her concerns are only the constraints to

be imposed to the problem and the objective function to be optimized. There are works on design

based on safety factors, failure probabilities and optimization techniques, and some combine them (see,

for example, USACE, PIANC, IWR, etc.). An interesting combination is the one recommended by

Vrouwenvelder (2002) in the frame of code calibration. In this paper, safety and reliability factors are

combined with optimization procedures in a different way.

Furthermore, some verification equations are linked to well known and historically proved safety

factors, whereas others have to fulfill some constraints specified by a probability of failure. In the

present state of the art, it seems not only reasonable but convenient, using the advantages of both design

paradigms avoiding the never ended dispute about the prevalence of one or the other.

The authors intention in this paper is not to provide an exhaustive treatment of all modes of failure

of a rubble-mound breakwater, with a careful definition of the corresponding verification equations, nor

giving methods for selecting the characteristic values of the design sea state. These two problems have

been dealt with in many other papers. The aim of this paper is twofold: (a) present a dual (classic-

probabilistic) design method based on safety factors and failure probabilities, i.e. able to combine the
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advantages of both design paradigms, together with optimization procedures (see ROM (2001), and

Castillo et al. (2002)), and (b) describe how sensitivity analysis can be easily done.

The importance of both contributions must be clarified. The dual approach implies a double safety

control. If the selected safety factors are not reasonable (too low or too high), the failure probabilities

will point this out clearly, by their associated very high or very low values, respectively. Similarly, if

failure probabilities are high or low, or the probabilistic assumptions are unrealistic, the associated safety

factors will reveal these errors. For this reason, we recommend both controls, though the ideal situation

will lead to equivalent constraints of safety factors and failure probabilities.

The sensitivity analysis will provide an excellent information of how much a small change in the

parameters or assumptions (data) modifies the resulting design (geometric dimensions, costs, reliabilities,

etc.). This will be useful to: (a) the designer, (b) the construction engineer, and (c) the code designer

(he/she will know, for example, how much a reduction in the required safety factors or reliability indices

increases the cost).

In the Coastal Engineering Manual of the USACE (U.S.A. Corps of Engineers) and in the final report

of the MAST (Marine Science and Technology Programme) III Proverbs project (Probabilistic Design

Tools for Vertical Breakwaters) of the European Union (1996-1999) the design of vertical breakwaters

including the various aspects of hydraulic loading and foundation and structural strength is addressed.

The main dealing of the report is the modelling of physical processes relevant for this type of structures as

well as an overall probabilistic design concept in which the physics is integrated. Two alternative methods

for including probabilistic analysis into the design process are given; the first of which is an optimization

framework to find the optimal safety level and the second is a partial safety factor approach. In this

paper a third alternative method, the traditional global safety coefficient together with the other two is

considered, and the optimization framework is extended to the joint fulfillment of the most restrictive

condition, probability of failure or global safety factors. Thus, the present paper should be considered as

a continuation of the important research developed under the framework of USACE and the MAST III

project.

The paper is structured as follows. In Section 2 the optimal classic and probabilistic design paradigms

are described, where the term paradigm is used here to refer to patron, i.e. a way of facing and solving

the engineering design problem. In Section 3 the proposed optimal dual design paradigm is presented. In

Section 4 a technique for sensitivity analysis, based on the duals of the primal mathematical optimization

problems associated with safety factors and failure probabilities, is explained. Section 5 illustrates the

proposed method using one example of application dealing with the design of a rubble-mound breakwater.
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Finally, Section 6 gives some conclusions.

2 The Optimal Classic and Probabilistic Paradigms

In this section the two paradigms that are used in engineering design: the classic or safety factor based,

and the probabilistic paradigms, are described.

Safe and failure domains. In the design and reliability analysis of a maritime work, there are some

random variables (X1, . . . ,Xn) involved. They include geometric variables, material properties, loads,

etc. In this paper we use uppercase letters to refer to random variables, and the corresponding lowercase

letters to refer to particular instantiations of these variables. They belong to an n-dimensional space,

which, for each mode of failure, can be divided into two regions, the safe and the failure regions:

Safe Region: S ≡ {(x1, x2, . . . , xn)}|gi(x1, x2, . . . , xn) ≥ 1}
Failure Region: F ≡ {(x1, x2, . . . , xn)}|gi(x1, x2, . . . , xn) < 1}

}

; i ∈ I (3)

where I is the set of all modes of failure, and gi(x1, x2, . . . , xn) = g∗i (x1, x2, . . . , xn) + 1.

Since the constraint gi(x1, x2, . . . , xn) = 1 defines strict stability or security, to increase safety, the

constant 1 is normally replaced by a larger constant called safety factor F 0
i . Then, we have

Design Region in mode i: Si ≡ {(x1, x2, . . . , xn)}|gi(x1, x2, . . . , xn) ≥ F 0
i }; i ∈ I (4)

It is important to distinguish between design values of the random variables Xi : i = 1, 2, · · · , n, which

in this paper are assumed to be the expectations or the characteristic values, and denoted x̃i, and actual

values xi (those existing in reality). Some of these design values are chosen by the engineer or given

by the design codes, and some (associated with the design variables) are selected by the optimization

procedure to be presented. In this paper, the set of basic variables (X1, . . . ,Xn) will be partitioned in

five sets:

d: design or geometric variables,

η: the set of parameters used in the classic design,

φ: The set of basic random variables used only in the probabilistic design,

κ: the set of parameters used in the probabilistic design, defining the random variability and depen-

dence structure of the random variables involved,

ψ: the auxiliary (non-basic) variables which values can be obtained from those of the basic variables,

using some formulae.
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The corresponding mean or characteristic vectors will be denoted d̃, η̃ and φ̃, respectively. Initially

all the variables can be assumed random, however, some of them are assumed to be deterministic (their

random character does not have an important influence on the reliabilities), i.e. especial cases of random

variables.

As an illustration, for the rubble-mound breakwater example, we have (see the Appendix B for the

notation):

d = (a, b, c, d, e, Fc, f, n, p, q, r, s, t, α`, αs) (5)

η = (Cal, Cc, Cco, Cul,DWL
, g, γc, γs, γw) (6)

φ = (Ar, Au, Br, Bu, Cf ,H, T, µc) (7)

κ = (Hs, T z, vAr
, vBr

, vCf
, µAr

, µBr
, µAu

, µBu
, µCf

, µµc
, σAu

, σBu
, σµc

) (8)

ψ = (Ac, Fh, Fv, Ir, Ir0
, L, `, `e, PS0

, R,Ru, S0, Vc, V1, V2, V3,W,W1,Wf , α, λ, φe) (9)

Note that only the basic variables φ (and the corresponding auxiliar non-basic variables) have been

assumed to be random in this example.

2.1 The optimal safety factor paradigm

Since one is not interested in strict failure, but in having some sufficiently safe maritime works, design is

based on the condition

gi(d̃, η̃, φ̃) ≥ F 0
i ; ∀i ∈ I. (10)

A set of values (d̃, η̃) is said to be a classic design, if and only if it satisfies (10). This set is also an

optimal classic design if and only if it

Minimizes
d̃

Q(d̃, η̃) (11)

where Q(d̃, η̃) is the function to be optimized (cost function, for example), subject to

gi(d̃, η̃, φ̃) ≥ F 0
i ; ∀i ∈ I. (12)

2.2 The optimal probabilistic paradigm

Given a set of values of the design variables η̃, the probability of failure, Pfi
, can be calculated using the

joint probability density function

f(x) = fX1,X2,...,Xn
(x1, x2, . . . , xn;θ) (13)
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of all variables involved, where θ is a parametric vector, by means of the integral:

Pfi
=

∫

gi(x1,x2,...,xn)≤1

fX1,X2,...,Xn
(x1, x2, . . . , xn;θ)dx1dx2 . . . dxn. (14)

In this paper we assume that the parametric vector θ = (d̃, η̃, φ̃,κ), i.e. it contains the mean or the

characteristic variables d̃, η̃, φ̃ and some other extra vector of parameters κ (for defining the variable

dispersions, the dependence structure, etc.).

A set of values d̃ for the design variables is said to be a probability based design if and only if it

satisfies

Pfi
≤ p0

i ; ∀i ∈ I. (15)

where p0
i ; i ∈ I are the upper bounds for the corresponding probabilities of failure.

This set is also an optimal probabilistic design if and only if it

Minimizes
d̃

Q (d̃, η̃) (16)

subject to

Pfi
(d̃, η̃, φ̃,κ) ≤ p0

i ; ∀i ∈ I. (17)

Since the probability of failure must be a small number, the engineer is presented with a tail probability

problem. It is well known that tail probabilities are very sensitive to the assumed model (see Galambos

(1987), Castillo (1988a) and Castillo, Solares and Gómez (1996,1997a,1997b)). Thus, the model selection

must be done with care.

Unfortunately, calculation of Pfi
(d̃, η̃, φ̃,κ) is very difficult. So, to eliminate the need of complex nu-

merical integrations, the “First Order Reliability Methods” (FORM) transform the initial set of variables

into an independent multinormal set and use a linear approximation. These methods appeared in the field

of structural reliability with Freudenthal (1956), and have been expanded by Hasofer and Lind (1974),

Rackwitz and Flessler (1978), Breitung (1984), Wirsching and Wu (1987) and Wu, Burnside and Cruse

(1989), etc. They have shown to give precise results and have demonstrated to be much more efficient

than Monte Carlo simulation techniques for estimating extreme percentiles (see, for example, Wirsching

(1987), or Haskin, Staple and Ding (1996)). For a complete description of some of these methods and

some illustrative examples see Ditlevsen and Madsen (1996) and Madsen, Krenk and Lind (1986).

It is well known that the calculation of the probabilities of failure against a mode is equivalent to

solving the following non linear programming problem

Minimize
d,η,φ

βi =

√

n
∑

j=1

z2
j (18)
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subject to

gi(z,d,η,φ,κ) = 1 (19)

T (d,η,φ;θ) = z (20)

Since the probabilities of failure are very difficult to calculate, the problem (16)-(17) can be replaced by

the problem

Minimize
d̃

Q(d̃, η̃) (21)

subject to

βi(d̃, η̃, φ̃,κ) ≥ β0
i ; ∀i ∈ I, (22)

where β0
i ; i ∈ I are the allowed lower bounds for the corresponding β-values.

The problem (21)-(22) cannot be solved by standard procedures because the evaluation of the β-values

involves the optimization problem (18)-(19). However, other methods, using two nested optimization

algorithms can be found in the literature.

2.3 Equivalence of classic and probability based procedures

It is interesting to point out that for practically all real cases, both methods, the classic, (11)-(12), and

the probability based, (21)-(22), are equivalent, in the sense that they lead to the same design values, d̃,

for given η̃,κ. In other words, given any set of safety factor bounds, there exist a set of β-values bounds

such that the solution d̃ of the problems (11)-(12) and (21)-(22) coincide, and vice versa.

It is important to understand this correspondence between safety factors and β-values for understand-

ing the proposed dual method in depth.

3 The Optimal Dual Design Paradigm

To incorporate the advantages of both, the optimal classic and the probability designs, a dual method is

presented and solved by an iterative scheme.

The dual problem is formulated as follows,

Minimize
d̃

Q (d̃, η̃), (23)

subject to

gi(d̃, η̃, φ̃) ≥ F 0
i ; ∀i ∈ I, (24)

and

βi(d̃, η̃, φ̃,κ) ≥ β0
i ; ∀i ∈ I. (25)

8



Unfortunately, this problem cannot be solved directly because the constraints (25) involve complicated

integrals, optimization methods, or both. Thus, an alternative method is needed. The method presented

in this section proceeds by an iterative method that consists of repeating a sequence of three steps: (1)

an optimal (in the sense of optimizing an objective function) classic design, based on given safety factors,

is done, (2) failure probabilities (reliability indices) or bounds against all failures modes are determined,

and (3) all mode safety factor bounds are adjusted. The three steps are repeated until convergence, i.e.

until the safety factors lower bounds and the mode of failure probability upper bounds are satisfied. More

precisely, the method proceeds as follows:

Step 1. Solving the optimal classic design. An optimal classic design based on the actual

safety factors, that are fixed initially to their corresponding lower bounds, is done. In other words, the

following problem is solved

Minimize
d̃

Q (d̃, η̃), (26)

subject to

gi(d̃, η̃, φ̃) ≥ F k
i ; ∀i ∈ I. (27)

where k refers to the k iteration.

The result of this process is a set of values of the design variables, that satisfy the safety factor

constraints (27).

Step 2. Evaluating new β-values. The actual β-values associated with all modes of failure are

evaluated, or upper bounds for them determined, based on the values of the design projects obtained in

Step 1. To this end, the problem

Minimize
d,η,φ

βk
i =

√

n
∑

j=1

z2
j (28)

subject to

gi(z, d̃, η̃, φ̃,κ) = 1 (29)

T (d,η,φ;θ) = z (30)

where T (d,η,φ;θ) is the well known transformation to standard independent normal variables, is solved

for any i ∈ I, i.e. in this step as many optimization problems as the number of modes of failure are

solved.
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Step 3: Updating safety factor values. The safety factors bounds are adequately updated for

the actual safety factors and the actual β-values to satisfy the required bounds. To this end, the safety

factors bounds are modified using the increments

∆Fi = ρ(β0
i − βk

i ); i ∈ I, (31)

where ρ is a small positive constant. Note that there is a monotone relation between safety factors and

reliability coefficients. This justifies the use of Equation (31) to update safety factor bounds.

To avoid large increments of the safety factors in each iteration, the value of ρ can be selected using

the expression

ρ = min

(

ρ0,min
i

(

∆

|β0
i − βk

i |

))

(32)

where ∆ is a small quantity, for example, ∆ = 1, and ρ0 is a small number. In addition, if, using this

formula, some safety factor becomes smaller than the associated lower bound F k
i , it is kept equal to F 0

i .

Note that the actual safety factors need to be calculated using

Fi = gi(d̃, η̃, φ̃) (33)

because the values F 0
i are only lower bounds, but not actual values.

Comments The result of the iterative scheme is an optimal design that satisfies the required safety

factors and β-values bounds. The optimal classic design and the optimal probability based design are

particular cases of the present dual design procedure. If a classic design is looked for, large bounds for

the probabilities of failure (β0
i ;∀i ∈ I) must be selected. If, on the contrary, a probability based design

is looked for, low safety factors lower bounds (F 0
i = 1;∀i ∈ I) must be chosen.

In fact, the proposed method can be extended to include global and partial safety factors (see Rackwitz

(1997)). The authors are working in this line that is the aim of another paper.

To end these comments, we indicate that there exist alternative iterative methods to the one explained

above (see Castillo, Conejo, Mı́nguez and Castillo (2003)).

4 Sensitivity Analysis

In this section it is explained how a sensitivity analysis can be done with practically no extra cost, using

standard optimization packages. The method consists of: (a) writing the two optimization problems

(26)-(27) and (28)-(29) in an equivalent form, (b) considering the associated dual problems, and (c)

realizing that the values of some dual variables are the sensitivities looked for. The term dual in this
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section has a different meaning than the same term in previous sections. Here it refers to the duality

relation used in mathematical optimization. Every primal minimization problem has a dual associated

maximization problem, with related solutions. Duality here refers to this correspondence. Only the

method for the optimization problem (26)-(27) is explained below, but the same technique applies to the

problems (28)-(29).

The method is based on observing that the problem

Minimizing
d̃

Q(d̃, η̃) , (34)

subject to

gi(d̃, η̃, φ̃) ≥ Fi; ∀i ∈ I. (35)

is equivalent to the problem

Minimizing
d̃, η̃0, φ̃0

Q(d̃, η̃0) , (36)

subject to

gi(d̃, η̃0, φ̃0) ≥ Fi; ∀i ∈ I. (37)

and

(η̃0, φ̃0) = (η̃, φ̃). (38)

Since constraints (38) involve the data in their right hand sides, and the dual variables are the

sensitivities of the objective function value to changes in the constraints right hand side terms, the

desired sensitivities can be obtained by printing the values of the corresponding dual variables. In other

words, the values of the dual variables associated with the constraints in (38), give how much the objective

function Q(d̃, η̃) changes with a very small unit increment of the corresponding data parameter.

One of the interesting findings of the proposed procedure is that it informs the engineer of how the

solution varies as the values of the project variables are changed.

5 Optimized Design of a rubble-mound Breakwater

In this section the proposed procedure is applied to the design of a rubble-mound breakwater. The main

section of the breakwater is shown in Figure 1. The list of geometric variables and parameters appears in

Appendix B. Notice that these parameters define geometrically the different elements of the cross section

and must be defined in the construction drawings. Our goal is an optimal design based on minimizing

the construction cost, subject to safety factor and failure probability constraints for each mode of failure.

In fact the cost to be minimized should include maintenance, repairing, dismantling, etc.; however, for

the sake of simplicity only the construction cost is considered here.
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5.1 Modes of failure

Though other important modes of failure as, for example, armor structural integrity, toe instability and

geotechnical failure or failure in subsoil, could be considered, for the sake of simplicity, only three modes

of failure of the rubble-mound breakwater are included in the optimization process: (1) overtopping

failure, (2) armor failure, and (3) crownwall sliding failure.

Some of those modes are correlated, because they have common agents, or because one mode can

induce the occurrence of others. Only the correlation due to common agents is considered in this paper.

Interaction between modes of failure is complex and poorly understood and surely it will be an active

research area during the next years. This interaction is not considered in the breakwater example. Thus,

the calculated reliability has to be observed as an incomplete estimate, not because of the tool but of

the absence of appropriate information. The availability of the tool calls for good experimental work to

provide such information.

Strictly speaking the extraction of pieces from the main layer of a mound breakwaters do not cor-

respond to a classical structural failure. It should be noted that a mound is a granular system where

geometrical connectivity and structural stress transmission occur by friction and interlocking between

units. As usual, any mode of failure is related to a pre-established criterion, or threshold level, which

gives an indication of the residual resistance of the structure before collapse. Like other disciplines of the

civil engineering the occurrence of the failure does not necessarily mean that the structure collapse but

that its resistance is seriously diminished and its functionality seriously affected.

For rubble-mound breakwaters, there are at least three criteria of failure: initiation of damage, Irib-

arren´s damage and destruction, (see Losada, 1990 for a more comprehensive discussion). 2-5% displace-

ment of units is the typical criterion for initiation of damage. The adoption of one or other criterion

for design, depends on several factors, among them, the capacity or not to undertake the necessary

reparation, the economic and environmental consequences of the failure, etc.

Overtopping failure. For a rubble-mound breakwater of slope tanαs and freeboard Fc, (see Figure

1), and a given wave of height H and period T , the volume of water that overtops the structure can be

estimated from the volume of water that would rise over the imaginary extension of the slope exceeding the

freeboard level. With this approximation, overtopping (failure) occurs whenever the difference between

the maximum excursion of water over the imaginary slope, Ru, called wave run-up, exceeds the freeboard

Fc.

Losada (1990) proposed the following verification equation based on experiments to evaluate the
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dimensionless quantity Ru/H:

Ru

H
= Au

(

1 − eBuIr
)

(39)

where Au and Bu are coefficients that depend on the armor units, αs is the seaside slope angle, and Ir

is the Iribarren number

Ir =
tan αs
√

H/L
(40)

where L is the wave length.

Under such conditions, the occurrence of failure can be verified from the following safety factor

constraint:

Fc

Ru

≥ Fo (41)

where Fo is the overtopping safety factor.

Armor failure. This failure refers to the removal of concrete cubes from the armor layer. Based on

experiments, Losada (1990) proposed the following verification equation to evaluate the dimensionless

quantity:

W

γwH3
= RΦe (42)

where γw is the water unit weight, Φe is the stability function, R is an adimensional constant, that

depends on γc and γw, and W is the individual armor block weight, that are given by

W = γc`
3 (43)

R =
γc/γw

(

γc

γw

− 1

)3 (44)

Φe = Ar(Ir − Ir0
) exp[Br(Ir − Ir0

)] (45)

Ir ≥ Ir0
(46)

where γc is the concrete unit weight, ` is the characteristic block side dimension (two layers of pieces and

random placement are assumed),

Ir0
= 2.656 tan αs, (47)

and Ar and Br depend on cot αs by the approximate experimental relations

Ar = 0.2566 − 0.177047 cot αs + 0.0342933 cot2 αs (48)

Br = −0.0201 − 0.4123 cot αs + 0.055 cot2 αs (49)
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that are assumed to be valid for 1.5 ≤ cot αs ≤ 3.

Under such conditions, the occurrence of failure can be determined from the following safety factor

constraint:

W

γwRΦeH3
≥ Fa (50)

where Fa is the armor failure safety factor.

Crownwall sliding failure. This failure occurs when the crownwall slides with respect to its base due

to water pressure forces. The sliding failure can be verified by the following verification equation (see

Figure 2(b))

µc(W1 − Fv) = Fh (51)

where µc is the friction coefficient, and (see Martin et al. (1999)):

Fh = (S0 − Ac)PS0
+ (Wf + Ac)λPS0

(52)

Fv =
1

2
λPS0

e (53)

W1 = Vcγc − Wfeγw (54)

Vc = pq + se (55)

where Fh and Fv are the total vertical and horizontal forces due to water pressure, S0 the wave height due

to run-up, Ac the berm level, PS0
the wave water pressure, Wf the submerged height of the crownwall,

e the crownwall width, Vcγc is the total crown concrete weight, and W1 is the actual crown weight (dry

and submerged parts).

For Ir ≥ 2 the pressure forces acting on the crownwall at level z are (see Figure 2):

Pd(z) =

{

λPS0
if z < Ac

PS0
if z > Ac

(56)

where

Ir ≥ 2 (57)

PS0
= αγwS0 (58)

S0 = H

(

1 −
Ac

Ru

)

(59)

α = 2Cf

(

Ru

H
cos αs

)2

(60)

λ = 0.8 exp

(

−10.9
d

L

)

(61)

(

2π

T

)2

= g
2π

L
tanh

(

2πDWL

L

)

(62)
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where g is the acceleration of gravity, d the seaside berm width, α a random non-dimensional variable,

DWL
the design water level, and Cf is an experimental random coefficient.

Notice that only the first peak of pressure is verified; reflected pressure can be worked out in the same

fashion (see Martin et al. (1999) for details). The sliding failure can be verified by the following safety

factor constraint

µc(W1 − Fv)

Fh

≥ Fs (63)

where Fs is the sliding safety factor.

5.2 Practical design criteria

In maritime works there are some rules of good practice that should be observed. Some of them are

country dependent and some have historical roots. Those used in this example, are the following (see

Figure 1). Bullets after an inequality indicate that they become active, i.e. they degenerate to strict

equalities, in the numerical example to be explained.

1. Layers and berm widths:

a = 2`; b = 2`e; d ≥ 2` (•); f ≥ 2`e (•). (64)

2. Filter conditions:

W

20
≤ `3eγs (•); `3eγs ≤

W

10
(65)

3. Construction reasons:

b + c ≤ DWL
; DWL

≤ a + b + c; t = 1m; r = 2t; p = 2 (66)

4. Economic reasons:

1.5 ≤ cot αs ≤ 3; (•)1.5 ≤ cot α` ≤ 3 (67)

5. Wave breaking and overtopping control:

Ac ≥ 3Hs/4 ; Fc ≥ S0 (68)

6. Geometric identities:

DWL
+ Fc = b + c + s + q; Wf = s + q − Fc; Ac = a + b + c − DWL

(69)

7. Model requirements:

s ≤ 12(•); 2 ≤ q ≤ 8(•); e ≥ 10 (70)

where ` and `e are the equivalent cubic block side for the main layer and the secondary layers, respectively,

and Hs is the significant weight height, statistical descriptor of the sea state.
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5.3 Cost function

The details of the derivation of the cost function are given in the Appendix B. The resulting total

construction cost becomes:

C = CcVc + CalV1 + CulV2 + CcoV3 (71)

where Vc, V1, V2 and V3 are the concrete, armor layer, underlayer, and core volumes, respectively, and

Cc, Cal, Cul and Cco are the respective construction costs per unit volume.

5.4 Random and deterministic project factors

In this example the useful life of the rubble-mound breakwater is D = 50 years. To apply the proposed

model, the set of deterministic and random variables need to be defined.

Parameters:

1. Geometric parameters:

(a) The freeboard, Fc, and the slopes αs and α` are given by their nominal deterministic values.

2. Material properties parameters:

(a) Unit weights γc, γw and γs of the concrete, water and quarry stone are given by their nominal

deterministic values.

3. Mechanical properties parameters:

(a) The friction factor µc is a normal random variable with mean µµc
= 0.6 and characteristic

0.05 value µc0.05
= 0.55.

4. Experimental parameters:

(a) Runup model

Ru

H
= Au

(

1 − eBuIr
)

(72)

• Au is a normal random variable N(µAu
, σ2

Au
), where µAu

= 1.05 and σAu
= 0.21.

• Bu is a normal random variable N(µBu
, σ2

Bu
), where µBu

= −0.67 and σBu
= 0.134.

These two variables are assumed to be independent, even though they have been deter-

mined by a fitting procedure, because the resulting correlation was negligible.
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(b) Armor stability model

Φe = Ar(Ir − Ir0
) exp[Br(Ir − Ir0

)] (73)

• Ar is a normal random variable N(µAr
, σ2

Ar
), where

µAr
= 0.2566 − 0.177047 cot αs + 0.0342933 cot2 αs; vAr

= 0.15 (74)

• Br is a normal random variable N(µBr
, σ2

Br
), where

µBr
= −0.0201 − 0.4123 cot αs + 0.055 cot2 αs; vBr

= 0.15 (75)

5. Crown stability model

(a) Cf is a normal random variable with mean µCf
and standard deviation σCf

.

(b) α is a random variable which distribution can be derived from Equation (60).

(c) λ is given by its nominal deterministic value.

(d) S0 is a random variable which distribution can be derived from Equation (59).

(e) Pd and PS0
are random variables which distributions can be derived from Equation (56) and

(58), respectively.

Agents:

1. Climatic parameters:

(a) The astronomical tide h1 is assumed to be a uniform random variable U(zp, zp + tr), where

zp is the zero port and tr is the tidal range.

(b) The meteorological tide h2 is assumed to be a normal random variable N(µh2
, σ2

h2
). Then, the

water level is DWL
= h1 + h2.

(c) The maximum wave height HD and period Tp in a sea state are random variables with cumu-

lative distribution functions:

FHD
(x;Hs) = 1 − exp

[

−

(

x − 1.263 − 0.326Hs − 0.172H2
s

1.465

)2.507
]

;

x ≥ 1.263 + 0.326Hs + 0.172H2
s (76)

and

FTp
(x;Hs) = exp

[

−

(

11.176 + 3.756Hs − 0.415H2
s − x

7.597

)2.992
]

;

x ≤ 11.176 + 3.756Hs − 0.415H2
s (77)
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where Hs is a random variable with exponential probability density function:

fHs
(x) = 1.58247 exp(−1.58247(x − 3)); x ≥ 3;

where only sea states with Hs > 3 have been considered.

These distributions of HD and Tp as a function of Hs, and the distribution of Hs have been

derived, based on Gijón buoy data. The data corresponds to 5.69 years, 260 storms (significant

wave height > 3m), and 1857 (one hour) sea states.

Dependence assumptions:

All the above random variables are assumed to be independent, and all other variables are assumed to

be deterministic. It is important to explain here that the correlation of the different modes of failure comes

from the fact that they depend on common variables. Thus, even in the case of assuming independent

variables, the modes of failure will become correlated. In other words, the main source of mode of failure

correlation is its dependence on common variables and not the dependence of the variables themselves.

The above probability functions and the value of their parameters have been chosen just for illustration

purposes. For applying the method to real cases, a more careful selection has to be done, using long term

data records. Only a few countries have enough information to infer these functions adequately.

5.5 Formulation and solution of the dual problem

Following the process described in Section 4, firstly the safety factor lower bounds F 0
o , F 0

s and F 0
a , and

the reliability indices lower bounds β0
o , β0

s and β0
a, are chosen; next the iteration process is repeated until

all the constraints are satisfied. The three steps are as follows.

Step 1: Optimal classic design. For iteration k, in the classic design the construction cost function

is minimized

C(d̃, η̃) (78)

subject to the safety factor constraints:

Overtopping failure:

Fc

Ru

≥ F k
o (79)

Armor failure:

W

γwRΦeH3
≥ F k

a (80)
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Crownwall sliding failure:

µc(W1 − Fv)

Fh

≥ F k
s (81)

and the design constraints.

Step 2: Evaluation of the reliability indices. Since in this paper we deal with the probability of

failure during the useful live of the structure, the probability of failure for mode i is:

Pfi
= 1 −



1 −

∞
∫

3

fHs
(Hs)Pfssi

(Hs)dHs





nssD

(82)

where Pfssi
(Hs) is the probability of failure for mode i in a sea state defined by Hs, and nss is the

equivalent number of sea states per year (nss = 326 for the Gijon’s data) and D is the useful life.

Note that the equivalent number of sea states allows taking into consideration the dependence of

events in sea states. A number nss smaller than the actual number of sea states indicates dependence,

and a number coincident with it, implies the independence assumption.

This simplifying assumption has a strong theoretical basis, because it is well known (see Coles (2001)

(page 96)) that m-dependence (dependence for close events but independence for separate events) in

a stationary series leads to a change in the equivalent period length (which is reduced as dependence

increases). This implies that m-dependence can be ignored when the parameters are estimated from real

(dependent) samples.

Integral (82) can be evaluated using Gauss-Legendre’s cuadrature formula as:

Pfi
≈ 1 −



1 −
Hmax

s − Hmin
s

2

n
∑

j=1

wjfHs
(Hsj

)Pfssi
(Hsj

)





nssD

(83)

where wj and Hsj
are the Gauss weights and and points, respectively.

To calculate Pfssi
(Hsj

) the following procedure is used for each Hsj
:

1. Variables are transformed into independent unit normals:

u1 = Φ((Au − µAu
)/σAu

) = Φ(z1)
u2 = Φ((Bu − µBu

)/σBu
) = Φ(z2)

u3 = Φ((Ar − µAr
)/σAr

) = Φ(z3)
u4 = Φ((Br − µBr

)/σBr
) = Φ(z4)

u5 = FTp
(T ;Hsj

) = Φ(z5)
u6 = FHD

(H;Hsj
) = Φ(z6)

u7 = Φ((µc − µµc
)/σµc

) = Φ(z7)
u8 = Φ((Cf − µCf

)/σCf
) = Φ(z8)

u9 = (h1 − zp)/tr = Φ(z9)
u10 = Φ((h2 − µh2

)/σh2
) = Φ(z10)

(84)
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2. Three different optimization problems are solved for each Hsj
:

Minimize
Au, Bu,H, T,Ar, Br, Cf , µc, h1, h2

βi,j
2 =

10
∑

k=1

z2
k (85)

subject to (84) and one of the following failure mode constraints:

Overtopping failure:

1 =
Fc

Ru

(86)

Armor failure:

1 =
W

γwRΦeH3
(87)

Crownwall sliding failure:

1 =
µc(W1 − Fv)

Fh

(88)

3. The probability of failure for mode i in a sea state defined by Hsj
is calculated using:

Pfssi
(Hsj

) = Φ(−βi,j) (89)

Once the probabilities of failure for the different significant waves are calculated, the yearly probability

of failure for mode i is evaluated through the formula (82), and their associated β-values using

βk
i = −Φ−1(Pfi

) (90)

Step 3: Testing convergence and updating safety factors. If the obtained βk-values satisfy the

desired β0-bounds the process is stopped and the optimal design is the one resulting from this iteration;

otherwise, the safety factors are updated applying Equations (31) and (32) and the process continues

with Step 1.

5.6 Numerical solution and analysis of the results

The proposed method has been implemented in GAMS (General Algebraic Modelling System) (see

Castillo, Conejo, Pedregal, Garćıa and Alguacil (2001)), and the automatic optimal design of a rubble-

mound breakwater with the following characteristics has been performed:

1. The target safety factors and reliability indices must depend on the consequences associated with

the corresponding failure modes and the useful life of the structure being designed (a period of fifty

years has been considered) (see Vrouwenvelder (2002)). Then, the following initial (k = 0) safety

factor and β reliability indices lower bounds have been chosen:

F 0
o = 1.05; F 0

s = 1.5; F 0
a = 1.5, (91)
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β0
o = 2.32; β0

s = 3.08; β0
a = 3.08. (92)

Note that the β values correspond to failure probabilities of 0.01, 0.001 and 0.001, respectively.

2. For the safety factor design a significant wave height of Hs = 6.5 and the wave height and period

corresponding to the 0.99 quantiles obtained from (76) and (77) have been selected. The other

random variables are fixed to their mean values whereas DWL
= zp + tr.

3. The nominal values, statistical and cost parameters used in this numerical example are:

Design values:

p = 2m; r = 2m; t = 1m; DWL
= 25m;

γc = 23.5KN/m3; γs = 26KN/m3; γw = 10.25KN/m3

Statistical Properties:

µAu
= 1.05; σAu

= 0.21; µBu
= −0.67; σBu

= 0.134; µµc
= 0.6; σµc

= 0.01941; µCf
= 1.45

vCf
= 0.1; µAr

= 0.2566 − 0.177047 cot αs + 0.0342933 cot2 αs; vAr
= 0.15;

µBr
= −0.0201 − 0.4123 cot αs + 0.055 cot2 αs; vBr

= 0.15; µh2
= 0.02414; σh2

= 0.11597

Cost Parameters:

Cal = 818.4euros/m3; Cul = 18.72euros/m3; Cco = 2.4euros/m3; Cc = 60.1euros/m3

Analysis of results. Table 1 shows the convergence of the process that is attained after 14 iterations.

The first column shows the values of the geometric parameters, the safety factors and the corresponding

reliability indices for the safety factor design, i.e. those corresponding to the safety factors in (91) without

any consideration of the failure probabilities (reliability indices in (92)). However, since the resulting

reliability indices are smaller than those in (92), the safety factors have been increased using (31) and

(32), and the safety factor design repeated, in iteration 2. Since the same occurs in the subsequent

iterations, the process is continued until iteration 14, where the constraints (92) are finally satisfied.

The last column of the table shows the values of the design variables, together with the safety factors

and associated β-values. The active values appear underlined in this table. Note that the active role of

the safety factors is induced by the reliability indices.

From this table one can conclude the following. The safety factor bounds F 0
o , F 0

s and F 0
a and the β0

o

are inactive, while the β0
s and β0

a bounds are active. This implies that the β0
s and β0

a bounds are more
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stringent than the corresponding safety factor bounds, and that the safety against overtopping is implied

by the sliding and armor failure safety constraints.

The sensitivities for the illustrative example are given in Tables 2 and 3. Table 2 gives the cost

sensitivities associated with the optimal classic design. It allows one to know how much a small change in

a single data value changes the total cost of the breakwater. This information is extremely useful during

the construction process to control the cost, and for analyzing how the changes in the safety factors

required by the codes influence the total cost of maritime works. For example, a change of one unit in

DWL leads to a cost increase of 14174.2 euros (see the corresponding entry in Table 2). Similarly, an

increase in the unit weight of the concrete γc decreases the cost in 22562.5 euros per unit of increase.

Table 3 gives the reliability indices (β-values) sensitivities. It is useful to know how much a small

change in a single data value, for example, a mean or a standard deviation, changes the corresponding

β-value. In this table the designer can easily analyze how the quality of the material or precision in the

construction of the work influence the safety of the breakwater. As one example, an increase of 1 unit in

the friction factor µµcr
, without changing the remaining data, increases the reliability index βs to 0.385,

and an increase of the parameter µAu
of 1 unit, decreases the reliability index βo to 4.145.

5.7 Monte Carlo simulation

To determine an estimate of the global probability of failure, to understand better the interaction and

correlation between modes of failure, and to estimate the probabilities of failure for each combination

of modes of failure, a Monte Carlo simulation has been done with 109 simulations, and the failure

probabilities for each mode of failure has been determined. Table 4 shows the resulting probabilities

of failure for all possible combinations of failure modes. Then, it can be concluded that the global

failure probability is 0.0011, and the overtopping, sliding and armor stability probabilities of failure are

0.00025, 0.00056 and 0.00046, respectively.

Note that these probabilities are lower than the target probabilities 0.01 and 0.001.

6 Conclusions

The methodology presented in this paper, denoted optimal dual safety-factor-failure-probability method,

provides a rational and systematic procedure for automatic and optimal design of maritime works. The

engineer is capable of observing simultaneous bounds for the safety factors and probabilities of failure

against different modes of failure, so that the most stringent conditions prevail. In addition, a sensitivity

analysis can be easily performed by transforming the input parameters into artificial variables, that are
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constrained to take their constant values. The provided example illustrates how this procedure can be

applied and shows that it can be very practical and useful.

Some additional advantages of the proposed method are:

1. The reliability analysis takes full advantage of the optimization packages.

2. The Rosenblatt transformation does not need to be inverted.

3. Constraints can be written in any form, implicit or explicit.

4. The failure region need not be written in terms of the normalized (transformed) variables.

5. The responsibility for iterative methods is given to the optimization software.

6. Sensitivity values are given, without additional cost, by the values of the dual problem.

7. Monte Carlo simulation gives a better knowledge of the probabilities of occurrence of combined

failures modes, and allows determining the actual global probability of failure.
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8 Appendix A: Cost function

Consider the rubble-mound breakwater in Figure 1. To derive the cost function the following parts are

considered:

Concrete volume:

Vc = pq + se (93)

Armor layer volume:

V1 = ad + a
b + c − t

sin αs

+
a2

2 tan αs

(94)

Underlayer volume:

V2 = b
(

e + d − a tan
αs

2

)

+ b
c − t

sin αs

+
b2

2 tan αs

+

(

2f +
n + b

tan α`

)

n + b

2
+

cb

sinα`

(95)
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Core volume:

V3 = c

(

f + e + d − (a + b) tan
αs

2
−

b

sinα`

+
n + b

tan α`

)

+
c2

2

(

1

tan αs

+
1

tan α`

)

+ t

(

r +
a + b

sinαs

)

(96)

Then, the total cost becomes

C = CcVc + CalV1 + CulV2 + CcoV3. (97)
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9 Appendix B: Notation

Ac: berm level.

Ar: constant defining the stability function.

Au: coefficient depending on the armor units.

a: armor layer width.

Br: constant defining the stability function.

Bu: coefficient depending on the armor units.

b: underlayer width.

Cal: cost of the armor layer per unit volume.

Cc: cost of the concrete per unit volume.

Cco: cost of the core per unit volume.

Cf : experimental random coefficient.

Cul: cost of the underlayer per unit volume.

c: core height.

DWL
: design water level.

D: useful life.

d: design or geometric variables.

d: seaside berm width.

e: crownwall width.

Fa: armor stability safety factor.

F 0
a : armor stability safety factor lower bound.

Fc: freeboard.

Fh: Horizontal force due to waves acting on the
crownwall.

F k
i : safety factor of the mode of failure i at itera-

tion k.

Fo: overtopping safety factor.

F 0
o : overtopping safety factor lower bound.

Fs: crownwall sliding safety factor.

F 0
s : crownwall sliding safety factor lower bound.

Fv: Subpressure acting on the crownwall.

f : leeward berm width.

g: Acceleration of gravity

H: wave height.

HD: maximum wave height.

Hs: significant wave height.

h1: astronomical tide.

h2: meteorological tide.

Ir: Iribarren’s number.

Ir0
: adimensional constant.

L: wave length.

`: armor equivalent cubic block side.

`e: underlayer equivalent cubic block side.

n: crownwall depth.

PS0
: wave water pressure.

p: upper crownwall width.

p0
i : upper bound of the failure probability for mode

i.

q: upper crownwall height.

R: adimensional constant depending on γc and
γw.

Ru: wave run-up.

r: toe width.

S0: wave height due to run-up.

s: crownwall height.

T : wave period.

Tp: peak period.

t: toe height.

tr: tidal range.

U : standard uniform random variable.

Vc: concrete total volume.

V1: armor layer total volume.

V2: underlayer total volume.

V3: core total volume

vAr
: coefficient of variation of Ar.

vBr
: coefficient of variation of Br.

vCf
: coefficient of variation of Cf .

W : armor block weight.

Wf : submerged height of the crownwall.

W1: crownwall weight.

zp: zero port.

α: adimensional constant.

α`: leeward slope angle.

αs: seaward slope angle.

βa: armor stability reliability factor.
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βo: overtopping reliability factor.

βs: crownwall sliding reliability factor.

βk
i : mode i reliability factor lower bound for iter-

ation k.

β0
a: armor stability reliability factor lower bound.

β0
o : overtopping reliability factor lower bound.

β0
s : crownwall sliding reliability factor lower bound.

γc: concrete unit weight.

γs: rubble-mound unit weight.

γw: water unit weight.

η: the set of parameters used in the classic de-
sign.

φ: the set of basic random variables used only in
the probabilistic design.

ψ: the auxiliary (non-basic) variables which val-
ues can be obtained from those of the basic
variables.

κ: the set of parameters associated with the ran-
dom variability and dependence structure of
the random variables involved.

η̃: mean value of η.

φ̃: mean value of φ.

ψ̃: mean value of ψ.

λ: adimensional constant.

µAr
: mean value of Ar.

µBr
: mean value of Br.

µAu
: mean value of Au.

µBu
: mean value of Bu.

µCf
: mean value of Cf .

µc: friction factor.

µµc
: mean value of µc.

σAu
: standard deviation of Au.

σBu
: standard deviation of Bu.

σµc
: standard deviation of µc.

Φe: stability function.
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Figure 1: Parameterized rubble-mound breakwater used in the illustrative example of automatic design.
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Figure 2: Illustration of the forces acting on the crownwall and producing sliding with respect to its base.
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Table 1: Illustration of the iterative procedure. The design and final values are boldfaced. Active safety
factors or reliability indices are underlined.

ITERATIONS
Variable Units 1 2 3 14 (end)

Cost euros × 103 272.2 281.9 291.1 299.7

a m 6.11 6.18 6.16 6.16

b m 2.18 2.20 2.19 2.19

c m 16.59 16.50 17.27 17.47

r m 2.00 2.00 2.00 2.00

t m 1.00 1.00 1.00 1.00

e m 10.00 14.51 16.13 23.54

p m 2.00 2.00 2.00 2.00

s m 6.61 12.00 12.00 12.00

q m 7.13 8.00 8.00 8.00

d m 6.11 6.18 6.16 6.16

f m 2.18 2.20 2.19 2.19

n m 0.00 0.00 0.00 0.00

β m 0.46 0.46 0.46 0.46

α m 0.59 0.59 0.59 0.59

Fc m 12.50 18.70 19.46 19.67

Fo – 1.21 1.81 1.88 1.90

Fs – 1.50 3.92 7.41 12.58

Fa – 1.50 1.55 1.53 1.54

βo – 2.70 2.88 3.23 3.32

βs – 1.87 1.33 2.27 3.08

βa – 2.92 3.13 3.07 3.08
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Table 2: Cost sensitivities
∂C

∂x
with respect to the data values in the crownwall illustrative example.

Positive values indicate a cost increase when the corresponding parameter is increased one unit.

∂C/∂x

x DWL γc γs γw Fo Fs

14174.2 -22562.5 -47.3 51848.6 0.000 1599.5

x Fa cal cul cco cc Hs

62258.2 335.9 226.0 1070.2 298.5 40391.0
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Table 3: Cost sensitivities
∂C

∂x
with respect to the data values in the crownwall illustrative example.

Positive values indicate a cost increase when the corresponding parameter is increased one unit.

Data value x ∂βo

∂x
∂βs

∂x
∂βa

∂x

γc 0.000 0.021 2.198
γs 0.000 0.000 0.000
γw 0.000 -0.048 -6.204
µAu

-4.145 -0.708 0.000
µBu

2.239 0.431 0.000
µµcr

0.000 0.385 0.000
µAr

0.000 0.000 -308.402
µBr

0.000 0.000 -0.158
µcf

0.000 -0.336 0.000
µh1

-0.028 -0.167 -0.258
µh2

-0.028 -0.167 -0.258
σAu

-32.994 -3.343 0.000
σBu

-6.032 -0.783 0.000
σµcr

0.000 -0.091 0.000
vAr

0.000 0.000 -47.323
vBr

0.000 0.000 -23.132
vCf

0.000 -0.587 0.000
σh1

-0.019 -0.162 -0.245
σh2

-0.001 -0.104 -0.114
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Table 4: Monte Carlo estimation of the probabilities of failure for all combinations of failure modes.

Type of failure Probability
∅ 0.99890
{o} 0.00010
{s} 0.00039
{a} 0.00044

{o} ∪ {s} 0.00015
{o} ∪ {a} 0.00000
{s} ∪ {a} 0.00002

{o} ∪ {s} ∪ {a} 0.00000
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Figure captions

Figure 1. Parameterized rubble-mound breakwater used in the illustrative example of automatic de-
sign.

Figure 2. Illustration of the forces acting on the crownwall and producing sliding with respect to its
base.
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Table captions

Table 1. Illustration of the iterative procedure. The design and final values are boldfaced. Active
safety factors or reliability indices are underlined.

Table 2. Cost sensitivities
∂C

∂x
with respect to the data values in the crownwall illustrative example.

Positive values indicate a cost increase when the corresponding parameter is increased one unit.

Table 3. Reliability index sensitivities ∂βi

∂x
, with respect to the data values x, in the illustrative ex-

ample. Positive values indicate an index increase when the corresponding parameter is increased one unit.

Table 4. Monte Carlo estimation of the probabilities of failure for all combinations of failure modes.
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