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Abstract

The paper introduces a method for solving the failure probability-safety factor problem
for designing engineering works proposed by Castillo et al., that optimizes an objective
function subject to the standard geometric and code constraints, and two more sets of
constraints that simultaneously guarantee given safety factors and failure probability
bounds associated with a given set of failure modes. The method uses the dual variables
and is especially convenient to perform a sensitivity analysis, because sensitivities of the
objective function and the reliability indices can be obtained with respect to all data
values. To this end, the optimization problems are transformed into other equivalent
ones, in which the data parameters are converted into artificial variables, and locked to
their actual values. In this way, some variables of the associated dual problems become
the desired sensitivities. In addition, using the proposed methodology, calibration of
codes based on partial safety factors can be done. The method is illustrated by its
application to the design of a simple rubble mound breakwater and a bridge crain.

Key Words: Sensitivity analysis, Optimization, Automatic design, Duality.

1 Introduction and motivation

Engineering design of structural elements is a complicated and highly iterative process that
usually requires a long experience. Iterations consists of a trial-and-error selection of the
design variables or parameters, together with a check of the safety and functionality con-
straints, until reasonable structures, in terms of cost and safety, are obtained.

Optimization procedures are a good solution to free the engineer from the above men-
tioned cumbersome iterative process, i.e., to automate the design process (see Adeli [1],
Sarma and Adeli [19, 20], Bazaraa et al. [2], Castillo et al. [6], Luenberger [14], etc.).

Safety of structures is the fundamental criterion for design (see Blockley [3], Ditlevsen
and Madsen [9], Eurocode [10], ROM [17], Freudenthal [11], Madsen et al. [15], Melchers
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Figure 1: Parameterized rubblemound breakwater used in the example.

[16], Steward and Melchers [21], Wirsching and Wu [22], Wu, Burnside and Cruse [23]).
To this end, the engineer first identifies all failure modes of the work being designed and
then establishes the safety constraints to be satisfied by the design variables. To ensure
satisfaction of the safety constraints, two approaches are normally used: (a) the classical
safety factor approach, and (b) the probability based approach.

With the purpose of illustration, consider the case of designing a breakwater (see Figure
1) fixing its geometry and dimensions, and checking its behavior with respect to the most
important failure modes, as overtopping, overturning and sliding. This check can be done
using safety factors, failure probabilities or both. Each failure mode has a probability of
occurrence that depends on the selected geometry. A given design must guarantee that the
failure probabilities associated with all failure modes are smaller than the values required by
the engineering codes. In addition, it is fundamental to choose a design that minimizes the
cost.

Classic engineers critizice the probabilistic approach because of its sensitivity to statis-
tical hypotheses, especially tail assumptions (see Galambos [12] and Castillo [5]). Similarly,
Probability based engineers question classical designs because it is not clear how far are their
designs from failure. To avoid the lack of agreement between defenders of both approaches,
and to obtain a more reliable design, Castillo et al. [7, 8] proposed a mixed method, the
failure probability-safety factor method (FPSF) that combines safety factors and failure
probability constraints.

Since the failure probability bounds cannot be directly imposed in the form of standard
constraints, optimization packages cannot deal directly with problems involving them. In
fact, failure probability constraints require themselves the solution of other optimization
problems.

Fortunately, there are some iterative methods for solving this problem that converge in a
few iterations to the optimal solution (see for example [7, 8]). However, since the proposed
method consists of a bilevel minimization process, one that minimizes cost and others that
calculate the reliability indices, and not all variables are involved in both problems, the final
result is that only some sensitivities are obtained. In addition, the method requires the use
of a relaxation factor, that has to be fixed experimentally. In this paper, an alternative
procedure that avoids the relaxation factor and allows to perform a complete sensitivity
analysis is presented.
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The remaining of this paper is structured as follows. In Section 2 the FPSF method for
designing engineering works is presented and the methods proposed by Castillo et al. [7, 8] for
performing a sensitivity analysis are reviewed. In Section 3 an alternative method optimized
to perform a complete sensitivity analysis is presented. In Sections 4 and 5, examples of a
breakwater and a bridge girder are given to illustrate the new proposals. Finally, in Section
6 some conclusions are drawn.

2 The failure probability-safety factor design method

It is important and clarifying to classify the set of variables involved in an engineering design
problem into the following four subsets:

d: Optimization design variables. They are the design variables which values are to be
chosen by the optimization program to optimize the objective function (minimize the
cost). Normally, they define the dimensions of the work being design, as width, thick-
ness, height, cross sections, etc.

η: Non-optimization design variables. They are the set of variables which mean or char-
acteristic values are fixed by the engineer or the code and must be given as data to
the optimization program. Some examples are costs, material properties (unit weights,
strength, Young modula, etc.), and other geometric dimensions of the work being de-
signed.

κ: Random model parameters. They are the set of parameters defining the random vari-
ability and dependence structure of the variables involved. For example, standard
deviations, correlation coefficients, etc.

ψ: Auxiliary or non-basic variables. They are auxiliary variables which values can be
obtained from the basic variables d and η, using some formulas. They are used to
facilitate the calculations and the statement of the problem constraints.

Examples of this classification are later given for the breakwater and the bridge crane ex-
amples.

Then, the engineering design problem (see Castillo et al. [7, 8]) can be stated as:

Minimize
d̄

c(d̄, η̃) (1)

subject to

gi(d̄, η̃) ≥ F 0
i ; ∀i ∈ I (2)

βi(d̄, η̃,κ) ≥ β0
i ; ∀i ∈ I (3)

h(d̄, η̃) = ψ (4)

rj(d̄, η̃) ≤ 0; ∀j ∈ J (5)

where the bars and tildes refer to mean or characteristic values of the variables, c(d̄, η̃) is the
objective function to be optimized (cost function), (2) are the limit state equations related
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to the different failure modes, (3) are constraints that fix the lower bounds on the reliability
indices, (4) are the equations that allow obtaining the auxiliary variables ψ from the basic
variables d and η, and (5) are the geometric or code constraints.

Unfortunately, this problem cannot be solved directly because each of the constraints (3)
involve a complicated integral or another optimization problem, i.e.,

βi(d̄, η̃,κ) = Minimum
di, ηi

βi =

√
n∑

j=1
z2

j (6)

subject to

gi(di,ηi) = 1 (7)

T (di, ηi; d̄, η̃, κ) = z (8)

h(di,ηi) = ψ (9)

where di and ηi are the design points associated with the design d and η random variables
for failure mode i, and T (di,ηi; d̄, η̃,κ) is the usual transformation (Rosenblatt, Nataf) that
converts di and ηi into the standard independent normal random variables z.

The method suggested by Castillo et al. [7, 8] for solving this problem proceeds by
iterations that consist of repeating a sequence of three steps: (1) an optimal (in the sense of
optimizing an objective function) classic design, based on given safety factors, is done, (2)
failure probabilities (reliability indices) or bounds against all failures modes are determined,
and (3) all mode safety factor bounds are adjusted using a relaxation factor. The three
steps are repeated until convergence, i.e., until the safety factors lower bounds and the mode
of failure probability upper bounds are satisfied. More precisely, the method proceeds as
follows:

Step 1. Solving the optimal classic design. An optimal classic design based on the
actual safety factors, that are fixed initially to their corresponding lower bounds, is done. In
other words, the following problem is solved (both the standard and the sensitivity analysis
oriented statements of this problem are provided):

Standard statement Sensitivity analysis statement

Minimize
d̄

c (d̄, η̃) Minimize
d̄,η

c (d̄,η) (10)

subject to

gi(d̄, η̃) ≥ F 0
i ; ∀i ∈ I

h(d̄, η̃) = ψ
rj(d̄, η̃) ≤ 0; ∀j ∈ J

gi(d̄,η) ≥ F 0
i ; ∀i ∈ I

h(d̄,η) = ψ
rj(d̄,η) ≤ 0; ∀j ∈ J

η = η̃

(11)

The result of this process is a set of values of the design variables that satisfy the safety
factor, the auxiliary, the geometric and the code constraints (11). The right hand side
problem allows determining the sensitivities of the cost function c(d̄, η) with respect to the
η̃ values (they are the values of the dual variables associated with the last constraints).
Sensitivities with respect to F 0

i can be obtained from both problems.
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Step 2. Evaluating new β-values. The actual β-values associated with all modes of
failure are evaluated, based on the design values of Step 1, solving for any i ∈ I the problem:

Standard statement Sensitivity analysis statement

Minimize
di,ηi

βi =

√
n∑

j=1
z2

j Minimize
di, ηi,d,η, κaux

βi =

√
n∑

j=1
z2

j (12)

subject to

gi(di,ηi) = 1
T (di,ηi; d̄, η̃,κ) = z

h(di,ηi) = ψ

gi(di,ηi) = 1
T (di, ηi; d̄, η̃, φ) = z

h(di,ηi) = ψ
d = d̄
η = η̃

κaux = κ

(13)

At this step as many optimization problems as the number of modes of failure are solved,
and the sensitivities of the reliability indices βi with respect to d̄, η̃ and κ can be obtained
from the right hand side problem.

Additionally, the design points or points of maximum likelihood d∗i and η∗i for each mode
of failure I are obtained (optimal solutions of the problem (12)-(13)).

Step 3: Updating safety factor values. The safety factors bounds are adequately
updated for the actual safety factors and the actual β-values to satisfy the required bounds.
To this end, the safety factors are modified using the expression

Fi = max
(
Fi + ρ (β0

i − βi), F
0
i

)
; i ∈ I, (14)

where ρ is a small positive constant (relaxation factor). The max function is used in order
to guarantee that the classical safety factors constraints are satisfied.

3 Alternative solution method

The iterative method presented in Section 2 has two shortcomings:

1. It requires a relaxation factor ρ that need to be fixed by trial and error. An adequate
selection leads to a fast convergence of the process, but an inadequate selection can
lead to lack of convergence.

2. The cost sensitivities with respect to F 0
i and η̃, and the β-sensitivities with respect to

d̄, η̃,κ can be directly determined, but the cost sensitivities with respect to β0
i and κ

are not easily available.

In this section an alternative method is given that solves both shortcomings, and in
addition exhibit a better convergence. The method is as follows.

Master Problem: Minimize
d̄,η

c(d̄,η) (15)
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subject to

gi(d̄,η) ≥ F 0
i ; i ∈ I (16)

β
(k)
i +λ

(k)T

i (d̄−d̄
(k)

)+µ
(k)T

i (η−η̃)+δ
(k)T

i (κaux−κ) ≥ β0
i ; i ∈ I; k = 1, · · · , ν − 1 (17)

h(d̄,η) = ψ (18)

rj(d̄,η) ≤ 0; ∀j ∈ J (19)

η = η̃ (20)

κaux = κ (21)

where we obtain d̄
(ν)

, and ∀i:

Subproblem: β
(ν)
i = Minimize

di,ηi, z,d,η,κaux

βi =

√
n∑

j=1
z2

j (22)

subject to

gi(di,ηi) = 1 (23)

T (di, ηi;d,η,κ) = z (24)

h(di,ηi) = ψ (25)

d = d̄
(ν)

: λ
(ν)
i (26)

η = η̃ : µ
(ν)
i (27)

κaux = κ : δ
(ν)
i (28)

The process of solving iteratively these two problems is repeated starting from ν = 0 and
increasing the value of ν in one unit, until convergence of their solutions is obtained. Note
that at iteration ν = 0 there is no hyperplane approximation (17) of constraint (3).

It should be noted that problem (15)-(28) is a relaxation of problem (1)-(5) in the sense
that functions βi(·) are approximated using cutting hyperplanes. Functions βi(·) become
more precisely approximated as the iterative procedure progresses, which implies that prob-
lem (15)-(28) reproduces more exactly problem (1)-(5) (see Kelly [13]). Observe, addition-
ally, that cutting hyperplanes are constructed using the dual variable vector associated with
constraints (26), (27) and (28) in problems (22)-(28) (the subproblems).

It should be noted that equations (26), (27) and (28) allow determining the sensitivities
of the reliability indices βi with respect to d, η̃ and κ in a straightforward manner. Similarly,
equations (17) and (21) allow obtaining the sensitivities of the cost with respect to β0

i and
κ, which are the new contributions of the proposed method. Thus, in addition to a better
convergence rate, the proposed method permits determining extra sensitivities.

From the computational point of view it is very important to mention that the solution
obtained using the proposed method with or without sensitivity analysis is the same. There-
fore, to improve the efficiency of the process the problems are solved without sensitivity
analysis, and once the optimal solution is attained the same problem with sensitivity anal-
ysis is solved using just one iteration because the starting point is the optimal one. Thus,
convergence in the sensitivity analysis is guaranteed.
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3.1 The case of partial safety factors

An additional advantage of the proposed methodology is that partial safety factors associated
with random variables can be used, instead of global safety factors. Thus, the method can
be used as a calibration tool of the standard codes based on partial safety factors.

Then, the engineering design problem in this case can be stated as:

Minimize
d̄

c(d̄, η̃) (29)

subject to

gi(γ
T (d̄, η̃)) ≥ 1; ∀i ∈ I (30)

βi(γ
T (d̄, η̃),κ) ≥ β0

i ; ∀i ∈ I (31)

h(γT (d̄, η̃)) = ψ (32)

rj(γ
T (d̄, η̃)) ≤ 0; ∀j ∈ J (33)

where γ is the vector of partial safety factors related to variables d̄ and η̃, and T is used to
refer to the transpose matrix.

In this case the proposed method proceeds as follows:

Master Problem: Minimize
d̄,η,γaux

c(d̄,η) (34)

subject to

gi(γ
T
aux(d̄, η)) ≥ 1; i ∈ I (35)

β
(k)
i + λ

(k)T

i (d̄− d̄
(k)

) + µ
(k)T

i (η − η̃) + δ
(k)T

i (κaux − κ) ≥ β0
i ; i ∈ I; k = 1, · · · , ν − 1(36)

h(γT
aux(d̄, η)) = ψ (37)

rj(γ
T
aux(d̄, η)) ≤ 0; ∀j ∈ J (38)

η = η̃ (39)

κaux = κ (40)

γaux = γ (41)

where we obtain d̄
(ν)

, then the same subproblem (22)-(28) is solved for all failures modes.
The process of solving iteratively these two problems is repeated starting from ν = 0 and
increasing the value of ν in one unit, until convergence of their solutions is obtained.

Note that using this method is possible to obtain the cost sensitivities with respect the
partial safety factors γ.

4 Example of application. Design of a rubblemound

breakwater

Consider the construction of a rubblemound breakwater (see Figure 1) to protect a harbor
area from high waves during a storm. The breakwater must be strong enough to survive the
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attack of storm waves, and the crest must be high enough to prevent the intrusion of sea
water onto the harbor by overtopping. For simplicity, only overtopping failure is considered.
Other failure modes, such us armor failure, crownwall sliding failure, etc. are ignored.

Our goal is an optimal design of the breakwater based on minimizing the construction
cost Cco:

Cco = ccvc + cava

where vc and va are the concrete and armor volumes, respectively, and cc and ca are the
respective construction costs per unit volume.

For a rubblemound breakwater of slope tan αs and freeboard Fc (see Figure 1), and a
given wave of height H and period T , the volume of water that overtops the structure can be
estimated from the volume of water that would rise over the extension of the slope exceeding
the freeboard level. With this approximation, overtopping (failure) occurs whenever the
difference between the maximum excursion of water over the slope, Ru, called wave run-up,
exceeds the freeboard Fc. Thus, overtopping failure occurs if

Fc −Ru < 0 (42)

Based on experiments, the following equation has been proposed to evaluate the dimen-
sionless quantity Ru/H:

Ru

H
= Au

(
1− eBuIr

)

where Au and Bu are given coefficients that depend on the armor units and Ir is the Iribarren
number

Ir =
tan αs√

H/L

where αs is the seaside slope angle and L is the wave length, obtained from the dispersion
equation (

2π

T

)2

= g
2π

L
tanh

2πDwl

L

and Dwl is the design water level.
In addition, due to construction reasons the slope αs is limited by:

1/3 ≤ tan αs ≤ 2/3

The set of variables and parameters involved in this problem, as indicated in Section 2,
can be partitioned into four subsets:

1. Optimization design variables: d = {Fc, tan αs}.
2. Non-optimization design variables: η = {Au, Bu, Dwl, H, T, cc, ca}.
3. Random model parameters: κ = {Hs, T̄ , dst, σAu , σBu}, where Hs is the significant wave

height, T̄ is the average value of the period of the sea waves, and dst is the sea state
duration.

4. Auxiliary or non-basic variables: ψ = {Ir, va, vc, Ru, L, d}.

8



The basic random variables in this problem are H,T, Au and Bu. All variables are
assumed to be independent, H and T with cumulative distribution functions:

FH(H) = 1− e−2(H/Hs)2 ; H ≥ 0 (43)

and
FT (T ) = 1− e−0.675(T/T̄ )4 ; T ≥ 0 (44)

and Au and Bu are assumed to be normal N(µAu , σAu) and N(µBu , σBu), respectively.
If Pf is the probability of overtopping failure due to a single wave, the lifetime breakwater

failure probability becomes
PD

f (d) = 1− (1− Pf(d))N (45)

where N = θdst/T̄ is the equivalent number of waves during the design sea state for period D,
θ is a coefficient measuring the degree of independence of the waves (θ = 1 for independence
and θ = 0 for complete dependence), dst is its duration, and T̄ is the mean period of waves.
Equation (45) leads to

Φ(−β0) = Pf(d) = 1−
(
1− PD

f (d)
)1/N

(46)

where β0 is the reliability index associated with a single wave.
Then, the design problem consists of solving the following problem, equivalent to (1)-(5):

Minimize
Fc, tan αs

Cco = ccvc + cava (47)

subject to

Fc/Ru ≥ F 0 (48)

β ≥ β0 (49)

Ru

H̃
= µAu

(
1− eµBuIr

)
(50)

Ir =
tan αs√

H̃/L
(51)

(
2π

T̃

)2

= g
2π

L
tanh

2πDwl

L
(52)

vc = 10d (53)

va =
1

2
(DWL + 2)(46 + DWL +

(DWL + 2)

tan α
(ν)
s

) (54)

Fc = 2 + d (55)

1/3 ≤ tan αs ≤ 2/3 (56)

where H̃ = 1.8Hs and T̃ = 1.1Tz are the characteristic values of H and T , respectively, that
are used as deterministic values in the classical design. Note that equation (48) corresponds
to (2), (49) is (3), (50)-(55) are associated with (4) and (56) corresponds to (5).
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The reliability index against overtopping β is obtained solving the following problem:

Minimize
H,T, Au, Bu

β =

√
4∑

j=1
z2

j (57)

Φ(z1) = 1− e−2(H/Hs)2 (58)

Φ(z2) = 1− e−0.675(T/T̄ )4 (59)

z3 =
Au − µAu

σAu

(60)

z4 =
Bu − µBu

σBu

(61)

Fc/Ru = 1 (62)

Ru

H
= Au

(
1− eBuIr

)
(63)

Ir =
tan αs√

H/L
(64)

(
2π

T

)2

= g
2π

L
tanh

2πDwl

L
(65)

where (58)-(61) correspond to the Rosenblatt transformation (8), (62) correspond to (7) and
(63)-(65) correspond to (9).

4.1 A numerical example

To perform a reliability-based design of a particular rubblemound breakwater, assume the
following values for the variables involved:

Dwl = 20 m; Au ∼ N(1.05, 0.32) ; Bu ∼ N(−0.67, 0.1342) ; cc = 60 euro/m3;

ca = 2.4 euro/m3; Hs = 5 m; T̄ = 10 s; dst = 1 h; D = 1 year; PD
f = 0.5; F 0 = 1.05

This leads to (see (46)) Pf = 0.00192 and β0 = 2.89.
The solution of this problem, using the method above, is shown in Table 1. The error

column measures the difference between consecutive iterations. It turns out that convergence
of the process requires only 3 iterations.

Note that since the initial design does not satisfies the reliability index constraint, the
final design is more expensive than the initial one. This means that the reliability index
constraint is more strict than the safety factor constraint. More precisely, the reliability
index is β = 2.89, the same as the lower bound selected β0, and the real safety factor is
greater than the bound F 0 = 1.05.

A complete sensitivity analysis for the cost and the β sensitivities is shown in Table
2. Note that the cost increases and the reliabilities decrease as the dispersions (σAu , σBu)
increase. Note also that an increase of Dwl increases the cost and decreases the reliability
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Table 1: Illustration of the iterative process.

ν C(ν)
co tan α(ν)

s F (ν)
c F (ν) β(ν) error(ν)

0 5746.9 0.333 5.770 1.050 2.036 0.4193622
1 6817.3 0.333 7.554 1.375 2.826 0.2793755
2 6911.5 0.333 7.711 1.403 2.890 0.0221902
3 6912.0 0.333 7.712 1.403 2.890 0.0001303

Table 2: Sensitivities for the rubblemound breakwater problem.

x
∂c(d̄, η̃)

∂x

∂β

∂x

tan αs − −4.854

Fc − 0.406

µAu 2949 −1.996

µBu -3073 2.080

Hs 686 −0.464

Tz 145 −0.098

σAu 5103 −3.454

σBu 2475 −1.675

Dwl 288 −0.016

cc 57 0.000

ca 1452 0.000

F 0 0 −
β0 1477 −

against overtopping. This is a valuable information for code makers and construction engi-
neers, because they can know the cost or reliability increase due to a change in safety factors,
failure probability bounds, or uncertainty parameters. Note also that since the reliability
index lower bound is active its cost sensitivity is 1477, whereas the cost sensitivity related
to the safety factor lower bound is 0, because constraint (48) is inactive.
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Figure 2: Illustration of the bridge crane.

5 Bridge Crane Design

Modern industries require equipment for handling large, heavy, or bulky objects. That is
why there are engineers specializing in overhead material handling: Bridge Cranes, Hoists,
and Monorails.

An under running overhead crane with single girder is shown in Figure 2. All its struc-
tural elements must be manufactured in accordance with current mandatory requirements
of the National Safety and Health Act, OSHA Section 1910.179 and 1910.309 as applicable.
Additionally, cranes must be manufactured in accordance with the appropriate standard of
ANSI specifications, the National Electric Code, and the Crane Manufacturers Association
of America (CMAA) specifications. Crane girders are designed and built using, structural
steel beams (reinforced as necessary) or plate box sections. Bridge girder to end truck con-
nections are designed for loadings, stresses and stability in accordance with current CMAA
design specifications.

In this Section we apply the engineering design method developed in Section 3 to the
design of an overhead crane (see Figure 2). In particular, the bridge girder dimensions that
allow trolley travelling horizontally are calculated. It consists of a box section fabricated from
plate of structural steel, for the web, top and bottom plates, so as to provide for maximum
strength at minimum dead weight. Maximum allowable vertical girder deflection shall be a
function of span.

Consider the girder and the cross section shown in Figure 2, where L is the span or
distance from centerline to centerline of runway rails, b and e are the flange width and
thikness, respectively and hw and tw are the web height and thikness, respectively.

As indicated in Section 2, the set of variables involved in the problem can be partitioned
into four subsets:

1. Optimization design variables: d = {b, e, tw, hw}.
2. Non-optimization design variables: η = {P, fy, E, ν, γy, L, cy}, where P is the maxi-

mum load supported by the girder, fy is the value of the elastic limit of structural
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Figure 3: Illustration of the bridge girder modes of failure.

steel, E is the Young modulus of the steel, ν is the Poisson modulus, γy is the steel
unit weight, L is the span length and cy is the steel cost.

3. Random model parameters: κ = {λP , δP , σfy , σE, σν , cvL, cvγy , cvb, cve, cvtw , cvhw}, where
cv refers to the coefficient of variation and σ to standard deviation of the corresponding
variable, λP and δP are the Gumbel distribution model parameters for the maximum
load and cvd is the coefficient of variation of the optimization design variables.

4. Auxiliary or non-basic variables: (to be defined later)

ψ = {W, Ixx, Iyy, It, G, σ, τ, Mcr, δ,M, T}.

In the classical approach the partial safety factors are used and the variables are as-
sumed to be deterministic, i.e., the mean or characteristic (extreme percentiles) values of
the variables are considered.

Assume that the following four failure modes are considered (see Figure 3):

1. Maximum allowed deflection. The maximum deflection constraint is defined (see Figure
3(a)) as the ratio

gd(d̄, η̃) =
δmax

δ
(66)

where δmax is the maximum deflection allowed by codes and δ is the maximum deflection
at the center of the girder.

2. Damage limit state of the steel upper and lower flanges. The ratio of the actual strength
to actual stresses

gu(d̄, η̃) =
fy√

σ2 + 3τ 2
(67)
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is the limit state constraint, and σ and τ are the normal and tangential stresses at the
center of the beam, respectively.

3. Damage limit state of the steel web. The bearing capacity limit state is the ratio of the
shear strength capacity to actual shear stress at the center of the beam

gw(d̄, η̃) =
fy√
3τ

(68)

4. Global Buckling. The global buckling limit state equation is the ratio of the critical
moment against buckling of the cross section to the maximum moment applied at the
center of the beam

gd(d̄, η̃) =
Mcr

M
(69)

The gilder bridge is safe if and only if gd, gu, gw and gb ≥ 1.

5.1 Design constraints

The following constraints are considered.

1. Geometrical and mechanical properties of the girder. The moments of inertia Ixx and
Iyy are

Ixx =
1

12

(
b(hw + 2e)3 − (b− tw)h3

w

)
(70)

Iyy =
1

12

(
2eb3 − twh3

w

)
(71)

whereas the torsional moment of inertia is obtained using

It =
1

3

(
2be3 − hwt3w

)
(72)

The deflection at the center of the beam is calculated using:

δ =
PL3

48EIxx

+
5WL4

384EIxx

(73)

where W is the girder bridge weight per unit length

W = γs(2eb + twhw) (74)

The stresses at the center of the beam are calculated considering:

T = P/2 (75)

M = PL/4 (76)
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where T and M are the shear force and moment, respectively. Thus,

σ =
M(hw + e)

2Ixx

(77)

τ =
T

hwtw
(78)

The critical moment for global buckling is

Mcr =
π

L

√
EGIyyIt (79)

with the auxiliary parameter

G =
E

2(1 + ν)

2. Code and other constraints. The following constraints are fixed by the codes.

The steel thickness must satisfy

0.008 ≤ e ≤ 0.038 (80)

0.008 ≤ tw ≤ 0.038 (81)

and the maximum deflection allowed is

δmax = L/888

To avoid local buckling (see Figure 3(c)) the design satisfy the following restriction

b

2e
≤ 15

√
276

fy

(82)

where fy is the steel strength in MPa.

To support the trolley unit which travels on the bottom flange of the bridge girder and
carries the hoist, the minimum flange width must be 0.30 m.

5.2 A numerical example

To perform a probabilistic design in the bridge girder example using the partial safety factor
method, the joint probability density of all variables is required. All basic random variables
are assumed to be independent. The statistical distributions of the variables involved are
taken from the Probabilistic Model Code:

1. The maximum supported load has a Gumbel (Maximum) distribution with the follow-
ing parameters

λP = 600 kN ; δP = 70.2 kN
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2. Variables fy, E and ν are assumed to have log-normal distributions

log fy ∼ N(µfy , σfy); log E ∼ N(µE, σE); log ν ∼ N(µν , σν)

where
µfy = log(395 MPa); µE = log(210000 MPa); µν = log(0.3)

and the standard deviations:

σfy = 0.07; σE = 0.03; σν = 0.03.

3. Variables L, γy, b, e, tw and hw have normal distributions

L ∼ N(µL, µLcvL); γy ∼ N(µγy , µγycvγy); b ∼ N(µb, µbcvb)

e ∼ N(µe, µecve); tw ∼ N(µtw , µtwcvtw); hw ∼ N(µhw , µhwcvhw)

The means of L and γy are:

µL = 6 m; µγy = 78.5 kN/m3

and the means of the design variables b, e, tw and hw are the optimal values obtained
from classical design and their coefficients of variation are:

cvL = 0.01; cvγy = 0.01; cvb = cve = cvtw = cvhw = 0.01

The constant parameter is:
cy = 0.24 euro/kN

Assume also that the required reliability bounds are:

β0
d = 1.7; β0

u = 3.7; β0
w = 3.7; β0

b = 3.1

and the partial safety factors used in the classical problem are:

γP = 1.33; γfy = 0.91; γE = 1.0; γν = 1.0; γγy = 1.0; γL = 1.0

Note that “violation” of limit states with more serious consequences are associated with
higher reliability indices.

Using the Rosenblatt [18] transformation, this set is transformed into a set of standard
independent normal N(0, 1) random variables Z1, Z2, · · · , Z10 by

Φ(z1) = exp

{
− exp

[
−(P − λP )

δP

]}
(83)

z2 =
log fy − µfy

σfy

z3 =
log E − µE

σE

z4 =
log ν − µν

σν

z5 =
γy − µγy

µγycvγy

z6 =
L− µL

µLcvL

z7 =
b− µb

µbcvd

z8 =
e− µe

µecvd

z9 =
tw − µtw

µtwcvd

z10 =
hw − µhw

µhwcvd

(84)
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Then, minimizing the construction cost (Cco), using the proposed method, the results
shown in Table 3 are obtained. It shows the progress and convergence of the process, that
is attained after 8 iterations. The initial (ν = 0) iteration column shows the values of the
design variables, and the actual failure β-values, associated with the optimal classical design.
Note that the βb and βd constraints (underlined in Table 3) do not hold. Then, the iterative
process continues until all constraints are satisfied.

The last column of the table shows the values of the design variables

b, e, tw, hw

together with the final β-values.
The active values appear underlined in the last column of Table 3, from which the fol-

lowing conclusions can be drawn.

1. The process converges in only 8 iterations.

2. The list of actual β-reliability indices is obtained.

3. Due to the strict constraints imposed by the serviceability limit state (maximum de-
flection), and global buckling constraints the probability bounds βb and βd are active.

4. The final design (iteration 8) is more expensive than the initial design (iteration 0),
because this does not satisfy the βb and βd constraints.

The sensitivities for the composite beam example are given in Table 4 that gives the
cost sensitivities associated with the optimal classical design. It allows to know how much
a small change in a single data value changes the total cost of the composite beam. This
information is extremely useful during the construction process to control the cost, and for
analyzing how the changes in the safety factors required by the codes influence the total
cost of engineering works. For example, a change of one euro in the unit cost cy of the steel
leads to a cost increase of 10070 euros (see the corresponding entry in Table 4). Similarly,
an increase in the partial safety factor γP does not change the cost (because the associated
constraint is inactive), and an increase of one unit in the bridge span leads to an increase of
the cost of 757 euros.

It also gives the sensitivities associated with the β-values too. It is useful to know how
much a small change in a single data value changes the corresponding β-values, for example,
the means, variation coefficients, etc. In this table the designer can easily analyze how the
quality of the material (reduced standard deviations in fy) or precision in the applied loads
(reduced standard deviations in P ) influence the safety of the beam. Note that an increase
in the dispersion (standard deviations or coefficients of variation) leads to a decrease of the
reliability β indices.

6 Conclusions

The main conclusions that can be derived from the previous sections are:
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Table 3: Illustration of the iterative process.

ν Units 0 1 2 3 4 5 6 7 8

C(ν)
co euro 2304.1 2298.3 2464.6 2524.3 2549.8 2558.3 2560.2 2560.8 2560.9

b(ν) cm 43.14 30.00 37.89 33.52 36.35 35.05 35.75 35.41 35.59
e(ν) mm 16.41 24.20 21.04 24.65 23.03 24.00 23.55 23.79 23.67
t(ν)
w mm 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00

h(ν)
w cm 77.83 72.67 73.24 72.64 72.68 72.57 72.62 72.59 72.61

β(ν)
u − 4.127 3.873 4.170 4.226 4.265 4.271 4.276 4.276 4.277

β
(ν)
t − 7.161 6.836 6.872 6.834 6.837 6.830 6.833 6.831 6.832

β
(ν)
b − 1.547 1.666 2.622 2.916 3.049 3.087 3.097 3.099 3.100

β
(ν)
d − 1.549 0.955 1.493 1.623 1.673 1.693 1.698 1.700 1.700

1. The failure-probability-safety-factor method for engineering design gives a dual infor-
mation on the safety of the structures being designed: safety factors and failure prob-
abilities, giving a double way of safety control, and interesting calibration possibilities
for the classic and probability based designs. Errors in the safety factor assumptions
approach can be detected by the failure probability approach and vice versa.

2. The proposed alternative method for solving the failure-probability-safety-factor method
converges in a few iterations, has a robust computational behavior, and is faster than
the method proposed in Castillo et al. [7, 8], that uses a relaxation factor.

3. Since the alternative proposed method involves all the adequate variables in the right
hand side of the constraints, a complete sensitivity analysis of the cost function and
the β reliabilities associated with all modes of failure with respect to all data values
can be easily performed.
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