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1 Introduction

Since the pioneering works of Freudenthal [13] in the fifties, safety analyses have been based on probabilistic
concepts and the computation of the probability of failure, in a more or less direct fashion (see Ditlevsen
[8]). Consequently, the classical methods, based on partial safety coefficients, are in the process of being
abandoned.

In the reliability of a system, there are many variables (X1, Xs,...,X,) involved. They belong to an
n-dimensional space, which can be divided in two regions (see Melchers [22]): the safe and the failure regions
(see Figure 1).

Safe Region: W =g(x1,22,...,2,) >0, (1)
Failure Region: W = g(x1,x9,...,2,) <0,

where W = ¢g(X3, Xo,...,X,) is a random variable. The boundary of such a regions is defined by the system
limit states.

Since Equation (1) is a limit condition, and some extra safety is needed, the design of a system is done
in the safe region using the condition

W =g(z1,22,...,2n) =wo >0

where wy is the security margin, sometimes known as the failure indicator. Designing a sufficiently safe
solution means obtaining an adequate value of wy (the design value of W), associated with a sufficiently
small failure probability. However, the computation of wg is not an easy task, and some simplifications are
required. This, leads to the main three methods used in reliability analysis:

1. LEVEL 1: To select the design value wg, partial safety coefficients related to some design variables
(loads, strengths, etc.) are used. It is the classical method.

To illustrate we represent in Figure 1 the case of two variables X; and X5. Assume that X; and
X, are two design variables, that become more dangerous as they decrease and increase their values,
respectively. Then, a code based on partial safety coefficients fixes two values x; and x5, and states
that such a set of values (z1, z2) is safe if and only if the point (z1/01, asz2) is in the safe region, where
a7 and f9 are the partial safety coefficients for both variables. Other combinations can arise for other
pairs of variables (points (w121, 22/02), (@121, asxs2) and (x1/01,x2/52)) (see Figure 1), depending on
whether they become more or less dangerous when they increase their values. Thus, the design value
wo depends on the selected partial security factors.
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Figure 1: Illustration of the partial safety coeflicients.
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Figure 2: Illustration of how the initial set of variables is transformed, first into a set of independent uniform
random variables, and later to a set of independent normal random variables.

2. LEVEL 2: Alternatively, we can select the value of wg by fixing a probability of failure, Py, that can
be calculated using the joint probability density f(x) = fx, x,...x,(Z1,2Z2,...,2,) of all variables
involved, by means of the integral:

Py =P(W <0) = Fy(0) = / [x1. %0, x, (X1, T2, ..., 2y )drrdey . .. dTy,. (2)

g(z1,22,...,0,)<0

where Fyy (+) is the cumulative distribution function of W.

The problem is that the integral (2) is usually difficult to calculate, due to two main reasons: (a) the
complicated expression of the density f(x), and (b) the complicated form of the region g(x) < 0. Thus,
approximate methods are used to calculate the failure probability, that are based on some approxima-
tions of the integration region g(x1,x2,...,z,) < 0, the density function fx, x,.. x.,(z1,Z2,...,Z5n),
or both. At this level, they are normally based on an approximate representation of the probability
distribution using first and second order moments of the joint distribution. This method is exact when

normal variables are used, because first and second order moments characterize these variables.

3. LEVEL 3: The design value wg is computed using the full representation of the joint distribution
and/or the exact failure region appearing in Expression (2). Thus, methods at this level require
especial integration formulas and methods.

To approximate the integral in (2) the initial set of variables can be transformed into a set of independent
standard unit normal variables, as illustrated in Figure 2, and then two main approaches can be used: First
and second order reliability models.



The ‘First Order Reliability Methods”, that use linear approximations, appeared in the field of structural
reliability with Freudenthal [13] in 1956, and has been expanded by Hasofer and Lind [18], Rackwitz and
Flessler [24], Breitung [1], etc.

Second order methods consider some partial Taylor series expansions to approximate the functions or
regions involved (see, for example, Davies [7], Field [12], Breitung [1], Tvedt [29], Katsuki and Frangopol
[20], or Papadimitriou [23]). For a complete description of some of these methods and some illustrative
examples see Ditlevsen and Madsen [10] and Madsen, Krenk and Lind [21]. These methods have shown to
give precise results and have demonstrated to be much more efficient than Monte Carlo simulation techniques
for estimating extreme percentiles (see, for example, Wirsching and Wu [30], or Haskin, Staple and Ding
16]).

One well-known alternative technique to deal with this problem is importance or weighted sampling (see
for example, Siegmund [28], Rubinstein [27], Ripley [25], Zhang [32], or Givens and Raftery [15]). Importance
sampling techniques can be used to decrease simulation time required for rare event simulations and reduce
variance (see Hesterberg [19]). In fact, for approximating tail probabilities methods such as importance
sampling are needed to get acceptable approximations.

The reader must be aware of the fact that methods for calculating the probability of failure present
problems when this probability is small, as it is commonly the case in reliability analysis. In this case we say
that we are estimating tail (very small) probabilities that are well known to be very sensitive to the assumed
model (see Ditlevsen [9], Galambos [14] and Castillo [3]). In other words, the failure probability is strongly
dependent on the tail assumptions. Since, in reliability analysis we are normally dealing with very small
probabilities, adequate simulation or calculation methods (direct Monte Carlo methods are very inefficient)
are needed. Some of them can be seen in Castillo, Solares and Gémez [4, 5, 6], Wirsching and Wu [30] and
Wu, Burnside and Cruse [31]).

Thus, it is important to use integration methods that take into account the exact form of the integration
region, and that are independent on the size of it. On the other hand, transformations of the random
variables involved must be reduced to a minimum and the final n-dimensional space must be simple and, if
possible, finite. In this paper we present one level 3 method to calculate the probability of failure that uses
Expression (2), and satisfies these requirements.

The paper is structured as follows. In Section 2 we introduce the proposed method and give a detailed
description of it. In Section 3 we analyze and discuss the performance of this method. In Section 4 we give
one example of application where all its main steps can be easily understood. Finally, in Section 5 we give
some conclusions and recommendations.

2 The proposed method

In this paper we deal with level 3 and propose one method for calculating the probability of failure P, i.e.,
the integral in (2), that uses the Gauss-Legendre quadrature formulas for the n-dimensional region.
The process consists of four main steps:

Step 1: Transforming the variables to the unit hypercube In this step, the initial set of variables
are transformed to a set of variables with standard uniform marginals U(0, 1).

Step 2: Forcing the origin to belong to the failure region. This simplifies the identification of the
failure region.

Step 3: Characterizing the failure region. This allows calculating the n-dimensional integral.
Step 4: Evaluating the integral. Using the Gauss-Legendre quadrature formulas in a recursive algo-

rithm.

2.1 Transforming the variables to the unit hypercube.

In this subsection we describe two methods for obtaining new variables with uniform marginals.
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Figure 3: Ilustration of how the initial set of variables is transformed into a set of possibly dependent
uniform random variables.

2.1.1 Rosenblatt Transformation

At this point, it is interesting to ask whether or not it is possible to transform a given n-dimensional random
variable to a n-dimensional set of independent uniform variables. The answer to this question is positive
and the required transformation can be obtained using an interesting result due to Rosenblatt [26]. This
transformation is:

U, = Fi(Xy)

Uy = Fy(Xs|Xy)

: : . (3)
Un = Fn(Xn|X17X27~-~aXn)a

where F1(X1), Fo(X2|X1),. .., Fo(Xn| X1, Xa, ..., X,,) are the cdf of the X; marginal and the cdfs of the
indicated conditional random variables.

The main advantage of this transformation is that the function fx, x,.. x,(%1,%2,...,2,) in (2) reduces
to the unit constant, and then, the integral in (2) becomes the volume of the failure region.

In addition, it is worthy mentioning that the Rosenblatt transformation leads to non-dimensional random
variables. Note that the cdf functions in (3) are probabilities, and then they have no dimensions (they are

invariant with respect to changes in the units of measure used for the random variables involved).

2.1.2 The cdf marginal transformation

An alternative consists of performing the transformation (see Figure 3)
Ui:FX,-(Xi); i=1,27...7ﬂ. (4)

Then, if fx, x,,.. x,)(®1,T2,...,2y,) is the pdf of the initial set of random variables X1, Xs,..., X,, the
pdf of the new variables Uy, Us, ..., U, becomes

n

1
G s (W1 U2, o Un) = fxy Xa,x (Fxt (un), Ft (ua), o Fx () [ | ——— 5
1,U2 ( ) 1,42 ( Xl( ) XQ( Xn( ) Z:Hl fXL (FXL]_(U’L)) ( )

This alternative also reduces the n-dimensional space to the finite unit hypercube. However, neither the
transformed integration function fx, x,, . x, (%1, Z2,...,%,) nor the integration region g(x1, z2,...,z,) <0
are simplified.

It is worthwhile mentioning that with this solution we do not miss the possible dependencies among the
variables, because a one to one transformation is used. The reader should not confuse this approach with
other approaches that use joint distributions with the same marginals as the original distribution, as for
example, the product of all marginals, that would imply loosing the dependence properties of the original
random variables.

2.2 Forcing the origin to belong to the failure region

In this section, we assume that the random variables involved are such that any change in the value of a
single variable has a monotone influence on the safety of the system being studied. If this is not the case,



such a variable can either be removed, or it behaves in an strange form. This assumption implies that either
the end point value 0 or the end point value 1 for such variable is the worst possible value with respect to
the safety of the system. Then, it is clear that if we transform the variables Uy with 1 as their worst possible
values, to 1 — Uy, we get new variables such that the origin is the worst possible combination of values for
all variables, and then, the origin belongs to the failure region.

2.3 Characterizing the failure region

Our problem consists of approximating as well as possible the integral

Py = P(W < 0) = Fyy(0) = / For s (1,03, st )ty ... ds. .
g(uy,uz,...,un)<0
that can be written as

b1 ba(u1) b3 (u1,u2) b (U1,U2, . Un—1)
Py = / / / / foita..v, (Ui vz, - )dupdun - duy. (7)
0 0 0 0

So, expressions for by and the functions ba(uq),b3(u1, ua),. .., by (u1,us, ..., up—1), are required. To this

end, we consider the inverse function, g; 1 with respect to its ith argument, that is defined by the identity

g(ur,ug,...,uy) =0& gi_l(ul,uz, e i1, 0, U1, Uiy - ey Up) = Uy (8)

Taking into account that the uniform random variables have 0 and 1 as lower and upper ends, respectively,
and the origin is in the failure region, we can write

bi(ui,us,. .., up_1) = min (gk_l(ul, Uy .oy Uk—1,0,...,0), 1) (9)

where
by = min (g; '(0,...,0),1). (10)

These expressions are based on the monotone influence of the random variables on the safety.

Since the inverse functions above could not be obtained analytically, numerical methods are usually
required. Among them, due to the monotone and bounded (with bounds 0 and 1) character of the involved
variables, the bisection method becomes especially convenient. The main reason for using the bisection
method is only that we look for a method without convergence problems for any possible failure region.
Other methods are generally faster, but can fail with some functions.

2.4 Evaluation of the integral using the Gauss-Legendre quadrature formulas
This variant consists of using the Gauss-Legendre approximation

/abf(u)dx:b;af:wif (W)) (11)

=0

where w; and z; are the weights and the corresponding selected points of the Gauss-Legendre integration
method (see Carnahan, Luther and Wilkes [2]).
To implement this one dimensional formula for the n-dimensional integral (7), we write

Iy, = Integral(uy,ug, ..., ug_1) = fob’“(ul""’uk’l) .. Ob"(ul’w’”"u"’l) Ty Us.. 0, (U1, U2y oo Uy )Ty - . dy,
(12)
with
Integral(uy, ug, ..., un) = fu,,Us,....U, (U1, U2, ..., Up), (13)
which can be approximated by
bk(ul,UQ, e ,uk_l)

I, = Integral(uy, ug, . .., Ug—1) =

2
m b o uk_1) + b Uk (14)
x 3 w;Integral (uhu%”.’ukhzz k1, ug, ..., up 1)2+ k(w1, ug, .., U 1))7

i=0

which allows us calculating Py = I; using a recursion.



2.5 Algorithm
Thus, the proposed method can be applied using the following algorithm.

Algorithm 1 Calculating the probability of failure

e Input: The initial set of variables { X1, Xo,..., X, }, its pdf fx, x,,..x, (x1, 22, ..., %), and the failure
region gx, x,,..x, (%1, T2,...,2,) < 0.

e Output: The probability of failure (associated with the given failure region).

Step 1: Use the Rosenblatt transformation or the cdf marginal transformation to transform the initial set
of variables X to a set of uniform U(0,1) random variables V, and the failure function g(x) to the
transformed failure function gy (v).

Step 2: Transform the variables V such that the vector (0,0, ,...,0) becomes the worst possible vector. To
this end, change V; to U; = V;, or U; = 1 — V;, for the necessary i values.

Step 3: Obtain the transformed failure region gy, ... v, (41, ..., uy), and the pdf fu, . v, (u1,...,uy) of the
new random variables (it will be the unit constant if the Rosenblatt transformation was used in Step

1).

Step 4: Obtain the probability of failure using the recursion (14), based on the Gauss-Legendre quadrature
formula (11).

3 Performance of the method

To test the behavior of the method we have assumed that the failure region is
> Xi<n/3-1,
i=1

i.e., the sum of n uniform random variables U(0,1). This allows us checking the results, because we know
its exact cdf:

Ed
F(z) = %Z(q)r ( ’; ) (x—r)" 0<z<n, (15)
" r=0

where |z is the integer part of x.

To save time in the calculations we have used a crude version and an optimized version in which the
degree ¢ of the polynomial of the Gauss approximation is a function of the length b of the interval where the
unidimensional integrations are calculated, using the following criterion

g=m(l+b)/2.

Note that the degree of the polynomial ranges from a minimum of m/2, for b = 0, to a maximum of m, for
b=1.

Table 1 shows an illustration of the quality of the approximation as a function of the degree m of the
Gauss approximation and the number of variables involved, for the optimized and non-optimized procedures
for the sum of n uniform random variables U (0, 1).

A look at Table 1 leads to the following conclusions:

1. The savings, in the number of function calls and the cpu time, obtained using the optimized method
are important.

2. The quality of the approximation is not very much influenced by the optimization procedure.



Table 1: Illustration of the quality of the approximation as a function of the degree of the Gauss approxi-
mation and the number of variables involved, for the optimized and non-optimized procedures.

Optimized Non-Optimized
Estimated cpu time Exact Estimated  cpu time
n m | probability (in ticks) | probability | probability (in ticks)
5 2 0.000129 0 0.001097 0.001067 0
5 3 0.001058 0 0.001097 0.001097 0
5 4 0.001097 0 0.001097 0.001097 0
8 2 0.000451 0 0.001469 0.001271 0
8 3 0.001428 0 0.001469 0.001471 3
8 4 0.001468 2 0.001469 0.001469 26
10 2 0.000652 0 0.001269 0.001096 1
10 3 0.001244 1 0.001269 0.001272 32
10 4 0.001269 23 0.001269 0.001269 438
12 2 0.000523 0 0.001007 0.000869 4
123 0.000998 8 0.001007 0.001010 307
12 4 0.001006 280 0.001007 0.001007 7368
15 2 0.000391 1 0.000659 0.000563 36
15 3 0.000650 136 0.000659 0.000659 9016
15 4 0.000658 12843 0.000659 0.000659 -

3. In the case of the sums of uniforms the degree of the polynomial required for obtaining a good approx-
imation to the exact value of the probability of failure is very small. In fact, a polynomial of degree
four gives almost the exact values.

4. The number of function calls and the cpu time required for the calculations increases exponentially
with the number of random variables involved.

4 Example of Application

In this section we consider a practical application and we make two assumptions for the random distributions:
Case 1: independent lognormal distributions to allow for the exact probability of failure to be calculated,
and Case 2: independent normal distributions.

4.1 Statement of the problem

Consider the simply supported beam in Figure 4, where P is a point load applied in the middle of the beam,
L is the beam length, and b and ¢ are the dimensions of its rectangular cross section.
To analyze the beam problem we consider the following initial set of variables:

e Random variables:

— P: Maximum value of the point load that occurs during the service life of the structure.

s: Actual beam strength.
L: The actual beam length.
— b: The actual width depth.
— ¢: The actual beam depth.

e Design variables:
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Figure 4: A simply supported beam and its cross section.

— Py: Point load fixed by the code for this type of structure.
— So: Beam strength fixed by the code.
— Lg: The design beam length.
— bp: The design beam width.
— ¢g: The design beam depth.
— ~yp: Safety factor used to majorize the load P.
— 75: Safety factor used to minorize the strength sg.
We note that we have distinguished the design variables Lg, by and c¢g, which are fixed values, from the

actual values L, b and ¢, which are random variables (normally assumed to be with mean values Lo, by and
¢o, respectively, and small variance).

4.2 Classical design

In this section we use a classical design, i.e., based on safety coefficients. Then, the geometric design of
the beam, i.e., the determination of the values of by and ¢y, can be done using the well known strength of
materials expression:

so _ M ypPLo/4 _ 3vpPoLo

vs W Iy - 2bcg
60/2

where Wy and [ are the resistant moment and the moment of inertia, respectively, associated with by and

(16)

Co-

4.3 Failure region associated with the example of application

Since the random variable maximum stress $,,q, is related to the random variables by the expression

3PL
Smazx = Wa (17)
the system will fail if s,,,4, > s. Then, the failure region will be:
3PL
i 1
%z =% (18)
ie.,
Safe Region: s—(3PL)/(2bc?) > 0, (19)
Failure Region: s — (3PL)/(2bc?) < 0



4.4 Case 1: Lognormal distributions
4.4.1 Assumptions for the random variables involved

For the sake of simplicity and with the aim of illustrating the design process and being able to calculate
the exact probability of failure, we assume in this case that P,s, L,b and c are independent lognormal
distributions:

logP ~ N(up,0p),
logs ~ N(us02),
logL ~ N(ury,07),
logb  ~ N(ubo,ab)
loge ~  N(pey, 07

4.4.2 Exact failure probability associated with a classical design

The exact probability of failure associated with this classical design can be obtained using the properties of
the lognormal distributions, as follows.

3PL
pr = Prob[smae. > s] = Prob {W > 5} =

2
Prob —logP+logs—logL+logb+2logc+log§ <0

= F 2 (0)
N(*MPJFPLS*ML#LMbJrQMchlOggaU?DJFU?+U%+U§+4UE)

2
—log g+ pp — s+ pL — sy — 2t
- @ , (20)
Vop + 0l +07 +0 + 402

where ® is the cdf of the standard normal N(0,1), random variable.

4.4.3 Level 2: FORM and SORM approximations

FORM methods transform the initial set of random variables to a set Z of standard independent N (0, 1)
random variables

log P — log s — s log L — logb — logc — pc
Z1:7og uP; Zzz—ogs K ; Zgz—og ML; 24140g Hb% Z5:_ogc . ) (21)
op Og gy, Op Oc
Then, taking logarithms in the failure region (18) and replacing (21), the failure region becomes
9z(Z) = —pup —opZy + ps + 0522 — pir, — 0. Z3 + o + 0pZs + 2pc + 20.Z5 + log(2/3) <0, (22)
Since (22) is already linear in the Z variables, then SORM and FORM designs coincide.
From (22) we get
pp — s + pr — pp — 2p1 — log(2/3)
bPp=¢ 2 25 2 02 2 ‘ (23)
Vop +0i+of +oj + 402

4.4.4 Level 3: Proposed method

In this section we determine the probability of failure using the proposed method and algorithm. Thus, we
proceed as follows:

10



Step 1: We use the Rosenblatt transformation to transform the initial set of variables into a set of inde-
pendent uniform U(0, 1) random variables V. To this end, we let:

logP= Xi= Fyi, . (Vi)=pp+op® (Vi)
logs= Xo= FJQ(IM’UE)(Vz) = s + 0,071 (V)
logL= Xs= Fyi, ,2(Vs)=pr+0.27"(Va) (24)
logh=" Xa= Fyp, (V) =+ 0@ (V)
loge=" X5 = Fy,,on(Vs) = pe + 027 (V)
that is,
X1 —pp
Vi= F(#Pvf’fn)(Xl) =¢ < op >
X - Ms
‘/2 = F(IL<<7‘7§)(X2) = 20' :
X3 —pr
Vi = Fluy () = & (F2L2 )
X4 —
Vi=F,02)(Xs) =0 o
X - Mc
V's = F(/—LC,UE)(XE)) =0 25 Fe a
Oc

And the transformed failure region in terms of the V' random variables becomes

2
—np=op® (Vi) + s+ 0@ (Vo) —pp —or @ (V) 0@ (Vi) +2p10 420007 (V5) +log 5 < 0.

(26)
Step 2: We transform the variables V such that the vector (0,0, ,...,0) becomes the worst possible vector.
To this end, we let U; =1 —Vj and U3 = 1 — V5. Thus, we get the transformation:
U, = 1-7"
Uy = W,
U = 1-V3 (27)
Uy, =V,
Us = Vs

Step 3: Since the new variables U are iid uniform U(0, 1), we get
fuy s, 0, (W, Uy un) =15 0 <ug <156 =1,2,3,4,5,

and the transformed failure region becomes

2
—pup—op® (1 =Uy) +ps+0s@ Y Us) —pp —op® (1 —Us) +pp+0p® 1 (Us) +2p0+20.2 7 (Us) +log 3 <0.
(28)

Step 4: We calculate the probability of failure using the Gauss-Legendre recursion Expression (14).

4.4.5 Numerical example

In this numerical example we assume that P, s, L,b and ¢ are independent random variables such that the
means and standard deviations for their logarithms are shown in Table 2.

11



4.4.6 Classical design

Assume that the values given by the code are:
so = 25Mp; Py =400000N; Lg= 10m; ~vp =1.6; ~s = 1.5. (29)

Then, according to Expression (16) we get
boci = 0.576. (30)

So, we are free to choose any pair of values for variables b and ¢ such that (30) holds. For example, we can
design using by = 0.576m and ¢y = 1.0m.
According to Expression (20) the probability of failure associated with the classical design is

P; =& (—8) = ® (—3.19785) = 0.000692289.

4.4.7 Level 2: FORM and SORM probabilities of failure
The FORM failure probability is based on Equation (23):

(31)

P [ PP Hs 1 — iy — 2 —log(2/3)
= 2 2 2 2 2
Vop +02+0] + 0} + 402
where pp = by and p. = ¢ are the selected values that satisfies (30).
The design point P*, such that its distance to the origin, in the transformed domain (the one associated
with standard normal variables) is a minimum, can be calculated using the bisection method because we
know the direction of the vector OP*. Thus, we get

P = (77,75, 75, 75, ZF) = (3.01348, —0.994881, 0.268962, —0.128874, —0.257749),

which leads to the design values(see (21))

P* = ekrtZior  — 870349N
§* = eMetZzos = 92297TMp
L* = ektrtZsor — 10.06m
bt = emtZion = (0.575m
¢ = etetZioe = 0.99Tm

and to the following partial security coefficients

Yy = ektrtProrjens = 2176

Vs = eMsfepstIros =] 0884

v = eI fern = 10062 (32)
v = et fetvtbron — 10014

Yo = ebefebeteroe = 10028

Table 2: Means and standard deviations of the logarithms of the 5 random variables involved in the practical
example 1.

Variable Mean Standard deviation
P wp = log(400000) = 12.8992 op = 0.257984
s s = log(25000000) = 17.0344 o, = 0.085172
L wr, = log(10) = 2.30259 or, = 0.023026
b 1y = log(0.576) = —0.551648 op = 0.011033
c e =log(l) =0 o. = 0.011033
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Table 3: Different estimated values of the probability of failure for different approximations of the Gauss
Legendre quadrature using the optimized method.

n | m | Estimated probability | Exact probability | cpu time (in ticks)
5| o 0.000000 0.000696 1

5| 10 0.000001 0.000696 11

5120 0.000307 0.000696 250

5| 30 0.000555 0.000696 1649

5 | 40 0.000657 0.000696 6834

5 | 50 0.000692 0.000696 21896

and a global safety factor value of v¢ = vpysvL Vv = 2.393.

Note that the partial safety coefficients, vy, 7, and 7., for L,b and ¢, respectively, are small, as expected
because their assumed standard deviations are small.

The associated probability of failure becomes:

Pr=%(-3)=a (—\/Zf2 + 7324722+ 22 + Zg2) — & (—3.19785) = 0.000692289. (33)

4.4.8 Probability of failure using the proposed method

In the proposed method (level 3) we calculate the probability of failure using the Gauss-Legendre recursion
Expression (14), with the transformed failure region gy (u,ug, ..., u,), see (28)

2

—pp —op® (1 —uy) + s+ 0@ (ug) — pp — o ® (1 —u3) + by + 0@ (ug) + 2¢0 + 20D (us) + log 3

Table 3 shows the obtained results when we use the Gauss-Legendre recursion Expression (14) using the

numerical values in Table 2 and the optimized method. Note that a polynomial of degree 50 is required for
an almost exact approximation of the exact probability of failure.

Remark 1 The coincidence of failure probabilities in this example is due to the particular selection of log-
normal distributions, that was selected in order to be able to calculate the exact probability of failure, thus
allowing a comparison between the exact and the calculated probabilities. If this is not the case, probabilities
based on the classical method, FORM, SORM and the proposed method lead to different results (values of

Pf).
4.5 Case 2: Normal distributions
4.5.1 Assumptions for the random variables involved

In order to obtain different probabilities of failure associated with the FORM, SORM and the proposed
method, we assume in this case that P, s, L,b and ¢ are independent random normal distributions:

P~ N(up,op),
s ~ N(us,o )

L ~ N(:ULWUL)
b~ N(Mbmffb)
c ~ N(/u'cov )
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4.5.2 Level 2: FORM approximation

FORM methods require transforming the initial set of random variables to a set Z of standard independent
N(0,1) random variables

L—pr b— 1w

P— - Ms — Pe
_ Be. g STl g = . gy = ST He (34)

op Os oL 0p Oc

Zy
Thus, replacing (34) in the failure region (18), we get

3 Z Z
(up +opZy)(pr +or 3)2 <0, (35)
2(pp + 0uZ4) (2 + 20.7Z5)

gZ(Z) = Us + JSZQ -

4.5.3 Level 3: Proposed method

In this subsubsection we determine the probability of failure using the proposed method and algorithm.
Thus, we proceed as follows:

Step 1: We use the Rosenblatt transformation to transform the initial set of variables into a set of inde-
pendent uniform U(0,1) random variables V. To this end, we let:

P= X, = FZ} (Vi) = pup +op®~1 (1))

N(luP,U?a)
s= Xp= Py on(V2) = s +0,27(V2)
L= Xs= Fy,, ,2(Vs) =pr+0,27'(Vs) (36)
b= Xa= Fyi, .z Va)=m+0@(Va)

c= Xp= F];(lﬂc’gg)(vs) = Me + 06@71(‘/}))

that is,
‘/1 = F(HP»“?:)(Xl) = (b (

X1 _,UP>
Xo — s
Vo= F, 02 (X2) =@ (20—M>

(37)

And the transformed failure region in terms of the V' random variables becomes

3% (up + op® (Vi) * (ur + 097" (Va) _ (38)

s (I)il Va) —
ek o () ¥ oy @ T (V)) * (Bt + 20,81 (Va))2

Step 2: We transform the variables V such that the vector (0,0,,...,0) becomes the worst possible vector.
To this end, we let U; =1 —Vj and Uz = 1 — V5. Thus, we get the failure region

U, = 1-W1

Us Va

Us 1-Vy (39)
Uy Vi

Us = Vs

Step 3: Since the new variables U are iid uniform U(0, 1), we get

fU1,U2,...,Un(u17u23 .. 'aun) = 17 0 S Ui S 17 1= 1a27374757
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and the transformed failure region

_3pp+0p@ (1 - V) (pr + 0127 (1= U)) _ (40)

S S©71
et o) e T BT (U)o £ 200 N U))E

Step 4: We calculate the probability of failure using the Gauss-Legendre recursion Expression (14).

4.5.4 Numerical example

In this numerical example we assume that P, s, L, b and c are independent random variables such that their
means and standard deviations coincide with those in the Case 1, i.e., they can be obtained from those in
case 1 using the expression:

pi = exp(u; +07%/2) (41)
of = exp(pf) [exp(207?) — exp(o;?)]

where pf and o are the means and the standard deviations for case 1. The subindex ¢ takes the values
P,s,L,b and c. The values are shown in Table 4,

4.5.5 FORM probability of failure

The FORM approximation requires transforming the initial set of random variables to a set Z of standard
independent N (0, 1) random variables (see (34)).

The usual design selects the design point P* such that its distance to the origin, in the transformed
domain (the one associated with standard normal variables), is a minimum. In this example this point is

P* = (ZF, 73, 25,25, Z%) = (3.13736, —2.31931,0.496413, —0.241195, —0.483687),

which leads to the design values(see (34))

P* = up+Zifop = T5387T9N
s* = pus+Zso, = 20.126Mp
L* = pr+2Zjor, = 10.117Tm
b* = w+Zjo, = 0.5745m
¢ = pe+2Zio. = 0.9947Tm

and to the following partial security coefficients

vy = pp+Pxop/u, = 1.8231
Vs = fs/ps + S* 0 = 1.2467
v = pp+Lxop/up = 10114 (42)
v = m/us+bxo, = 1.0028
Ve = Heftiet+ 0. = 1.0054

and to a global value of vg = vYpysYLVpYe = 2.317.

Table 4: Means and standard deviations of the 5 random variables involved in the practical case 2.

Variable Mean Standard deviation
P up = 413527 op = 108483
s s = 25091184.69 o, = 2140947.96
L nr = 10.0027 or, =0.23
b 1y = 0.576035 op = 0.00635
c pe =1 o. = 0.011033

15



Table 5: Different estimated values of the probability of failure for different approximations of the Gauss
Legendre quadrature using the optimized method for example 2.

n | m | Estimated probability | cpu time (in ticks)
5| 10 0.000000 14

5| 20 0.000009 252

5| 40 0.000024 5970

5| 60 0.000029 47234

51| 80 0.000031 219468

5 | 100 0.000032 753609

Note that the partial safety coefficients, vy, and 7., for L,b and ¢, respectively, are small, as expected
because their assumed standard deviations are small.
The associated probability of failure is:

Pp=®(—p) = (—\/Zf2 Y732+ 7232+ 272 + Z§‘2) — @ (—3.96999) = 0.0000359377. (43)

4.5.6 Probability of failure using the proposed method

In the proposed method (level 3) we calculate the probability of failure using the Gauss-Legendre recursion
Expression (14), with the transformed failure region gy (u1, ug, ..., uy) is (see (40))

3(pp +op® (1 —w))(pr + 0P (1 - ug))

—1 _
ps + s @7 (uz) 2(bo + o~ (ua))(co + 202~ (us))?

Table 5 shows the obtained results when we use the Gauss-Legendre recursion Expression (14) using the
numerical values in Table 4 and the optimized method.

5 Conclusions

The proposed method based on transforming the initial set of variables to one with uniform marginals
combined with the Gauss-Legendre quadrature formula allows calculating the multiple integral associated
with the probability of failure of some reliability problems. The method is especially useful for approximating
tail probabilities, where other methods fail. The degree of the polynomial can be selected by increasing its
value until convergence is achieved.
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