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Abstract

This paper introduces a method for local sensitivity analysis of practical
interest. A theorem and tools are given that provide analytical formulas for
the local sensitivities of the objective function optimal value with respect to
parameters. The method is based on the well known duality property of math-
ematical programming that states that the partial derivatives of the primal
objective function with respect to the constraints right hand side parameters
are the optimal values of the dual problem variables. For the parameters or
data, for which sensitivities are sought, to appear on the right hand side, they
are converted into artificial variables and locked to their actual values, thus
obtaining the desired constraints. If the problem is degenerated and partial
derivatives do not exist, the method also permits obtaining the right and left
derivatives if they exists. In addition to its general applicability, the method is
also computationally inexpensive because the necessary information becomes
available without extra calculations. Moreover, analytical relations among
sensitivities, locally valid, are straightforwardly obtained. If sensitivities are
needed in relation to any constraint and not to the objective function, an
equivalent problem is formulated that allows obtaining such sensitivities. The
method is illustrated by its application to two examples, one degenerated and
one of a competitive market.
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1 Introduction and Motivation

In engineering practice, one has to work frequently with mathematical models to

describe reality or make decisions. However, mathematical models are simplifications

of reality. Nevertheless, when we collect data and specify a model, we often act as

if the model is true and the associated assumptions are valid. More often than not,

conclusions drawn from an analysis are sensitive to changes in a model, deviations

from assumptions, or other perturbations in the inputs. Thus, one needs to know the

influence of each data item on the final results so as to make the adequate corrections

when necessary. It is therefore essential for data analysts to be able to assess the

sensitivity of their conclusions to various perturbations in the inputs. This is known

as sensitivity analysis. The motivation for sensitivity analysis is clear. It allows the

analyst to assess the effects on inferences of departures from the assumptions made

and the data values, detect outliers or wrong data values, define testing strategies,

optimize resources, reduce costs, and avoid unexpected problems.

There is a large literature on sensitivity analysis and outlier detection; see, for ex-

ample, the books by Hawkins (1980), Belsley, Kuh, and Welsch (1980), Cook and

Weisberg, (1982), Chatterjee and Hadi (1988), and Barnett and Lewis (1994), and

the papers by Gray (1986), Cook(1986), Schwarzmann (1991), Paul and Fung (1991),

Nyquist (1992), Hadi and Simonoff (1993), Billor, Chatterjee, and Hadi (2001), and

Winsnowski, Montgomery, and James (2001).

In relation to optimization theory and applications, relevant references related to

sensitivity analysis include Dempe (1993), Dinkel and Tretter (1993), Ralph and

Dempe (1995), Wagner (1995), Levy (1996), Marcotte and Zhu (1996), Wallace

(2000), Dawande and Hooker (2000), and Levy and Mordukhovich (2004).

As an example of engineering applications, relevant references on power engineering

related to sensitivity analysis include Almeida and Salgado (2000), He et al. (2002),

Proca and Keyhani (2002), Araujo Ferreira et al. (2002), Orfanogianni and Bacher

(2003), Zarate and Castro (2004) and Chung et al. (2004).

In this paper we propose a method for sensitivity analysis that is based on the well

known duality property of mathematical programming that states that the partial
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derivatives of the primal objective function with respect to the constraints right hand

side parameters are the optimal values of the dual problem variables. The method

is applicable to linear and nonlinear models. In addition to its general applicability,

the method is also computationally inexpensive because the necessary information

becomes available without extra calculations. Moreover, analytical relations among

sensitivities, locally valid, are straightforwardly obtained. If sensitivities are needed

in relation to any constraint and not to the objective function, an equivalent problem

is formulated that allows obtaining such sensitivities.

The main contributions of this paper are:

1. Under local convexity assumptions, it provides a general procedure to compute

the sensitivities of the objective function with respecto to any parameter of a

general nonlinear programming problem, when they exist.

2. When the local sensitivities, partial derivatives, do not exist, the proposed

method allows obtaining left and right derivatives if they exist.

3. It also provides a linear system of equations that relates the actual sensitivities

in the neighborhood of the optimal solution.

4. Once the optimal solution of the general nonlinear programming problem is

found, the paper provides an efficient yet simple way to compute the sensitiv-

ities of any constraint with respect to any parameter.

The paper is structured as follows. In Section 2 primal and dual problems are

described and then it is explained how some dual variables provide the sensitivities

of the objective function to changes in the constraints. In Section 3 it is shown how

the solution of the dual problem can be obtained from the solution of the primal

problem, and the linear relationship among sensitivities in the neighborhood or the

optimal solution is derived. The proposed method for obtaining the sensitivity of

the optimal value of the objective function with respect to small changes in the

data is introduced in Section 4 in its general form. To this end, the optimization

method is modified, using artificial variables and constraints, for the parameters

whose sensitivities are sought, to appear on the right hand side of some constraints.
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This leads to the main theorem of the paper that gives a closed expression for the

sensitivities of the objective function optimal value with respect to any parameter

or data value. The method is also valid for degenerated cases and is illustrated with

an example. Section 5 describes how to obtain sensitivities related to any constraint

and not the objective function, that is, the partial derivatives of any constraint

with respect to parameters. The general applicability of the proposed method for

sensitivity analysis is illustrated through a case study in Section 6. Finally, Section

7 offers some concluding remarks.

2 Background

In this section and for the sake of reminding the reader and introducing the notation

we reproduce some well known material.

Consider the following general nonlinear primal problem (P ):

Minimize
x

ZP = f(x; a) (1)

subject to

h(x; a) = b, (2)

g(x; a) ≤ c, (3)

where x ∈ IRm, a ∈ IR t, b ∈ IRp, c ∈ IRq.

The Primal problem P , as stated in (1)–(3), has an associated dual problem D,

which is defined as:

Maximize
λ,µ

QD = Infx {L(x,λ,µ; a,b, c)} (4)

subject to

µ ≥ 0, (5)

where

L(x,λ,µ; a,b, c) = f(x; a) + λT (h(x; a) − b) + µT (g(x; a) − c), (6)
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is the Lagrangian function associated with the primal problem (1)–(3), and λ and

µ, the dual variables, are vectors of dimensions p and q, respectively. Note that only

the dual variables (µ in this case) associated with the inequality constraints (g(x)

in this case), must be nonnegative.

Given some regularity conditions on local convexity (see Luenberger (1989)), if the

primal problem (1)–(3) has a locally optimal solution x∗, the dual problem (4)–(5)

also has a locally optimal solution (λ∗,µ∗), and the optimal values of the objective

functions of both problems coincide.

The primal and the dual problems (1)–(3) and (4)–(5), respectively, can be solved

using the Karush-Kuhn-Tucker first order necessary conditions (KKTCs) (see, for ex-

ample, Luenberger (1989), Bazaraa, Sherali and Shetty (1993), Castillo et al. (2001)):

∇xf(x∗; a) + λ∗T∇xh(x∗; a) + µ∗T∇xg(x∗; a) = 0, (7)

h(x∗; a) − b = 0, (8)

g(x∗; a) − c ≤ 0, (9)

µ∗T (g(x∗; a) − c) = 0, (10)

µ∗ ≥ 0, (11)

where x∗ and (λ∗,µ∗) are the primal and dual optimal solutions, ∇xf(x∗; a) is the

vector of partial derivatives of f(x∗; a) with respect to x, evaluated at the optimal

value x∗. The vectors µ∗ and λ∗ are also called the Kuhn–Tucker multipliers. Con-

dition (7) says that the gradient of the Lagrangian function in (6) evaluated at the

optimal solution x∗ must be zero. Conditions (8) and (9) are the primal feasibil-

ity conditions. Condition (10) is the complementary slackness condition. Condition

(11) requires the nonnegativity of the multipliers of the inequality constraints and is

referred to as the dual feasibility conditions.

The practical importance of the dual solutions derives from the fact that the values

of the dual variables give the sensitivities of the optimal objective function value

with respect to the parameters b and c appearing on the right hand side of the

constraints. This is stated in Theorem 1 below (Luenberger, 1989).

Theorem 1 (Sensitivities) Consider the optimization problem (1)–(3). Then, we
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have:

∂f(x∗; a)

∂bi

= −λ∗
i ; i = 1, 2, . . . , p;

∂f(x∗; a)

∂cj

= −µ∗
j ; j = 1, 2, . . . , q,

i.e., the sensitivities of the optimal objective function value of the problem (1)–(3)

with respect to changes in the terms appearing on the right hand side of the constraints

are the negative of the optimal values of the corresponding dual variables.

The proof of this theorem can be found, for instance, in (Luenberger, 1989).

For this important result to be applicable to practical cases of sensitivity analysis, the

parameters for which the sensitivities are sought must appear on the right hand side

of the primal problem constraints. At this point the reader can ask him/herself and

what about parameters not satisfying this condition? The answer to this question

will be given by Theorem 2 in Section 4.

3 Obtaining the Set of All Dual Variable Values

Dual solutions are easily obtainable when solving the primal problem. In fact, when

asked for the optimal solution of a primal problem, most algorithms embedded in

computer packages (GAMS-SNOPT, GAMS-CONOPT, GAMS-MINOS, MATLAB,

etc.) also give the optimal solution of the associated dual problem, with practically

no extra computational cost. However, if one is interested in deriving analytical

expressions for the optimal values of the dual variables or calculating these values,

one can proceed as follows.

The KKTCs in (7)–(11) allow one to obtain the multipliers (values of the dual

variables λ∗ and µ∗) once the optimal solution x∗ of the primal problem (1)–(3) has

been obtained using the subset of linear equations in λ∗ and µ∗:

∇xf(x∗; a) + λ∗T∇xh(x∗; a) + µ∗T∇xg(x∗; a) = 0, (12)

µ∗T (g(x∗; a) − c) = 0, (13)

µ∗ ≥ 0, (14)
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Then, we proceed with the following steps:

Step 1. Determine the subset of inequality constraints (3) which are active, i.e.,

those j such that gj(x
∗; a) = cj. Let J be this set, and let µj = 0 for all j /∈ J .

Step 2. Solve in λ∗ and µ∗ the system of equations and inequalities:

∇xf(x∗; a) + λ∗T∇xh(x∗; a) +
∑
j∈J

µ∗
j∇xgj(x

∗; a) = 0, (15)

µ∗
j ≥ 0, j ∈ J. (16)

Since the unknowns in system (15) and (16) are the sensitivity vectors λ and µ, this

system is linear, and therefore easy to solve. This system can be solved using the

procedure stated in Castillo et al. (1999, 2004).

Furthermore, the solution of system (15) and (16) provides analytical expressions to

calculate vectors λ∗ and µ∗ as a function of the primal solution x∗ of problem (1)–

(3). This is an important result because this analytical expression is not provided

by practical solution algorithms.

Therefore, the solution of the dual problem is readily available after solving the

primal problem, and since the solution to the dual problem are the sensitivities with

respect to some parameters b and c, these sensitivities are immediately available

after the solution of the primal problem. However, nothing is known about the

sensitivities with respect to the parameter a. The following section uses a simple

trick to obtain these sensitivities.

4 A General Formula for Local Sensitivity Anal-

ysis

Two ideas are utilized here. The first is that local sensitivity can be measured by

the partial derivatives of the objective function value with respect to the parameter

or the data whose sensitivity is sought. The second, as we have seen in Section 2,
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is that the solutions to the primal and dual problems are related, and the solutions

of the dual problem provide the sensitivities of the objective function values of the

primal with respect to changes in the right hand side values of its constraints. These

two ideas are combined, using the following theorem that provides a general method

for sensitivity analysis.

Theorem 2 (Objective function sensitivities with respect to the parameter a)

The sensitivity of the objective function of the primal problem (1)–(3) with respect

to the parameter a is given by

∇aL(x∗,λ∗,µ∗; a,b, c), (17)

which is the partial derivative of its Lagrangian function

L(x,λ,µ; a,b, c) = f(x; a) + λT (h(x; a) − b) + µT (g(x; a) − c), (18)

with respect to a evaluated at the optimal solution x∗,λ∗, and µ∗.

Proof. The problem (1)–(3) can be written in the equivalent form:

Minimize ZP = f(x; ã)
x, ã

(19)

subject to

h(x; ã) = b; λ (20)

g(x; ã) ≤ c; µ (21)

ã = a; η (22)

where λ, µ and η are the corresponding dual variables (multipliers).

Since the data a appears on the right hand side of (22), the values of the correspond-

ing dual variables (η) give the sensitivities of the objective function with respect to

a. The KKTC for the problem (19)–(22) are:

∇x,ãf(x∗; ã∗) + λ∗T∇x,ãh(x∗; ã∗) +

µ∗T∇x,ãg(x∗; ã∗) + η∗T∇x,ã∗ ã∗ = 0, (23)
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h(x∗; ã∗) − b = 0, (24)

g(x∗; ã∗) − c ≤ 0, (25)

µ∗T (g(x∗; ã∗) − c) = 0, (26)

ã = a, (27)

µ∗ ≥ 0. (28)

From (23) we get

∇ãL(x∗,λ∗,µ∗; ã,b, c) = ∇ãf(x∗; ã) + λ∗T∇ãh(x∗; ã) + µ∗T∇ãg(x∗; ã)

= −η∗, (29)

i.e., the sensitivity of the objective function of the problem (1)–(3) with respect to

the parameter a is the partial derivative of its Lagrangian function with respect to

a at the optimal point.

It is clear that problems (1)–(3) and (19)–(22) are equivalent, but for the second the

sensitivities with respect to a are readily available. Note that to be able to use the

important result of Theorem 1, we convert the data a into artificial variables ã and

set them to their actual values a as in constraint (27). Then, by Theorem 2, the

values of the dual variables associated with (27) are the sensitivities sought after,

i.e., the partial derivatives ∂ZP /∂ai; i = 1, 2, . . . , t.

4.1 Linear Programming Case

The simplest case where Theorem 2 can be applied is the case of linear programming.

Consider the following linear programming problem:

Minimize
m∑

i=1
cixi

x1, x2, . . . , xm

(30)

subject to

m∑
i=1

ajixi = rj; j = 1, 2, . . . , p (31)

m∑
i=1

bkixi ≤ sk; k = 1, 2, . . . , q (32)
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The Lagrangian function becomes

L(x,λ,µ; c, r, s) =
m∑

i=1

cixi +
p∑

j=1

λj

(
m∑

i=1

ajixi − rj

)
+

q∑
k=1

µk

(
m∑

i=1

bkixi − sk

)
(33)

To obtain the sensitivities of the optimal value of the objective function to rt, st,

ct, at� or bt�, following Theorem 2, we simply obtain the partial derivatives of the

Lagrangian function with respect to the corresponding parameter, that is,

∂L(x,λ,µ)

∂rt

= −λ∗
t (34)

∂L(x,λ,µ)

∂st

= −µ∗
t (35)

∂L(x,λ,µ)

∂ct

= x∗
t (36)

∂L(x,λ,µ)

∂at�

= λ∗
t x

∗
� (37)

∂L(x,λ,µ)

∂bt�

= µ∗
t x

∗
� (38)

This is a simple case that leads to very neat results.

Consider also the case of all parameters depending on a common parameter u, i.e.,

the problem

Minimize
m∑

i=1
ci(u)xi

x1, x2, . . . , xm

(39)

subject to

m∑
i=1

aji(u)xi = rj(u); j = 1, 2, . . . , p (40)

m∑
i=1

bki(u)xi ≤ sk(u); k = 1, 2, . . . , q (41)

Then, the sensitivity of the optimal value of the objective function to u is given by

(see Equation (33)):

∂L(x,λ,µ; u)

∂u
=

m∑
i=1

d ci(u)

du
xi +

p∑
j=1

λj

(
m∑

i=1

d aji(u)

du
xi − d rj(u)

du

)

+
q∑

k=1

µk

(
m∑

i=1

d bki(u)

du
xi − d sk(u)

du

)
(42)
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Note that the cases in (34) to (38) are particular cases of (42).

Note that Theorem 2 is applicable to any nonlinear programming problem as straight-

forwardly as to the linear programming problem above.

4.2 Illustrative Example

In this section we include a degenerate linear problem with the aim of illustrating

the power of the proposed method for evaluating the sensitivities, even if partial

derivatives are not defined due to degeneracy.

Consider the degenerate problem

Minimize ZP = x2

x1, x2

subject to
ax1 −x2 ≤ 0
−x1 ≤ −a
−x1 −x2 ≤ −b

(43)

whose optimal solution for a = 1 and b = 2 is

x∗
1 = x∗

2 = 1; Z∗
P = 1,

which is illustrated in the upper part of Figure 1.

FIGURE 1 GOES ABOUT HERE

Its Lagrangian function is

L(x1, x2; µ1, µ2, µ3) = x2 + µ1(ax1 − x2) + µ2(a − x1) + µ3(b − x1 − x2).

From the KKT conditions (12)-(14) we get

( 0 1 ) + (µ∗
1 µ∗

2 µ∗
3 )


 1 −1
−1 0
−1 −1


 = ( 0 0 ) ; µ∗

1, µ
∗
2, µ

∗
3 ≥ 0
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which solution is (see Padberg (1995), Castillo et al. (1999) and Castillo and Jubete

(2004))


µ∗

1

µ∗
2

µ∗
3


 = λ


 1

1
0


+ (1 − λ)


 1/2

0
1/2


 =


 (1 + λ)/2

λ
(1 − λ)/2


 ; 0 ≤ λ ≤ 1.

and applying Theorem 2 we obtain the sensitivities

∂L(x∗
1, x

∗
2; µ

∗
1, µ

∗
2, µ

∗
3)

∂a
= µ∗

1x
∗
1 + µ∗

2 = µ∗
1 + µ∗

2 = (1 + 3λ)/2 (44)

∂L(x∗
1, x

∗
2; µ

∗
1, µ

∗
2, µ

∗
3)

∂b
= µ∗

3 = (1 − λ)/2 (45)

Note that the sensitivity of the objective function with respect to a is not constant

but ranges from 1/2 to 2. This implies that the corresponding partial derivative

does not exist. However, the right and left derivatives exist and take those extreme

values. Note that (a = 1, b = 2)

∂ZP

∂a+

=
∂a2

∂a
= 2a = 2

∂ZP

∂a−
=

∂
(

ab
1+a

)
∂a

=
b

(1 + a)2
= 1/2

This is illustrated in Figure 1, where the difference in the right, 2, and left, 1/2,

partial derivatives is due to the change of the active constraints.

Similarly, the sensitivity of the objective function with respect to b is not constant

but ranges from 0 to 1/2. Note that (a = 1, b = 2)

∂ZP

∂b+

=
∂
(

ab
1+a

)
∂b

=
a

1 + a
= 1/2

∂ZP

∂b−
=

∂a

∂b
= 0

This is illustrated in Figure 2, where the difference in the right, 1/2, and left, 0,

partial derivatives is again due to the change of the active constraints.

FIGURE 2 GOES ABOUT HERE
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This example illustrates how the proposed method allows determining not only the

partial derivatives of the optimal objective function value to parameters but deter-

mining if this derivative does not exist and the values of the right and left partial

derivatives.

5 Sensitivities Related to Any Active Constraint

Consider the following convenient reformulation of problem problem (1)–(3):

Minimize ZP = f(x)
x

(46)

subject to

hk(x) = 0; k = 1, 2, . . . , p (47)

gj(x) ≤ 0; j = 1, 2, . . . , q (48)

where f : IRm → IR, h : IRm → IRp, g : IRm → IRq with h(x) = (h1(x), . . . , hp(x))T

and g(x) = (g1(x),. . ., gq(x))T are regular functions over the feasible region S =

{x|h(x) = 0,g(x) ≤ 0}.

The Karush-Kuhn-Tucker (KKTCs) first order optimality conditions for the NLPP

(46)-(48) are:

∇f(x∗) +
p∑

k=1

λ∗
k∇hk(x

∗) +
q∑

j=1

µ∗
j∇gj(x

∗) = 0 (49)

hk(x
∗) = 0, k = 1, . . . , p (50)

gj(x
∗) ≤ 0, j = 1, . . . , q (51)

µ∗
jgj(x

∗) = 0, j = 1, . . . , q (52)

µ∗
j ≥ 0, j = 1, . . . , q (53)

Assume also that no redundant constraints exist and that the NLPP has an optimal

solution x∗ such that Z∗
P = f(x∗). Then conditions (49)-(53) hold. If λ1 > 0, then

we can write

∇h1(x
∗) +

1

λ∗
1

∇f(x∗) +
�∑

k=2

λ∗
k

λ∗
1

∇hk(x
∗) +

m∑
j=1

µ∗
j

λ∗
1

∇gj(x
∗) = 0 (54)
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f(x∗) − Z∗
P = 0 (55)

hk(x
∗) = 0, k = 2, . . . , p(56)

gj(x
∗) ≤ 0, j = 1, . . . , q (57)

µ∗
j

λ∗
1

gj(x
∗) = 0, j = 1, . . . , q (58)

µ∗
j

λ∗
1

≥ 0, j = 1, . . . , q (59)

that are the KKTC for the problem

Minimize ZP = h1(x)
x

(60)

subject to

f(x) − Z∗
P = 0 (61)

hk(x) = 0; k = 2, 3, . . . , p (62)

gj(x) ≤ 0; j = 1, 2, . . . , q (63)

The multipliers in (54) give the corresponding sensitivities of h1(x) to changes in

Z∗
P , hk (k = 2, 3, . . . , p) and gj (k = 1, 2, . . . , q), respectively.

For λ∗
1 < 0, we obtain similar results but a maximization problem. The µ∗ multipliers

can be dealt with in the same form as the case λ∗
1 > 0, i.e., if the associated constraints

are active.

The results in this section, apart from giving the sensitivities of a constraint, allow

solving the initial problem in an alternative way. This has advantages in some cases

in which one looks for optimal solutions of the initial problem (46)-(48) with a given

optimal value and wants to fix the right hand side of a constraint for that to be

possible. In this case, the alternative statement (60)-(63) allows solving the problem

in one step, while the initial problem requires iterations.

6 Case Study

A producer sells its production pt (t = 1, . . . , T ) in a multi-period spot market

whose prices λt (t = 1, . . . , T ) are random variables. These random variables are
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characterized by their forecast average values, λavg
t , (t = 1, . . . , T ) and an estimate

of their T × T covariance matrix Qest.

If the production cost of producing the quantity pt at time t is given by b pt + 1
2
a p2

t ,

the expected profit P for the producer from selling its production in the spot market

is

P = Eλ1,...,λT

{
T∑

t=1

[
λt pt − b pt − 1

2
a p2

t

]}
=

T∑
t=1

[
λavg

t pt − b pt − 1

2
a p2

t

]
(64)

where a and b are positive cost coefficients.

On the other hand, the variance of the profit V (a risk measure) is given by

V = Varλ1,...,λT

{
T∑

t=1

[
λt pt − b pt − 1

2
a p2

t

]}
= Varλ1,...,λT

{
T∑

t=1

λt pt

}
=

T∑
i=1

T∑
j=1

Qest
ij pi pj

(65)

The producer operating constraints include maximum capacity, and limits on in-

creasing/decreasing production during two consecutive time periods, i.e.,

pmin ≤ pt ≤ pmax; t = 1, . . . , T (66)

where pmin and pmax are the minimum and maximum productions levels, respectively,

and

pt − pt−1 ≤ rup; t = 1, . . . , T (67)

pt−1 − pt ≤ rdown; t = 1, . . . , T (68)

where p0 is the production during the time period previous to the study horizon,

and rup and rdown are the bounds on the increasing/decreasing production change,

respectively.

The producer faces two problems: to maximize expected profits limiting the risk

level, or to minimize risk ensuring a level of profit. These problems are formulated

below.
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The risk-constrained maximum profit problem is

Maximize P =
T∑

t=1

[
λavg

t pt − b pt − 1
2
a p2

t

]
pt

(69)

subject to

T∑
i=1

T∑
j=1

Qest
ij pi pj ≤ R (70)

pmin ≤ pt ≤ pmax; t = 1, . . . , T (71)

pt − pt−1 ≤ rup; t = 1, . . . , T (72)

pt−1 − pt ≤ rdown; t = 1, . . . , T (73)

The profit-constrained minimum risk problem is

Minimize V =
T∑

i=1

T∑
j=1

Qest
ij pi pj

pt

(74)

subject to

T∑
t=1

(
λavg

t pt − b pt − 1

2
a p2

t

)
≥ B = P ∗ (75)

pmin ≤ pt ≤ pmax; t = 1, . . . , T (76)

pt − pt−1 ≤ rup; t = 1, . . . , T (77)

pt−1 − pt ≤ rdown; t = 1, . . . , T (78)

where P ∗ is the optimal value of the problem (69)-(73).

6.1 Sensitivity Analysis

In this section we apply Theorem 2 to the case study. Since we have two optimization

problems we need to apply it twice.

The Lagrange function associated with the problem (69)-(73) is

L1(p, µ1,µ2,µ3,µ4,µ5) =
T∑

t=1

[
λavg

t pt − bpt − 1

2
ap2

t

]
+ µ1


 T∑

i=1

T∑
j=1

Qest
ij pipj − R



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T∑
t=1

µ2
t

[
pmin − pt

]
+

T∑
t=1

µ3
t [pt − pmax] +

T∑
t=1

µ4
t [pt − pt−1 − rup]

+
T∑

t=1

µ5
t

[
pt−1 − pt − rdown

]
(79)

where p, µ2 µ3 µ4 and µ5 are vectors of primal and dual variables.

Then, the sensitivities with respect to the data, using the notation L1(p,µ) for

L1(p, µ1,µ2,µ3,µ4,µ5), are:

∂L1(p,µ)

∂λavg
r

= pr; r = 1, 2, . . . , T (80)

∂L1(p,µ)

∂a
= −1

2

T∑
t=1

p2
t (81)

∂L1(p,µ)

∂b
= −

T∑
t=1

pt (82)

∂L1(p,µ)

∂R
= −µ1 (83)

∂L1(p,µ)

∂pmin
=

T∑
t=1

µ2
t (84)

∂L1(p,µ)

∂pmax
= −

T∑
t=1

µ3
t (85)

∂L1(p,µ)

∂rup
= −

T∑
t=1

µ4
t (86)

∂L1(p,µ)

∂rdown
= −

T∑
t=1

µ5
t (87)

∂L1(p,µ)

∂Qest
rs

= µ1prps; r, s = 1, 2, . . . , T (88)

Similarly, the Lagrange function associated with the problem (74)-(78) is

L2(p, ρ1,ρ2,ρ3,ρ4,ρ5) =
T∑

i=1

T∑
j=1

Qest
ij pipj + ρ1

[
B −

T∑
t=1

(
λavg

t pt − bpt − 1

2
ap2

t

)]

T∑
t=1

ρ2
t

[
pmin − pt

]
+

T∑
t=1

ρ3
t [pt − pmax] +

T∑
t=1

ρ4
t [pt − pt−1 − rup]

+
T∑

t=1

ρ5
t

[
pt−1 − pt − rdown

]
(89)
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where p, ρ2 ρ3 ρ4 and ρ5 are vectors of primal and dual variables.

Then, the sensitivities with respect to the data, using the notation L2(p,ρ) for

L2(p, ρ1,ρ2,ρ3,ρ4,ρ5), are:

∂L2(p,ρ)

∂λavg
r

= −ρ1pr = −pr/µ
1; r = 1, 2, . . . , T (90)

∂L2(p,ρ)

∂a
=

ρ1

2

T∑
t=1

p2
t =

1

2µ1

T∑
t=1

p2
t ; (91)

∂L2(p,ρ)

∂b
= ρ1

T∑
t=1

pt =
1

µ1

T∑
t=1

pt (92)

∂L2(p,ρ)

∂B
= ρ1 = 1/µ1 (93)

∂L2(p,ρ)

∂pmin
=

T∑
t=1

ρ2
t =

1

µ1

T∑
t=1

µ2
t (94)

∂L2(p,ρ)

∂pmax
= −

T∑
t=1

ρ3
t = − 1

µ1

T∑
t=1

µ3
t (95)

∂L2(p,ρ)

∂rup
= −

T∑
t=1

ρ4
t = − 1

µ1

T∑
t=1

µ4
t (96)

∂L2(p,ρ)

∂rdown
= −

T∑
t=1

ρ5
t = − 1

µ1

T∑
t=1

µ5
t (97)

∂L2(p,ρ)

∂Qest
rs

= prps; r, s = 1, 2, . . . , T (98)

Note that equation (54) is used to express the above sensitivities as a function of

dual variables µ

6.2 Numerical Example

Consider now a numerical example of the case study assuming that we are in an

electric market, where

a = 0.070 $/(MW)2h; b = 18 $/MWh; R = 6000 $2; pmax = 60 MW

pmin = 0 MW; rup = 30 MW/h; rdown = 30 MW/h; p0 = 0 MW.
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Table I: Price estimates ($/MWh) as a function of time t.

λest
t

t λt t λt t λt t λt

1 33.31 7 24.65 13 41.05 19 40.74
2 26.53 8 24.75 14 41.61 20 38.80
3 22.16 9 25.50 15 38.98 21 39.63
4 23.10 10 27.58 16 39.74 22 46.14
5 22.60 11 31.60 17 42.02 23 39.04
6 23.15 12 35.60 18 42.09 24 33.68

and where the λt; t = 1, 2, . . . , T are given in Table I.

The Qest
ij matrix is:




1.60−0.40 0.40 0.14 0.10 0.09 0.10 0.58 0.27 0.40 0.09 0.10 0.27 0.19−0.14 0.08 0.23 0.06 0.19−0.16 0.02−0.15−0.19−0.01
−0.40 0.37 0.08 0.00 0.05 0.05 0.06−0.10−0.05−0.05−0.12 0.01−0.05−0.08 0.04 0.05 0.02 0.17−0.05 0.07−0.20 0.02−0.15 0.10

0.40 0.08 0.61 0.08 0.20 0.16 0.08 0.37 0.07 0.18−0.29 0.08 0.10 0.12 0.15 0.16 0.29 0.18 0.06 0.03−0.11−0.32−0.13−0.10
0.14 0.00 0.08 0.32 0.09 0.15 0.11 0.10 0.06−0.01−0.07−0.05 0.09−0.06 0.09 0.08 0.08 0.02 0.01 0.00−0.04−0.02 0.06−0.05
0.10 0.05 0.20 0.09 0.25 0.15 0.23 0.43 0.13 0.07−0.11−0.10 0.12−0.07 0.00 0.17 0.19 0.15 0.04 0.01−0.15−0.32−0.10−0.15
0.09 0.05 0.16 0.15 0.15 0.19 0.31 0.32 0.18 0.10−0.11−0.05 0.08−0.06−0.01 0.14 0.13 0.12 0.04−0.04−0.17−0.28−0.12−0.12
0.10 0.06 0.08 0.11 0.23 0.31 1.49 1.18 0.85 0.16−0.18−0.19−0.20−0.17−0.40 0.32 0.09 0.24 0.00−0.29−0.65−1.03−0.71−0.26
0.58−0.10 0.37 0.10 0.43 0.32 1.18 1.76 0.83 0.55 0.01−0.11 0.09 0.09−0.38 0.43 0.39 0.27 0.07−0.14−0.56−1.03−0.59−0.44
0.27−0.05 0.07 0.06 0.13 0.18 0.85 0.83 1.21 0.35 0.18 0.07 0.11−0.06−0.29 0.27 0.10 0.11 0.02−0.15−0.39−0.66−0.33−0.25
0.40−0.05 0.18−0.01 0.07 0.10 0.16 0.55 0.35 0.72 0.27 0.24 0.24 0.17−0.20 0.12 0.15 0.11 0.08−0.01−0.20−0.05−0.23−0.15
0.09−0.12−0.29−0.07−0.11−0.11−0.18 0.01 0.18 0.27 0.90 0.14 0.27 0.34−0.11−0.20 0.00−0.08 0.00 0.12 0.03 0.44 0.18 0.01
0.10 0.01 0.08−0.05−0.10−0.05−0.19−0.11 0.07 0.24 0.14 0.42−0.03 0.25−0.06 0.01−0.05 0.00 0.05 0.09−0.07 0.33−0.09 0.20
0.27−0.05 0.10 0.09 0.12 0.08−0.20 0.09 0.11 0.24 0.27−0.03 0.48−0.01 0.08 0.01 0.21 0.02 0.11 0.06 0.08 0.01 0.21−0.15
0.19−0.08 0.12−0.06−0.07−0.06−0.17 0.09−0.06 0.17 0.34 0.25−0.01 0.60 0.06−0.04 0.03−0.01 0.02 0.15 0.06 0.20 0.12 0.17

−0.14 0.04 0.15 0.09 0.00−0.01−0.40−0.38−0.29−0.20−0.11−0.06 0.08 0.06 0.43−0.07 0.11−0.13 0.04 0.13 0.29 0.20 0.40−0.05
0.08 0.05 0.16 0.08 0.17 0.14 0.32 0.43 0.27 0.12−0.20 0.01 0.01−0.04−0.07 0.39 0.15 0.19 0.09 0.08−0.24−0.22−0.08−0.04
0.23 0.02 0.29 0.08 0.19 0.13 0.09 0.39 0.10 0.15 0.00−0.05 0.21 0.03 0.11 0.15 0.31 0.07 0.11 0.08−0.05−0.12 0.05−0.22
0.06 0.17 0.18 0.02 0.15 0.12 0.24 0.27 0.11 0.11−0.08 0.00 0.02−0.01−0.13 0.19 0.07 0.41−0.07 0.05−0.27−0.19−0.25 0.07
0.19−0.05 0.06 0.01 0.04 0.04 0.00 0.07 0.02 0.08 0.00 0.05 0.11 0.02 0.04 0.09 0.11−0.07 0.21 0.02 0.00 0.01 0.04−0.01

−0.16 0.07 0.03 0.00 0.01−0.04−0.29−0.14−0.15−0.01 0.12 0.09 0.06 0.15 0.13 0.08 0.08 0.05 0.02 0.24 0.03 0.32 0.23 0.09
0.02−0.20−0.11−0.04−0.15−0.17−0.65−0.56−0.39−0.20 0.03−0.07 0.08 0.06 0.29−0.24−0.05−0.27 0.00 0.03 0.66 0.35 0.56−0.02

−0.15 0.02−0.32−0.02−0.32−0.28−1.03−1.03−0.66−0.05 0.44 0.33 0.01 0.20 0.20−0.22−0.12−0.19 0.01 0.32 0.35 1.71 0.45 0.26
−0.19−0.15−0.13 0.06−0.10−0.12−0.71−0.59−0.33−0.23 0.18−0.09 0.21 0.12 0.40−0.08 0.05−0.25 0.04 0.23 0.56 0.45 0.84−0.03
−0.01 0.10−0.10−0.05−0.15−0.12−0.26−0.44−0.25−0.15 0.01 0.20−0.15 0.17−0.05−0.04−0.22 0.07−0.01 0.09−0.02 0.26−0.03 0.60




If we solve the problem (69)-(73) we obtain and optimal benefit of $8, 225 for the

optimal productions (pt; t = 1, 2, . . . , T ) indicated in the first column of Table II.

The values of the associated dual variables are µ1 = 0.5512, and for µ2,µ3,µ4 and

µ5 are the negative of the values in the columns 2 to 5 in Table II.

The sensitivities of the expected benefits with respect to the data values, calculated

using the formulas (80)-(88), are:

∂Profit

∂a
= −9063;

∂Profit

∂b
= −468.6;

∂Profit

∂R
= 0.55;

∂Profit

∂pmin
= 46.86;

20



∂Profit

∂pmax
= 2.31;

∂Profit

∂rup
= 15.17;

∂Profit

∂rdown
= 12.7.

The sensitivities of the risk measure with respect to the data values, calculated using

the formulas (90)-(98), are:

∂Risk

∂a
= 16442;

∂Risk

∂b
= −850.20;

∂Risk

∂B
= −1.81;

∂Risk

∂pmin
= −85.01;

∂Risk

∂pmax
= −4.19;

∂Risk

∂rup
= −27.53;

∂Risk

∂rdown
= −23.10.

Alternatively, the sensitivities of the uncertainties with respect to rup, rdowm, pmin

and pmax could be calculated solving the problem (74)-(78) that leads to the same

optimal productions (pt; t = 1, 2, . . . , T ) and the associated dual variables are ρ1 =

1/µ1 = 1/0.5512 = 1.8141, and for ρ2,ρ3,ρ4 and ρ5 are the negative of the values

in the columns 6 to 9 in Table II.

Note that the theory developed in Section 5 applies here.

7 Conclusions

In this paper a general method for sensitivity analysis, which is applicable to any

model that can be formulated as an optimization problem, has been introduced. It

has been shown that by considering the data as artificial variables and setting them

to their actual values, the sensitivity with respect to any parameter can be obtained.

More precisely, Theorem 2 provides a powerful tool to derive analytical expressions

for the sensitivities. In addition, not only the sensitivities of the objective function

but the sensitivities of any active constraint with respect to all parameters can be

calculated without extra computational requirements, because the solution of the

primal problem together with the values of the dual variables are sufficient to derive

these sensitivities. So, the proposed method for calculation of the local sensitivities

is computationally inexpensive. In addition, if the local sensitivities are direction

dependent (degenerated cases), the method remains valid and allows determining

the corresponding right and left derivatives. The power of the method has been

proved and illustrated by its application to two examples, one degenerated linear

problem and one related to a competitive market.
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Table II: Productions and sensitivities of the expected benefits and uncertainties
with respect to rup, rdown, Pmin and Pmax.

Time Productions Benefit Sensitivities to Risk Sensitivities to
rup rdowm pmin pmax rup rdowm pmin pmax

t pt −µ4
t −µ5

t −µ2
t −µ3

t −ρ4
t −ρ5

t −ρ2
t −ρ3

t

1 0.00 0.00 0.00 -9.96 0.00 0.00 0.00 18.08 0.00
2 13.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 -17.88 0.00 0.00 0.00 32.43 0.00
4 0.00 0.00 0.00 -7.07 0.00 0.00 0.00 12.82 0.00
5 0.00 0.00 0.00 -5.73 0.00 0.00 0.00 10.39 0.00
6 12.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 42.94 5.59 0.00 0.00 0.00 -10.14 0.00 0.00 0.00
8 12.94 0.00 5.12 0.00 0.00 0.00 -9.30 0.00 0.00
9 11.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 -6.14 0.00 0.00 0.00 11.14 0.00
11 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 21.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
13 17.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
14 0.00 0.00 0.00 -0.08 0.00 0.00 0.00 0.15 0.00
15 30.00 0.39 0.00 0.00 0.00 -0.70 0.00 0.00 0.00
16 0.00 0.00 1.85 0.00 0.00 0.00 -3.36 0.00 0.00
17 24.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
18 54.85 3.28 0.00 0.00 0.00 -5.94 0.00 0.00 0.00
19 57.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 30.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
21 60.00 5.16 0.00 0.00 2.31 -9.36 0.00 0.00 -4.19
22 30.00 0.00 5.76 0.00 0.00 0.00 -10.44 0.00 0.00
23 9.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
24 39.76 0.76 0.00 0.00 0.00 -1.38 0.00 0.00 0.00

Acknowledgments

The authors are indebted to the Ministry of Science and Technology of Spain (Projects

DPI2002-04172-C04-02 and DPI2003-01362) for partial support.

References

22



Almeida, K. C., Salgado, R. (2000), Optimal power flow solutions under variable

load conditions, IEEE Transactions on Power Systems, 15, 4, 1204–1211.

Araujo Ferreira, L. C., Zambroni de Souza, A. C., Granville, S., Marangon Lina,

J.W. (2002), Interior point method applied to voltage collapse problems and

system-losses-reduction, IEE Proceedings - Generation, Transmission and Dis-

tribution, 149, 2, 165–170.

Barinaga, M. (1989), “Manic Depression Gene Put in Limbo,” Science, 246, 886–

887.

Barnett, V., and Lewis, T. (1994), Outliers in Statistical Data, 3nd edition, New

York: John Wiley & Sons.

Bazaraa M. S., Sherali, H. D., and Shetty C. M. (1993), Nonlinear Programming,

Theory and Algorithms, 2nd ed., New York: John Wiley & Sons.

Billor, N., Chatterjee, S. and Hadi, A. S. (2001), “Iteratively Re-weighted Least

Squares Method for Outlier Detection in Linear Regression,” Bulletin of the

International Statistical Institute, 1, 470–472.

Castillo, E., Cobo, A., Jubete, F. and Pruneda, E. (1999), Orthogonal Sets and

Polar Methods in Linear Algebra: Applications to Matrix Calculations, Systems

of Equations and Inequalities, and Linear Programming. John Wiley and Sons.

Castillo, E., Cobo, A., Jubete, F., Pruneda, E. and Castillo, C. (2000), An Or-

thogonally Based Pivoting Transformation of Matrices and Some Applications.

SIAM Journal on Matrix Analysis and Applications 22, no.3, 666-681.

Castillo, E., Conejo, A. J., Pedregal, P., Garćıa, R., and Alguacil, N. (2001), Build-
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Figure 1: Illustration of the feasible regions and optimal values of the initial and
modified problems due to changes in the a parameter. (Upper) Initial problem.
(Middle) Positive increment of a. (Lower) Negative increment of a.
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Figure 2: Illustration of the feasible regions and optimal values of the initial and
modified problems due to changes in the b parameter. (Upper) Initial problem.
(Middle) Positive increment of b. (Lower) Negative increment of b.
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