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Sensitivity analysis in regression is concerned with assessing the sensitivity of the results of a regression
model (e.g., the objective function, the regression parameters, and the fitted values) to changes in the data.
Sensitivity analysis in least squares linear regression has seen a great surge of research activities over
the last three decades. By contrast, sensitivity analysis in non-linear regression has received very little
attention. This paper deals with the problem of local sensitivity analysis in non-linear regression. Closed-
form general formulas are provided for the sensitivities of three standard methods for the estimation of the
parameters of a non-linear regression model based on a set of data. These methods are the least squares, the
minimax, and the least absolute value methods. The effectiveness of the proposed measures is illustrated
by application to several non-linear models including the ultrasonic data and the onion yield data. The
proposed sensitivity measures are shown to deal effectively with the detection of influential observations
in non-linear regression models.

Keywords: dual optimization problem; influential observations; lagrangian function; least square; least
absolute value; minimax method; outlier detection; primal optimization problem

1. Introduction

It has long been recognized that statistical conclusions drawn from an analysis can be sensitive

Q1

to changes in a model, deviations from assumptions, and other perturbations in the inputs of a
statistical analysis (e.g., observations in a data set). Actually, more often than not, conclusions
drawn from an analysis can be completely turned around if one or few data points are changed.

It is therefore essential for data analysts to be able to assess the sensitivity of their conclusions
to various perturbations in the inputs. Sensitivity analysis provides confidence in the model and
the conclusions from an analysis because it allows the analyst to assess the effects of departures
from the assumptions, detect outliers or wrong data values, define testing strategies, optimize
resources, reduce costs, and avoid unexpected problems.

Sensitivity analysis has seen a great surge of research activities over the last three decades.
Most of the work, however, focused almost exclusively on least squares (LS) linear regression.
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2 E. Castillo et al.

An evidence supporting this observation is the number of books and articles that have appeared
in the literature. See, for example, the books [1–7], and the articles [8–23]. By contrast to the
area of LS linear regression, sensitivity analysis in non-linear regression has received very little
attention. This paper is an attempt to fill this void.

The intrinsically (non-linearizable) non-linear regression model can be written as

yi = f (xi; β) + εi, i = 1, 2, . . . , n, (1)

where yi is the ith value of the response variable, xi is a k × 1 vector of predictor variables
corresponding to the ith observation, and εi is a random error. The function f is known and
non-linear in the parameter vector β.

The parameters are to be estimated from the data. We consider here three estimation methods:
the LS, the minimax (Min–Max), and the least absolute value (LAV) methods. All three methods
can be formulated as optimization problems as follows.

The LS method is by far the most popular. The LS estimates of the parameters β are obtained
by minimizing the sum of squared distances between observed and predicted values, that is,

Minimize
β

ZLS =
n∑

i=1

(yi − f (xi; β))2. (2)

The method of LS was first named and published by Legendre in the paper ‘Nouvelles méthodes
pour la determination des orbites des cométes’, which appeared in 1805, though the basic idea of
the method of LS has occurred to Gauss in the autumn of 1794.

Two less common alternatives to the LS method are the Min–Max method and the LAV method.
The Min–Max regression estimators were studied by Euler, Lambert, and Laplace (see, for

example, Sheynin [24] and Plackett [25]). Accordingly, the parameter estimates are the quantities
that minimize the absolute value of the largest deviation [24]. More precisely, the Min–Max
regression estimators are obtained by minimizing the maximum of the distances between observed
and predicted values, i.e.:

Minimize
β,ε

ZMin–Max = ε (3)

subject to

yi − f (xi − β) ≤ ε, i = 1, . . . , n, (4)

f (xi; β) − yi ≤ ε, i = 1, . . . , n.

An algorithm for finding the Min–Max residual was given in 1783 by Laplace [26] who, later
in 1789, has simplified the earlier procedure in ref. [27]. The Min–Max estimates are the most
non-robust estimators [28].

The LAV method minimizes the sum of the distances between observed and predicted
values, i.e.:

Minimize
β,εi

ZLAV =
n∑

i=1

εi (5)

subject to

yi − f (xi; β) ≤ εi, i = 1, . . . , n,

f (xi; β) − yi ≤ εi, i = 1, . . . , n.

In the simplest linear case Boscovich was the first in proposing to estimate the parameters by quan-
tities which satisfy the following conditions: (a) the sum of the deviations is zero; and (b) the sum
of the absolute values of the deviations is a minimum, and gave a geometrical method of solution.
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One question of interest is: how sensitive are the optimal values, Z∗
LS, Z∗

LAV and Z∗
Min–Max and

the estimated parameters βLS, βMin–Max, and βLAV to the data values (x or y values)?
One way of assessing the influence of the ith observation on the results of an analysis is to

use the case deletion approach, where the influence of the ith observation on a given regression
result is assessed by the difference between the value of the result based on all the data and the
value obtained when the ith observation is omitted from the calculations. In LS linear regression,
this approach is computationally efficient because there are closed formulas that can be obtained
after fitting the model to the full data. In non-linear regression, however, this approach is com-
putationally unrealistic because we need to solve n + 1 non-linear optimization problems (one
for the full data and one when each of the n observations in the data is omitted one at a time).
For the LS model, there exist iterative formula that relate the results based on the full data with
those based on the data with one observation omitted, facilitating the calculations and reducing
the computational complexity.

For other models (e.g., the least trimmed squares (LTS) and M-estimators), there are asymptotic
representations for the difference the estimates obtained from the full data and those obtained when
one or more observations are deleted, which facilitate the analysis [29–31]. In addition, by using
a modern algorithm for LTS [32] one can find the most influential observations with computing
times that can be reduced to 1/2 for samples sizes of n = 50, or to 1/100 for n = 1000, as compared
to the times required without using these techniques.

Finally, it must be pointed out that different models can lead to very different estimates [31,33].
Thus, user needs must be taken into account when selecting the regression method for fitting the
data.

Another approach to sensitivity analysis, proposed by Cook [10], is a weighted perturbation
approach, where each observation is given a weight ωi , with 0 ≤ ωi ≤ 1. The influence of an
observation xi is then measured by the likelihood displacement:

LD(ω) = 2[L(θ̂) − L(θ̂ω)], (6)

where ω = {ω1, . . . , ωn}, θ̂ is the maximum likelihood estimate of θ , and θ̂ω is the maximum
likelihood estimate of θ when the xi is given weight ωi , and L(θ̂) is the log-likelihood function
evaluated at θ̂ . The deletion approach can be viewed as giving a weight of either 0 or 1 to each
of the observations in the data. Because it is based on the likelihood function, the weighted
perturbation approach normally applies to the LS normal regression, but it can also be applied
to the Min–Max and LAV methods without problems using weighted residuals. The weights can
be ‘a priori’ selected and prescribed to the observations according to their position among the
order statistics of absolute values of residuals [34]. It also has the same computational problems
associated with the deletion approach in non-linear regression.

A third approach, proposed by Nyquist [16] and Hadi and Nyquist [35], is based on the sensitivity
function. This, too, is computationally infeasible for non-linear regression models.

This paper uses a general, computationally feasible approach to sensitivity analysis in non-
linear regression. Section 2 presents the materials that are necessary to derive the various sensitivity
measures in non-linear regression. The general applicability of the proposed method for sensitivity
analysis is then illustrated by its application to some real-life non-linear regression examples in
Sections 3 and 4. Finally, Section 5 offers some concluding remarks.

2. Sensitivities in non-linear models

Many estimation methods in statistics can be expressed as non-linear programming problems,
that is, to optimize an objective function subject to some constraints. This includes, for example,
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the LS, Min–Max, and LAV methods, as we have seen in Equations (2)–(5). Once the statistical
problem is expressed as a non-linear programming problem, we show how the sensitivities of the
resultant estimators can be easily obtained using some results from mathematical programming.
This section gives these needed results.

Consider the following general non-linear programming problem (P ):

Minimize
θ

ZP = f (θ; x) (7)

subject to

h(θ; x) = 0 : λ, (8)

g(θ; x) ≤ 0 : μ, (9)

where letters in boldface refer to vectors, θ ∈ R
n, x ∈ R

p, h(θ; x) ∈ R
�, g(θ; x) ∈ R

m, and λ ∈
R

� and μ ∈ R
m are the dual variables associated with the equality and inequality constraints,

respectively. The problem in Equations (7)–(9) is called the primal problem.
Every primal non-linear programming problem P has an associated dual problem D, which is

defined as:

Maximize
λ,μ

ZD = Infθ {L(θ, λ, μ; x)} (10)

subject to

μ ≥ 0, (11)

where

L(θ, λ, μ; x) = f (θ; x) + λTh(θ; x) + μTg(θ; x), (12)

is the Lagrangian function associated with the primal problem (7)–(9), and the dual variables λ

and μ are vectors of dimensions � and m, the number of equality and inequality constraints in
Equations (8) and (9), respectively.

Given some regularity conditions [36–39], if the primal problem (7)–(9) has a locally optimal
solution θ∗, the dual problem (10)–(11) also has a locally optimal solution (λ∗, μ∗), and the
optimal values of the objective functions of both problems coincide.

When dealing with the optimization problem (7)–(9), the following questions regarding
sensitivity analysis are of interest:

(1) What is the sensitivity of Z∗
P = f (θ∗; x) to changes in x? That is, the sensitivity of the objective

function at the optimal point when the data x are modified. For our examples, this means the
sensitivities of the sum of squared errors, the Min–Max value or the sum of absolute errors,
to data.

(2) What is the sensitivity of θ∗, λ∗, and μ∗ to changes in x? That is, the sensitivity of the
primal, θ∗, and dual variables, λ∗ and μ∗, at their optimal values when the data are modified.
In estimation problems this means the sensitivities of the resultant regression coefficient
estimates, or the sensitivities of the equality and inequality constraints to data, respectively.

All these sensitivities have a great practical importance because they can help in the identification
of outliers and influential data points.

In this section, we give formulas that allow obtaining the local sensitivities of the objective
function and the primal and dual variables with respect to data all at once. Without loss of
generality, we consider that all the inequalities in Equation (9) are active. Note that after solving
problem (7)–(9), it is very easy to check which of the inequalities in Equation (9) are active,
and then we can ignore the inactive constraints because they do not alter the optimal solution.
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Then, let q(θ; x) be all equality constraints in Equation (8) and the active inequality constraints in
Equation (9). Also, let η be the vector including the dual variables corresponding to λ and μ, that
is, η = (λ, μ)T. In Equation [40], Castillo et al. show that the sensitivity of the optimal solution
(θ∗, η∗, Z∗

P) of Equations (7)–(9) to changes in the parameters can be determined by the system
of equations: ⎡

⎣ Fθ Fx 0 −1
Fθθ Fθx QT

θ 0
Qθ Qx 0 0

⎤
⎦

⎡
⎢⎢⎣

dθ

dx
dη

dZP

⎤
⎥⎥⎦ = 0, (13)

where dθ , dx, dη, and dZP are the differential perturbations, and all the matrices in Equation (13)
are evaluated at the optimal solution and are defined below (with the corresponding dimensions
in parenthesis):

Fθ (1×n)
= (∇θf (θ∗, x))T, (14)

Fx(1×p)
= (∇xf (θ∗, x))T, (15)

Fθθ (n×n)
= ∇θθf (θ∗, x) +

�+m∑
k=1

λ∗
k∇θθqk(θ

∗, x), (16)

Fθx(n×p)
= ∇θxf (θ∗, x) +

�+m∑
k=1

λ∗
k∇θxqk(θ

∗, x), (17)

Qθ ((�+m)×n)
= (∇θq(θ∗, x))T, (18)

Qx((�+m)×p)
= (∇xq(θ∗, x))T. (19)

Condition (13) can be written as:

U

⎡
⎣ dθ

dη

dZP

⎤
⎦ = Sdx, (20)

where

U =
⎡
⎣ Fθ 0 −1

Fθθ QT
θ 0

Qθ 0 0

⎤
⎦ and S = −

⎡
⎣ Fx

Fθx

Qx

⎤
⎦. (21)

Thus, given a unit direction vector dx, we can solve Equation (20) to obtain the partial derivatives.
If the solution exists and is unique, we obtain the corresponding directional derivatives. For a
partial derivative to exist, the corresponding directional derivatives must exist and be equal in
absolute value but not in sign. If the system (20) has no solution, the corresponding directional
and partial derivatives do not exist.

In this paper, we consider only the regular case, that is, we assume that the matrix U is a square
matrix, that is equivalent to assuming that all the μ multipliers are non-null, and also that it is
invertible. If U is invertible, we have ⎛

⎜⎜⎜⎜⎜⎝

∂θ

∂x
∂η

∂x
∂ZP

∂x

⎞
⎟⎟⎟⎟⎟⎠ = U−1S. (22)
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where ∂θ/∂x, ∂η/∂x, and ∂ZP/∂x are the matrices containing all the sensitivities (partial
derivatives) with respect to all data.

2.1. The case without constraints

In the particular case of an optimization problem with no constraints, the system (20) leads to

Fθ dθ − dZP = −Fx dx,

Fθθ dθ = −Fθx dx,

which, if Fθθ is invertible, gives

∂θ

∂x
= −F−1

θθ Fθx, (23)

∂ZP

∂x
= −FθF−1

θθ Fθx + Fx = Fx, (24)

where ∂θ/∂x and ∂ZP/∂x are matrices containing all the indicated partial derivatives.

2.2. The case with constraints

In the general case, if the matrix Qθ is invertible, the solution of the system (20) becomes

∂θ

∂x (n×p)
= −Q−1

θ Qx, (25)

∂η

∂x (n×p)
= (QT

θ )−1(FθQ−1
θ Qx − Fθx), (26)

∂ZP

∂x (1×p)
= −FθQ−1

θ Qx + Fx = Fx + ηTQx. (27)

For the linear cases (as Min–Max and LAV) there are explicit formulas [41] in terms of the primal
and dual optimal variable values.

2.3. The singular case

The singular case appears when the matrix U is not square or is singular. This occurs, for example,
when the primal problem has infinitely many solutions or there are redundant constraints. As we
shall see, the Min–Max and LAV regression models are prone to this singularity because of the
existence of infinitely many solutions.

2.4. Objective function sensitivities

While Equation (22) gives the sensitivities of the parameters, the dual variables, and the objective
functions to data values, the following theorem gives explicit and more simple formulas for the
sensitivities of the objective function values with respect to data [42].
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THEOREM 1 The sensitivity of the objective function of the primal problem (7)–(9) with respect
to x is given by

∂Z∗
P

∂x
= ∇xL(θ∗, λ∗, μ∗; x), (28)

which is the partial derivative of its Lagrangian function

L(θ , λ, μ; x) = f (θ; x) + λTh(θ; x) + μTg(θ; x), (29)

with respect to x evaluated at the optimal solution θ∗, λ∗, and μ∗.

The proof of this theorem is given in ref. [43], pp. 310–311.

2.5. Standardized sensitivities

Once the sensitivities in Equations (22) or (28), we need to compare them to see which data values
are most influential on the obtained results. For these comparisons to be meaningful, we need to
standardize the sensitivities. For example, instead of using ∂Z∗

P/∂x in Equation (28), we use the
corresponding standardized versions

(∂Z∗
P/∂xij ) − mj

sj

, j = 1, . . . , k, (30)

where mj and sj are the mean and standard deviation of ∂Z∗
P/∂xij , i = 1, 2, . . . , n, after replacing

the parameters by their estimated values. When we refer to sensitivities, from now on, we mean
the standardized sensitivities.

To illustrate all of the above sensitivity measures and to investigate their effectiveness in reveal-
ing influential observations in non-linear regression models, we use the following examples of
real-life data:

(1) The ultrasonic data.
(2) The onion yield data.

3. A model for ultrasonic data

The data we use here are the result of an NIST study involving ultrasonic calibration. The Q2
data consists of 54 observations on two variables. The response variable (y) is ultrasonic
response and the predictor variable (x) is metal distance. The data in Table 1 were taken from
www.itl.nist.gov/div898/strd/nls/data/LINKS/DATA/ Chwirut2.dat. In this Web site, a non-linear
regression model of the form

yi = f (xi; β) + εi = e−β1xi

β2 + β3xi

+ εi, i = 1, 2 . . . , n, (31)

is fitted to the data. here we assess the influence of observations on the results of the LS, Min–Max,
and LAV methods.
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Table 1. Ultrasonic calibration data.

i yi xi i yi xi i yi xi

1 92.9000 0.500 19 13.12 3.000 37 3.75 5.750
2 57.1000 1.000 20 59.90 0.750 38 11.81 3.000
3 31.0500 1.750 21 14.60 3.000 39 54.70 0.750
4 11.5875 3.750 22 32.90 1.500 40 23.70 2.500
5 8.0250 5.750 23 5.44 6.000 41 11.55 4.000
6 63.6000 0.875 24 12.56 3.000 42 61.30 0.750
7 21.4000 2.250 25 5.44 6.000 43 17.70 2.500
8 14.2500 3.250 26 32.00 1.500 44 8.74 4.000
9 8.4750 5.250 27 13.95 3.000 45 59.20 0.750

10 63.8000 0.750 28 75.80 0.500 46 16.30 2.500
11 26.8000 1.750 29 20.00 2.000 47 8.62 4.000
12 16.4625 2.750 30 10.42 4.000 48 81.00 0.500
13 7.1250 4.750 31 59.50 0.750 49 4.87 6.000
14 67.3000 0.625 32 21.67 2.000 50 14.62 3.000
15 41.0000 1.250 33 8.55 5.000 51 81.70 0.500
16 21.1500 2.250 34 62.00 0.750 52 17.17 2.750
17 8.1750 4.250 35 20.20 2.250 53 81.30 0.500
18 81.5000 0.500 36 7.76 3.750 54 28.90 1.750

3.1. Sensitivity of the LS method

The LS objective function in Equation (2) becomes:

ZLS =
n∑

i=1

(
yi − e−β1xi

β2 + β3xi

)2

.

Since there are no constraints, the sensitivities of the sum of squares to data are given by Theorem 1,
that is:

∂ZLS

∂xi

= 2
εi(β3 + β1(β2 + β3xi))

eβ1xi (β2 + β3xi)2
and

∂ZLS

∂yi

= 2εi .

The matrices we need for calculating all the sensitivities at once according to the proposed
method are given inAppendix 1 and the following LS estimates for the ultrasonic data are obtained:

ZLS = 513.05, β̂1 = 0.16658, β̂2 = 0.00516, β̂3 = 0.01215.

We now perform a sensitivity analysis on these data. Figure 1 shows the LS fitted model, and the
ZLS, β1, β2, and β3 sensitivities. From Figure 1, we see that five observations (1, 18, 28, 48, 51,
and 53) exert undue influence on the LS results. Note that these are the five observations with
the smallest value of x(x = 0.5). Note also that observation 1 is influential only on the optimal
objective function value but not on any of the estimated regression coefficients.

3.1.1. A case of a planted outlier

To study further the effectiveness of the proposed sensitivities in the detection of outliers, we
planted two outliers in this data set: Observation 55 (with y = 11, x = 1.75) and observation 56
(with y = 25, x = 5.8). These two points are shown in the scatter plot of the contaminated data
in Figure 2a.
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Figure 1. From left to right and top to bottom: (a) scatter plot of yi versus xi , for the ultrasonic data set in Table 1 and
the LS fitted model, (b)–(e) the index plot of the Z∗

LS, β̂1, β̂2, and β̂3 sensitivities, respectively.

The following LS estimates for the contaminated ultrasonic are obtained:

ZLS = 1180.9, β̂1 = 0.11006, β̂2 = 0.00408, β̂3 = 0.01477.

A comparison with the previous results, shows that the addition of the two outliers has caused the
LS results to change substantially (the optimal value of objective function, and the three parameter
estimates have changed by 130%, 34%, 21%, and 22%, respectively).

3.2. Sensitivity of the Min–Max method

The objective function in Equation (3) is ZMin–Max = ε and the constraints are

q
(1)
i (β1, β2, β3, ε; xi, yi) : yi − e−β1xi

β2 + β3xi

− ε ≤ 0; i = 1, 2, . . . , n,
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Figure 2. From left to right and top to bottom: (a) scatter plot of yi versus xi , for the contaminated ultrasonic data set
in Table 1 and the LS fitted model, (b)–(e) the index plot of the Z∗

LS, β̂1, β̂2, and β̂3 sensitivities, respectively.

q
(2)
i (β1, β2, β3, ε; xi, yi) : −yi + e−β1xi

β2 + β3xi

− ε ≤ 0; i = 1, 2, . . . , n,

The matrices we need for calculating the sensitivities according to the proposed method are given
in Appendix 2 and the following Min–Max estimates for the ultrasonic are obtained:

ZMin−Max = 8.55, β̂1 = −0.01288, β̂2 = 0.00387, β̂3 = 0.0161.

Unfortunately, this is not a regular case and the Min–Max regression problem have infinite
solutions. This implies that no derivatives exist.

To avoid this non-uniqueness problem, we use the contaminated data and restrict the β1 value
to be non-negative and obtain the following estimates:

ZMin–Max = 16.20, β̂1 = 0, β̂2 = 0.00355, β̂3 = 0.01898.

Figure 3 shows the Min–Max model for the contaminated Ultrasonic data, and the ZMin–Max, β1,
β2, and β3 sensitivities. Note that data points 1, 55, and 56 are the most influential data points.
Thus, the method allows identifying the two planted outliers, together with the already existing
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Figure 3. From left to right and top to bottom: (a) scatter plot of yi versus xi , for the ultrasonic contaminated data and
the Min–Max fitted model, (b)-(e) the index plot of the Z∗

LS, β̂1, β̂2, and β̂3 sensitivities, respectively.

outlier (observation number 1). Note that observations 1 and 56 define the upper dashed band
and observation 55 defines the lower dashed line, both at a distance ε = 16.2 from the Min–Max-
regression curve. Note also that the Min–Max results are always determined by at least k + 1
points, where k is the number of parameters.

3.3. Sensitivity of the LAV regression

The matrices required to perform the sensitivity analysis for the LAV case are identical to those
in the Min–Max case, but replacing ε by εi in all formulas.

The following LAV estimates for the ultrasonic data are obtained:

ZLAV = 105.493, β̂1 = 0.1511, β̂2 = 0.005, β̂3 = 0.0128.

As in the LAV case, the solution is not unique, and the derivatives do not exist. Thus, we consider
the contaminated sample and obtain:

ZLAV = 142.105, β̂1 = 0.117, β̂2 = 0.0043, β̂3 = 0.0146.
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which, unfortunately, is still not unique, therefore we conclude that this method is not adequate
for estimating the regression line for this model.

4. A model for onion yield data

The onion yield data are taken from ref. [44], p. 58 (the Uraidla Variety). Here y is the onion yield
(g/plant) and x is the plant density (plans/m2). Ratkowsky [44] fits the model

log(y) = − log(α + βx) (32)

to the data, by LS.

4.1. Sensitivity of the LS method

In this case the objective function is:

ZLS =
n∑

i=1

(log yi + log(α + βxi))
2,

and since there are not constraints, the sensitivities of the sum of squares to data are given by
Theorem 1, that is:

∂ZLS

∂xi

= 2βεi

α + βxi

; ∂ZLS

∂yi

= 2εi

yi

.

The matrices we need for calculating the sensitivities according to the proposed method are:

Fθ : ∂ZLS

∂α
= 2

n∑
i=1

εi

α + βxi

; ∂ZLS

∂β
= 2

n∑
i=1

εixi

α + βxi

Fx : ∂ZLS

∂xi

= 2
εiβ

α + βxi

; ∂ZLS

∂yi

= 2
εi

yi

;

Fθθ : ∂2ZLS

∂α2
= −2

n∑
i=1

εi − 1

(α + βxi)2
; ∂2ZLS

∂β2
= −2

n∑
i=1

(εi − 1)x2
i

(α + βxi)2

∂2ZLS

∂α∂β
= −2

n∑
i=1

(εi − 1)xi

(α + βxi)2

Fθx : ∂2ZLS

∂α∂xi

= −2
(εi − 1)β

(α + βxi)2
; ∂2Z

∂β∂xi

= 2
(εiα + xiβ)

(α + βxi)2

∂2ZLS

∂α∂yi

= 2

yi(α + βxi)2
; ∂2ZLS

∂β∂yi

= 2xi

yi(α + βxi)2
.

The LS estimates found by Ratkowsky [44], p. 59, are

α̂ = 0.003462, and β̂ = 0.000129.

The scatter plot of y versus x, with the estimated LS curve, is shown in Figure 4. Observation 38
appears clearly from the graph to be an outlier. Because we have only two variables in this case,
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Figure 4. From left to right and top to bottom: (a) scatter plot of yi versus xi , for the onion yield data set in Table 1 and
the LS fitted model, (b)–(d) the index plot of the Z∗

LS, α̂1, and β̂ sensitivities, respectively.

outliers can be easily spotted upon the inspection of the scatter plot. But in higher dimensions,
the detection of outliers becomes very difficult.

Ratkowsky [44] remarks that observation 38 is suspected outlier and is omitted from further
analysis. For the purpose of sensitivity analysis, we include the outlier to see if any of the sensitivity
measures is able to detect it. With the outlier included, we found the LS estimates to be

ZLS = 0.912, α̂ = 0.003462, β = 0.000129,

which agree with those found by Ratkowsky [44].

4.2. Sensitivity of the Min–Max method

In this case the objective function is ZMin–Max = ε and the constraints are

q
(1)
i (α, β, ε; xi, yi) : log(yi) + log(α + βxi) − ε ≤ 0; i = 1, 2, . . . , n,

q
(2)
i (α, β, ε; xi, yi) : − log(yi) − log(α + βxi) − ε ≤ 0; i = 1, 2, . . . , n.

The Lagrangian function is

L(α, β, ε; x, y, η(1), η(2)) = ε + ∑n1
i=1 η

(1)
i (log(yi) + log(α + βxi) − ε)+

+ ∑n2
i=1 η

(2)
i (− log(yi) − log(α + βxi) − ε)

and, the sensitivities of the objective function to data are given by Theorem 1, that is:

∂ZMin–Max

∂xi

=
n1∑

i=1

η
(1)
i

β

α + βxi

−
n2∑

i=1

η
(2)
i

β

α + βxi

; ∂ZMin–Max

∂yi

=
n1∑

i=1

η
(1)
i

yi

−
n2∑

i=1

η
(2)
i

yi

.

The matrices we need for calculating the sensitivities according to the proposed method are
given in Appendix 3. The following Min–Max estimates for the ultrasonic are obtained:

ZMin–Max = 0.442, α̂ = 0.00377, β̂ = 0.000171.
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Figure 5. From left to right and top to bottom: (a) scatter plot of yi versus xi , for the onion yield data set in Table 2 and
the Min–Max fitted model, (b)–(d) the index plot of the Z∗

LS, α̂, and β̂ sensitivities, respectively.

Table 2. Onion yield data.

i xi yi i xi yi

1 22.30 148.57 22 49.78 99.85
2 25.86 125.30 23 50.43 111.65
3 29.09 150.69 24 51.72 98.09
4 29.74 147.42 25 61.42 87.85
5 31.68 117.10 26 65.29 75.45
6 31.68 116.64 27 67.23 87.01
7 32.00 129.66 28 71.44 90.10
8 32.32 131.54 29 73.05 81.08
9 32.32 151.50 30 86.63 65.33

10 34.91 121.80 31 96.00 58.49
11 35.23 125.67 32 98.91 65.67
12 38.47 117.78 33 103.44 67.19
13 39.44 101.50 34 105.05 54.01
14 41.05 113.22 35 111.19 60.92
15 41.70 136.43 36 113.78 53.48
16 44.28 117.54 37 119.92 61.62
17 45.90 87.20 38 120.89 26.32
18 46.55 107.41 39 126.71 61.21
19 48.16 129.68 40 138.99 41.67
20 48.49 104.63 41 146.75 45.26
21 48.81 114.15 42 160.97 46.45

Figure 5 shows a scatter plot of yi versus xi , for the onion yield data set in Table 2 and the LS fitted
model together with the ZMin–Max, α, and β sensitivities. Note that observations 19 and 39 define
the upper dashed band and point 38 defines the lower dashed line, both at a distance ε = 0.442
in the logaritmic scale from the Min–Max-regression line. They are the only influential points.
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4.3. Sensitivity of the LAV method

In this case the objective function is

ZLAV =
n∑

i=1

εi,

and the constraints are

q
(1)
i (α, β, εi; xi, yi) : log(yi) + log(α + βxi) − εi ≤ 0; i = 1, 2, . . . , n,

q
(2)
i (α, β, εi; xi, yi) : − log(yi) − log(α + βxi) − εi ≤ 0; i = 1, 2, . . . , n.

The Lagrangian function is

L(α, β, ε; x, y, η(1), η(2)) = ∑n
i=1 εi + ∑n1

i=1 η
(1)
i (log(yi) + log(α + βxi) − εi)+

+ ∑n2
i=1 η

(2)
i (− log(yi) − log(α + βxi) − εi)

and, the sensitivities of the objective function to data are given by Theorem 1:

∂ZLAV

∂xi

=
n1∑

i=1

η
(1)
i

β

α + βxi

−
n2∑

i=1

η
(2)
i

β

α + βxi

; ∂ZLAV

∂yi

=
n1∑

i=1

η
(1)
i

yi

−
n2∑

i=1

η
(2)
i

yi

.

The matrices we need for calculating the sensitivities according to the proposed method are given
in Appendix 4. The following LAV estimates for the onion yield data are obtained:

ZLAV = 3.952, α̂ = 0.00411, β̂ = 0.0001126.

Figure 6 shows a scatter plot of yi versus xi , for the onion yield data set in Table 2 and the LAV
fitted model together with the ZLAV, α, and β sensitivities. Note that the LAV-regression line
passes through data points 7 and 29. They are the only influential points. Note that the LAV curve
must pass through at least as many points as the number of parameters.

Figure 6. From left to right and top to bottom: (a) scatter plot of yi versus xi , for the onion yield data set in Table 1 and
the LAV fitted model, (b)-(d) the index plot of the Z∗

LS, α̂1, and β̂ sensitivities, respectively.
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5. Conclusions

In this paper, we have performed a sensitivity analysis of the most common non-linear regression
estimation methods. These include the LS, the Min–Max, and the LAV methods. The local sensi-
tivities of the objective function, the regression coefficients, and the dual variables with respect to
data are obtained using closed formulas in the regular cases. It is also shown that the Min–Max and
LAV regression models are very prone to non-uniqueness, and when this occurs the corresponding
partial derivatives or sensitivities do not exist.

Appendix 1. Matrices needed for calculating estimates

Calculating the LS estimates in Section 3.1

Fθ : ∂ZLS

∂β1
= 2

n∑
i=1

εixi

exiβ1 (β2 + xiβ3)
; ∂ZLS

∂β2
= 2

n∑
i=1

εi

exiβ1 (β2 + β3xi)2
;

∂ZLS

∂β3
= 2

n∑
i=1

εixi

exiβ1 (β2 + β3xi)2
;

Fx : ∂ZLS

∂xi

= 2
εi (β3 + β1(β2 + β3xi))

eβ1xi (β2 + β3xi)2
; ∂ZLS

∂yi

= 2εi ;

Fθθ : ∂2ZLS

∂β2
1

= 2
n∑

i=1

x2
i (2 − eβ1xi (β2 + β3xi)yi )

e2β1xi (β2 + β3xi)2
;

∂2ZLS

∂β2
2

=
n∑

i=1

6 − 4eβ1xi (β2 + β3xi)yi

e2β1xi (β2 + β3xi)4
;

∂2ZLS

∂β2
3

=
n∑

i=1

2x2
i (3 − 2eβ1xi (β2 + β3xi)yi )

e2β1xi (β2 + β3xi)4
;

∂2ZLS

∂β1∂β2
=

n∑
i=1

4xi − 2eβ1xi xi (β2 + β3xi)yi

e2β1xi (β2 + β3xi)3
;

∂2ZLS

∂β1∂β3
=

n∑
i=1

2x2
i (2 − eβ1xi (β2 + β3xi)yi )

e2β1xi (β2 + β3xi)3
;

∂2ZLS

∂β2∂β3
=

n∑
i=1

6xi − 4eβ1xi xi (β2 + β3xi)yi

e2β1xi (β2 + β3xi)4
;

Fθx : ∂2ZLS

∂β1∂xi

=
n∑

i=1

2((β2 + β3xi(2β1xi − eβ1xi (β2 + β3xi)(β1β3x
2
i + β2(β1xi − 1))yi ))

e2β1xi (β2 + β3xi)3

+
n∑

i=1

2(−β2 + β3xi)

e2β1xi (β2 + β3xi)3
;

∂2ZLS

∂β2∂xi

=
n∑

i=1

2(3β3 + (β2 + β3xi)(2β1 − eβ1xi (2β3 + β1(β2 + β3xi))yi ))

e2β1xi (β2 + β3xi)4
;

∂2ZLS

∂β3∂xi

=
n∑

i=1

2((β2 + β3xi)(2β1xi − eβ1xi )(β2(β1xi − 1) + β3xi(1 + β1xi))yi )

e2β1xi (β2 + β3xi)4

+
n∑

i=1

2(−β2 + 2β3xi)

e2β1xi (β2 + β3xi)4
;
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∂2ZLS

∂β1∂yi

=
n∑

i=1

2xi

eβ1xi (β2 + β3xi)
; ∂2ZLS

∂β2∂yi

=
n∑

i=1

2

eβ1xi (β2 + β3xi)2
;

∂2ZLS

∂β3∂yi

=
n∑

i=1

2xi

eβ1xi (β2 + β3xi)2
;

Appendix 2

Calculating the Min–Max estimates in Section 3.2

Fθ : ∂ZMin–Max

∂β1
= ∂ZMin–Max

∂β2
= ∂ZMin–Max

∂β3
= 0; ∂ZMin–Max

∂ε
= 1;

Fx : ∂ZMin–Max

∂xi

= ∂ZMin–Max

∂yi

= 0;

Fθθ : ∂2ZMin–Max

∂βi∂βj

= ∂2ZMin–Max

∂βj ∂ε
= ∂2ZMin–Max

∂ε2
= 0; ∀i, j ;

Fθx : ∂2ZMin–Max

∂βj ∂xi

= ∂2ZMin–Max

∂βj ∂yi

= ∂2ZMin–Max

∂ε∂xi

= ∂2ZMin–Max

∂ε∂yi

= 0; ∀i, j ;

Qθ : ∂q
(1)
i

∂β1
= − ∂q

(2)
i

∂β1
= xi

eβ1xi (β2 + β3xi)
;

∂q
(1)
i

∂β2
= − ∂q

(2)
i

∂β2
= 1

eβ1xi (β2 + β3xi)2
;

∂q
(1)
i

∂β3
= − ∂q

(2)
i

∂β3
= xi

eβ1xi (β2 + β3xi)2
; ∂q

(2)
1

∂ε
= ∂q

(2)
i

∂ε
= −1;

Qx : ∂q
(1)
i

∂xi

= − ∂q
(2)
i

∂xi

= β3 + β1(β2 + β3xi)

eβ1xi (β2 + β3xi)2
; ∂q

(1)
i

∂yi

= − ∂q
(2)
i

∂yi

= 1;

Qθθ : ∂2q
(1)
i

∂β2
1

= − ∂2q
(2)
i

∂β2
1

= −
(

x2
i

eβ1xi (β2 + β3xi)

)
;

∂2q
(1)
i

∂β1∂β2
= − ∂2q

(2)
i

∂β1∂β2
= −

(
xi

eβ1xi (β2 + β3xi)2

)
;

∂2q
(1)
i

∂β1∂β3
= − ∂2q

(2)
i

∂β1∂β3
= −

(
x2

i

eβ1xi (β2 + β3xi)2

)
;

∂2q
(1)
i

∂β2
2

= − ∂2q
(2)
i

∂β2
2

= −2

eβ1xi (β2 + β3xi)3
;

∂2q
(1)
i

∂β2∂β3
= − ∂2q

(2)
i

∂β2∂β3
= −2xi

eβ1xi (β2 + β3xi)3
;

∂2q
(1)
i

∂β2
3

= − ∂2q
(2)
i

∂β2
3

= −2x2
i

eβ1xi (β2 + β3xi)3
;

∂2q
(j)

i

∂ε2
= ∂2q

(j)

i

∂ε∂β1
= ∂2q

(j)

i

∂ε∂β2
= ∂q

(j)

i

∂ε∂β3
= 0; ∀j ;

Qθx : ∂2q
(1)
i

∂β1∂xi

= − ∂2q
(2)
i

∂β1∂xi

= −(β1β3x
2
i ) + β2(1 − β1xi)

eβ1xi (β2 + β3xi)2
;

∂2q
(1)
i

∂β2∂xi

= − ∂2q
(2)
i

∂β2∂xi

= −2β3 − β1(β2 + β3xi)

eβ1xi (β2 + β3xi)3
;
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∂2q
(1)
i

∂β3∂xi

= − ∂2q
(2)
i

∂β3∂xi

= β2(1 − β1xi) − β3xi(1 + β1xi)

eβ1xi (β2 + β3xi)3
;

∂2q
(1)
i

∂ε∂xi

= ∂2q
(1)
i

∂β1∂yi

= ∂2q
(1)
i

∂β2∂yi

= ∂2q
(1)
i

∂β3∂yi

= ∂2q
(1)
i

∂ε∂yi

= 0.

Appendix 3

Calculating the Min–Max estimates in Section 4.2

Fθ : ∂ZMin–Max

∂α
= ∂ZMin–Max

∂β
= 0; ∂ZMin–Max

∂ε
= 1;

Fx : ∂ZMin–Max

∂xi

= ∂ZMin–Max

∂yi

= 0;

Fθθ : ∂2ZMin–Max

∂α2
= ∂2ZMin–Max

∂β2
= ∂2ZMin–Max

∂α∂β
= ∂2ZMin–Max

∂ε2

= ∂2ZMin–Max

∂α∂ε
= ∂2ZMin–Max

∂β∂ε
= 0;

Fθx : ∂2ZMin–Max

∂α∂xi

= ∂2ZMin–Max

∂β∂xi

= ∂2ZMin–Max

∂ε∂xi

= ∂2ZMin–Max

∂α∂yi

= ∂2ZMin–Max

∂β∂yi

= ∂2ZMin–Max

∂ε∂yi

= 0;

Qθ : ∂q
(1)
i

∂α
= − ∂q

(2)
i

∂α
= 1

α + βxi

; ∂q
(1)
i

∂β
= − ∂q

(2)
i

∂β
= xi

α + βxi

; ∂q
(2)
i

∂ε
= ∂q

(2)
i

∂ε
= −1;

Qx : ∂q
(1)
i

∂xi

= − ∂q
(1)
i

∂xi

= β

α + βxi

; ∂q
(1)
i

∂yi

= − ∂q
(2)
i

∂yi

= 1

yi

;

Qθθ : ∂2q
(1)
i

∂α2
= − ∂2q

(2)
i

∂α2
= − 1

(α + βxi)2
; ∂2q

(1)
i

∂β2
= − ∂2q

(2)
i

∂β2
= − x2

i

(α + βxi)2
;

∂2q
(1)
i

∂α∂β
= − ∂2q

(1)
i

∂α∂β
= − xi

(α + βxi)2
;

∂2q
(1)
i

∂ε2
= ∂2q

(1)
i

∂α∂ε
= ∂2q

(1)
i

∂β∂ε
= ∂2q

(2)
i

∂ε2
= ∂2q

(2)
i

∂α∂ε
= ∂2q

(2)
i

∂β∂ε
= 0;

Qθx : ∂2q
(1)
i

∂α∂xi

= − ∂2q
(2)
i

∂α∂xi

= − β

(α + βxi)2
; ∂2q

(1)
i

∂β∂xi

= − ∂2q
(2)
i

∂β∂xi

= α

(α + βxi)2
;

∂2q
(1)
i

∂ε∂xi

= ∂2q
(1)
i

∂α∂yi

= ∂2q
(1)
i

∂β∂yi

= ∂2q
(1)
i

∂ε∂yi

= ∂2q
(2)
i

∂ε∂xi

= ∂2q
(2)
i

∂α∂yi

= ∂2q
(2)
i

∂β∂yi

= ∂2q
(2)
i

∂ε∂yi

= 0.

Appendix 4

Calculating the LAV estimates in Section 4.3

Fθ : ∂ZLAV

∂α
= ∂ZLAV

∂β
= 0; ∂ZLAV

∂εi

= 1;

Fx : ∂ZLAV

∂xi

= ∂ZLAV

∂yi

= 0;
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913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
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Fθθ : ∂2ZLAV

∂α2
= ∂2ZLAV

∂β2
= ∂2ZLAV

∂α∂β
= 0;

∂2ZLAV

∂ε2
i

= ∂2ZLAV

∂α∂εi

= ∂2ZLAV

∂β∂εi

= 0;

Fθx : ∂2ZLAV

∂α∂xi

= ∂2ZLAV

∂β∂xi

= ∂2ZLAV

∂εi∂xi

= 0;

∂2ZLAV

∂α∂yi

= ∂2ZLAV

∂β∂yi

= ∂2ZLAV

∂εi∂yi

= 0;

Qθ : ∂q
(1)
i

∂α
= − ∂q

(2)
i

∂α
= 1

α + βxi

; ∂q
(1)
i

∂β
= − ∂q

(2)
i

∂β
= xi

α + βxi

;

∂q
(2)
i

∂εi

= ∂q
(2)
i

∂εi

= −1;

Qx : ∂q
(1)
i

∂xi

= − ∂q
(1)
i

∂xi

= β

α + βxi

; ∂q
(1)
i

∂yi

= − ∂q
(2)
i

∂yi

= 1

yi

;

Qθθ : ∂2q
(1)
i

∂α2
= − ∂2q

(2)
i

∂α2
= − 1

(α + βxi)2
;

∂2q
(1)
i

∂β2
= − ∂2q

(2)
i

∂β2
= − x2

i

(α + βxi)2
;

∂2q
(1)
i

∂α∂β
= − ∂2q

(1)
i

∂α∂β
= − xi

(α + βxi)2
;

∂2q
(1)
i

∂ε2
i

= ∂2q
(1)
i

∂α∂εi

= ∂2q
(1)
i

∂β∂εi

= ∂2q
(2)
i

∂ε2
i

= ∂2q
(2)
i

∂α∂εi

= ∂2q
(2)
i

∂β∂εi

= 0;

Qθx : ∂2q
(1)
i

∂α∂xi

= − ∂2q
(2)
i

∂α∂xi

= − β

(α + βxi)2
;

∂2q
(1)
i

∂β∂xi

= − ∂2q
(2)
i

∂β∂xi

= α

(α + βxi)2
;

∂2q
(1)
i

∂εi∂xi

= ∂2q
(1)
i

∂α∂yi

= ∂2q
(1)
i

∂β∂yi

= ∂2q
(1)
i

∂εi∂yi

= 0;

∂2q
(2)
i

∂εi∂xi

= ∂2q
(2)
i

∂α∂yi

= ∂2q
(2)
i

∂β∂yi

= ∂2q
(2)
i

∂εi∂yi

= 0.
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