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This paper deals with the problem of local sensitivity analysis in regression, i.e., how sensitive the
results of a regression model (objective function, parameters, and dual variables) are to changes
in the data. We use a general formula for local sensitivities in optimization problems to calculate
the sensitivities in three standard regression problems (least squares, minimax, and least absolute
values). Closed formulas for all sensitivities are derived. Sensitivity contours are presented to help in
assessing the sensitivity of each observation in the sample. The dual problems of the minimax and
least absolute values are obtained and interpreted. The proposed sensitivity measures are shown to
deal more effectively with the masking problem than the existing methods. The methods are illustrated
by their application to some examples and graphical illustrations are given.

Keywords: Dual problem; Dual variables; Mathematical programming; Optimization problems;
Outliers; Primal problem

1. Introduction and motivation

Regression models are frequently used to analyse data and to describe the reality being
observed. Various methods are used to estimate the parameters of a regression model based
on data. Methods of estimation include least squares (LS), minimax (MM), and least absolute
values (LAV). Though MM and LAV methods had initially a great success, they were obscured
by the appearance of the LS method. Later, they somewhat recovered from this set back (see
[1, 2]), when it was discovered that they correspond to maximum likelihood estimators for the
uniform and double exponential residuals, respectively, but they returned to obscurity mainly
due to their associated computational complexities. Recently, Portnoy and Koenter [3] have
shown the interesting result that there are algorithms that make them competitive with the LS
method, and even superior for some sample sizes.
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2 E. Castillo et al.

All these methods, however, can be substantially influenced by small changes in the data,
hence the selected model is strongly dependent on the available data. It is, therefore, essential
for data analysts to be able to assess the sensitivity of regression results to various perturbations
in the data, so as to make adequate corrections when necessary. Sensitivity analysis is important
because it adds quality to statistical studies.

Most of the proposed methods use the deletion approach. Let x1, x2, . . . , xn be a random
sample drawn from f (x; θ), which depends on a possibly vector-valued parameter θ . The
deletion approach consists of taking the difference between two estimates of a parameter θ : an
estimate θ̂ obtained from the full data and the same estimate θ̂(i) obtained after an observation
xi is deleted from the data. Large scaled difference indicates that the observation is influential
on the parameter estimate. There is a large literature on this approach; see, for example, the
books by Belsley, Kuh, and Welsch [4], Cook and Weisberg [5], Atkinson [6], Chatterjee and
Hadi [7], Jones and Ling [8], Weissfeld and Schneider [9, 10], Schwarzmann [11], Paul and
Fung [12], Escobar and Meeker [13], Hadi [14], Hadi and Simonoff [15], Peña andYohai [16],
Barrett and Gray [17], Mayo and Gray [18], Saltelli et al. [19], and Winsnowski et al. [20].

Another approach to sensitivity analysis, proposed by Cook [21], is a weighted perturbation
approach, where each observation is given a weight ωi , with 0 ≤ ωi ≤ 1. The influence of an
observation xi is then measured by the likelihood displacement

LD(ω) = 2[L(θ̂) − L(θ̂ω)], (1)

where ω = {ω1, . . . , ωn}, θ̂ is the maximum likelihood estimate of θ , and θ̂ω is the maximum
likelihood estimate of θ , when xi is the given weight ω and L(θ̂) is the log-likelihood function
evaluated at θ̂ . The deletion approach can be viewed as giving a weight of either 0 or 1 to
each of the observations in the data. The weighted perturbation approach applies to the least
squares normal regression, but does not apply to the MM and LAV.

In this paper, we present methods for assessing the sensitivity of the parameter estimates
in regression models to changes in the data, not the weights. Furthermore, sensitivity analysis
has been almost exclusively applied to least squares regression. Castillo et al. [22] give the
sensitivities of the objective function to data, but not the sensitivities of the regression parame-
ters to data. In this paper, on one hand, we extend sensitivity analysis to regression parameters
and, on the other hand, to alternative regression methods such as MM and LAV, and include
sensitivities of dual variables to data. The approach is new and very general. In fact, it can be
applied to any model, including linear and nonlinear models, and to any method of estimation
that can be formulated as an optimization problem. The proposed sensitivity measures are
shown to deal more effectively with the masking problem than the existing methods.

The paper is structured as follows. Section 2, reviews the important concept of duality
in optimization problems and gives very important and simple formulas for local sensitivity
analysis. Section 3 introduces the standard linear regression model and describes a data set
to be used as an illustrative numerical example. Sections 4–6 deal with the problem of local
sensitivity analysis in least squares, minimax, and least absolute value regressions, respec-
tively, where closed-form formulas for the sensitivities of the objective function, the parameter
estimates, and the primal and dual variables are obtained. Finally, a summary is given in
section 7.

2. Some background on duality and sensitivity analysis

In this section, we remind the reader about duality and give some closed formulas, which
allow in obtaining the sensitivities of the objective function values and the primal and dual
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Duality and local sensitivity analysis 3

variables of an optimization problem with respect to the data. These formulas allow in dealing
with the problem of sensitivity analysis in the regression problems dealt with in this paper.

2.1 Duality

Consider the following general nonlinear primal problem (P ):

MinimizeβZP = f (β; z) (2)

subject to

h(β; z) = 0; λ (3)

g(β; z) ≤ 0; μ, (4)

where boldfaced letters refer to vectors, β ∈ R
n, z ∈ R

p, h(β; z) ∈ R
� and g(β; z) ∈ R

m, and
λ and μ are the dual variables to be introduced below.

Every primal nonlinear programming problem P of the form (2)–(4), has an associated dual
problem D, which is defined as:

Maximizeλ,μ ZD = In fβ{L(β, λ, μ; z)} (5)

subject to

μ ≥ 0, (6)

where

L(β, λ, μ; z) = f (β; z) + λTh(β; z) + μTg(β; z), (7)

is the Lagrangian function associated with the primal problem (2)–(4), and λ and μ are called
dual variables and they are vectors of dimensions � and m, the number of equalities and
inequalities in the primal problem, respectively.

2.2 Sensitivity in nonlinear problems without constraints

In this section, we consider the sensitivity in unconstrained nonlinear optimization problems.
Suppose now that the problem in equation (2) has no constraints. Let

Fβ(1×n)
= (∇βf (β∗, z))T, (8)

Fz(1×p)
= (∇zf (β∗, z))T, (9)

Fββ(n×n)
= ∇ββf (β∗, z), (10)

Fβz(n×p)
= ∇βzf (β∗, z), (11)

where the asterisk refers to the optimal values. Then, provided that Fββ is invertible, the
sensitivities of the optimal solution (β∗, Z∗) of the problem in equation (2) to changes in the
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4 E. Castillo et al.

data are determined by

∂β

∂z (n×p)

= −F−1
ββFβz, (12)

∂ZP

∂z (1×p)

= −FβF−1
ββ Fβz + Fz = Fz. (13)

For a more complete derivation of sensitivity results, the reader is referred to Castillo et al.
[23, 24].

2.3 Sensitivity in linear programming

Consider the following LP problem

Minimize βZ = cTβ, (14)

subject to

Aβ = b; λ, (15)

where c = (c1, c2, . . . , cn), β = (β1, β2, . . . , βn), b = (b1, b2, . . . , bm) ≥ 0, A is a matrix of
dimensions m × n with elements aij; i = 1, 2, . . . , m; j = 1, 2, . . . , n, and λ are the dual
variables.

Then, the sensitivities of the objective function, primal and dual variables with respect to
data are given by the following closed form and simple formulas (see [25]):

∂Z

∂cj

= βj ; ∂Z

∂aij

= −λiβj ; ∂Z

∂bi

= λi,

∂βj

∂ck

= 0; ∂βj

∂aik

= −ajiβk

∂βj

∂bi

= aji

∂λi

∂cj

= −aji; ∂λi

∂a�j

= −ajiλ�; ∂λi

∂b�

= 0

(16)

where aji are the elements of A−1.

3. An example

In this section, we introduce the linear regression model and an illustrative numerical example
that we will use throughout this paper.

The standard linear regression model is

Y = Xβ + ε, (17)

where Y = (y1, . . . , yn)
T is an n × 1 vector of response variables, X is an n × k matrix of rank

k of predictor variables, xT
i is the ith row in X, β is a k × 1 vector of regression parameters,

and ε = (ε1, . . . , εn)
T is an n × 1 vector of independent random errors.

Castillo et al. [22] use these results to obtain only the sensitivity of the objective function
with respect to changes in the data. In this paper, we show that the above results can also be used
to derive the sensitivity of the estimated parameters with respect to changes in the data. Note
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Duality and local sensitivity analysis 5

that these sensitivities are more interesting than those related to the objective function values.
We apply them in sections 4–6 to three regression estimation problems: the least squares (LS),
minimax (MM), and least absolute value (LAV).

We illustrate the methods using the star cluster data set, which is a well-known data set in
the area of sensitivity analysis and outliers detection and it has been analysed by many authors.
Two variables are measured for each of the 47 stars: the effective temperature at the surface
of a star (x) and the light intensity of the star (y). These real data, taken from Rousseeuw and
Leroy [26], p. 57, is shown in table 1. The scatter plot of Y versus X in figure 1 shows that

Table 1. The stars data (Y and X), studentized residuals (ri ),
and Cook’s distances (Ci).

Index (i) yi xi ri Ci

1 5.23 4.37 0.43 0.002
2 5.74 4.56 1.49 0.043
3 4.93 4.26 −0.19 0.000
4 5.74 4.56 1.49 0.043
5 5.19 4.30 0.30 0.001
6 5.46 4.46 0.91 0.011
7 4.65 3.84 −1.06 0.047
8 5.27 4.57 0.66 0.009
9 5.57 4.26 0.94 0.010

10 5.12 4.37 0.23 0.001
11 5.73 3.49 0.66 0.053
12 5.45 4.43 0.86 0.010
13 5.42 4.48 0.85 0.011
14 4.05 4.01 −1.97 0.090
15 4.26 4.29 −1.35 0.020
16 4.58 4.42 −0.68 0.006
17 3.94 4.23 −1.97 0.045
18 4.18 4.42 −1.39 0.024
19 4.18 4.23 −1.54 0.028
20 5.89 3.49 0.97 0.114
21 4.38 4.29 −1.14 0.014
22 4.22 4.29 −1.42 0.022
23 4.42 4.42 −0.97 0.012
24 4.85 4.49 −0.15 0.000
25 5.02 4.38 0.06 0.000
26 4.66 4.42 −0.54 0.004
27 4.66 4.29 −0.65 0.005
28 4.90 4.38 −0.15 0.000
29 4.39 4.22 −1.18 0.017
30 6.05 3.48 1.28 0.202
31 4.42 4.38 −1.00 0.011
32 5.10 4.56 0.35 0.002
33 5.22 4.45 0.47 0.003
34 6.49 3.49 2.14 0.552
35 4.34 4.23 −1.26 0.019
36 5.62 4.62 1.33 0.043
37 5.10 4.53 0.33 0.002
38 5.22 4.45 0.47 0.003
39 5.18 4.53 0.47 0.004
40 5.57 4.43 1.08 0.015
41 4.62 4.38 −0.64 0.005
42 5.06 4.45 0.19 0.000
43 5.34 4.50 0.73 0.008
44 5.34 4.45 0.69 0.006
45 5.54 4.55 1.13 0.024
46 4.98 4.45 0.05 0.000
47 4.50 4.42 −0.82 0.008
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6 E. Castillo et al.

Figure 1. Scatter plot of Y versus X for the star cluster data and the resulting least squares regression line.

there is a direct relationship between the two variables for all the stars except for four unusual
stars at the upper-left corner of the graph (cases 11, 20, 30, and 34). These stars, which are
known as the giant stars, have low temperature with high light intensity. They can be expected
to exert undue influence on the estimated regression parameters.

It should be noted here that we have selected a two-dimensional example with the purpose of
illustrating concepts using some graphical displays that are only possible for two dimensions.
There is no loss of generality, however, because the method works for any dimensions.

Let us now fit a linear model to the data using least squares and try to find these influential
observations using existing regression diagnostic measures. The least squares line is found to
be y = 6.979 − 0.455x. This line is drawn on the scatter plot in figure 1. Note here the effects
of the four giant stars on the least squares regression line. The estimated line has a negative
slope, which is contrary to the expectation of the relationship between light and temperature.

Two of the most commonly used ones are the internally studentized residuals and Cook’s
distances [27]. These are shown in the last two columns in table 1. Figure 2 shows the index
plots of the internally studentized residual and Cook’s distance. It can be seen from these
graphs that the studentized residuals fail to detect any of the four giant starts. Cook’s distance
nominates only two observations as influential: observation 34 is clearly separated from all

Figure 2. Index plots of the studentized and Cook’s distance for the stars data.
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Duality and local sensitivity analysis 7

other points followed by observation 30. Thus, the existing sensitivity methods based on least
squares fails to detect the influence of the four stars on the least squares result. This is due
to the well-known problem of masking (the least squares estimates are not-robust). We shall
see in the following sections of the paper that the proposed sensitivity measures succeed in
detecting all four points.

4. Least-squares regression

4.1 The least-squares regression problem

The least squares method leads to the following optimization problem

MinimizeβZLS =
n∑

i=1

(yi − XT
i β)2. (18)

Since the optimization problem in equation (18) does not have any constraints, the
sensitivities can be calculated using equations (8)–(11), which in this case becomes

Fβ(1×k) = (∇βf (β̄, z))T = −2eTX = 0, (19)

Fz(1×(k+1))
= (∇zf (β̄, z))T = 2(eT| − eT ⊗ βT), (20)

Fββ(k×k)
= ∇ββf (β̄, z) = 2XTX, (21)

Fβz(k×n(k+1))
= ∇βzf (β̄, z) = 2(−XT|βT ⊗ XT − Ik ⊗ eT), (22)

where e is the vector of errors, and it has been taken into account that for the LS method
eTX = 0, in equations (12) and (13), leading to

∂β

∂y k×n

= (XTX)−1XT, (23)

∂β

∂x k×nk
= −(XTX)−1(βT ⊗ XT − Ik ⊗ eT), (24)

∂Z∗
LS

∂y 1×n

= 2eT, (25)

∂Z∗
LS

∂x 1×nk
= −2(eT ⊗ βT). (26)

Note that the matrix with the sensitivities of the β with respect to y is known in the outlier
detection literature as the catcher matrix.

From equations (23) to (26) one immediately obtains the following formulas for the
sensitivities:

∂βj

∂yi

=
k∑

r=1

cjrxir, (27)

∂βj

∂xst
= −

k∑
r=1

cjr[βtxsr − δtres], (28)
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8 E. Castillo et al.

∂Z∗
LS

∂yi

= 2ei, (29)

∂Z∗
LS

∂xst
= −2esβt , (30)

where cij are the elements of matrix (XTX)−1, δtr is the Kronecker delta function, and ei is the
ith residual. To be meaningfully interpreted and comparable, we use the standardized versions
of the above sensitivities by subtracting their means and dividing by their standard deviations.
For example, the standardized version of equations (29) becomes

SLS(yi) = ei

σ̂
√

1 − pii
, (31)

where pii is the ith leverage value (the ith diagonal element of P = X(XTX)−1XT) and

σ̂ 2 = eTe
n − k

. (32)

Similarly, the standardized version of equation (30) becomes

SLS(xij) = ei β̂j

σ̂

√
(1 − pii)[σ̂ 2cjj + β̂2

j ]
, i = 1, 2, . . . , n, j = 1, 2, . . . , k, (33)

where cjj is the j th diagonal element of (XTX)−1.
It is interesting to note that these standardized sensitivities possess the following proper-

ties:

1. Apart from degenerate cases, all the standardized sensitivities with respect to all data points
are different from zero.

2. The standardized sensitivities ∂Z∗
LS/∂yi and ∂Z∗

LS/∂xij coincide in absolute value, but the
sign of the second depends on the sign of the corresponding βj .

3. The standardized sensitivities ∂βs/∂yi and ∂βr/∂yi coincide in absolute value, but their
signs depend on the point positions.

4. The standardized sensitivities ∂βs/∂xij and ∂βr/∂xij coincide in absolute value, but their
signs depend on the point positions.

4.2 A numerical example

Let us now compute the sensitivities for the stars data. Using equations (27)–(30) the objective
function and the parameters sensitivities with respect to the data z = (y, X) have been obtained.
Table 2 shows the standardized sensitivities of ZLS, β0, β1 with respect to the data. It can be
observed that the properties of these sensitivities mentioned above hold in this table.

Figure 3 shows the scatter plot of the star cluster data, where the points are sorted by their
objective function sensitivities (upper graph) and by the slope or intercept sensitivities (lower
graph). Thus, the higher the number next to a point the more sensitive the results with respect
to changes in the data point.

The sensitivity contours in these plots have been obtained as follows. A new data point
(xn+1, yn+1) has been assumed to enter the sample and then the sensitivities associated with
this point have been re-calculated as a function of its coordinates. In this way, these contours
permit in determining the sensitivity of a new point entering the sample, or, approximately,
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Duality and local sensitivity analysis 9

Table 2. Standardized sensitivities of Z, β0, β1 with respect to data.

ZLS β0 β1

Index Y X (X, Y ) Y X (X, Y ) Y X (X, Y )

1 0.430 0.430 0.608 −0.209 −0.466 0.511 0.209 0.466 0.511
2 1.495 1.495 2.114 −0.869 −1.653 1.868 0.869 1.653 1.868
3 −0.195 −0.195 0.276 0.174 0.229 0.288 −0.174 −0.229 0.288
4 1.495 1.495 2.114 −0.869 −1.653 1.868 0.869 1.653 1.868
5 0.302 0.302 0.427 0.035 −0.286 0.288 −0.035 0.286 0.288
6 0.914 0.914 1.292 −0.521 −1.008 1.135 0.521 1.008 1.135
7 −1.036 −1.036 1.465 1.634 1.381 2.139 −1.634 −1.381 2.139
8 0.664 0.664 0.939 −0.904 −0.852 1.242 0.904 0.852 1.242
9 0.947 0.947 1.340 0.174 −0.883 0.900 −0.174 0.883 0.900

10 0.234 0.234 0.331 −0.209 −0.275 0.345 0.209 0.275 0.345
11 0.607 0.607 0.859 2.850 0.058 2.851 −2.850 −0.058 2.851
12 0.871 0.871 1.232 −0.417 −0.944 1.032 0.417 0.944 1.032
13 0.859 0.859 1.214 −0.591 −0.971 1.136 0.591 0.971 1.136
14 −1.969 −1.969 2.784 1.043 2.154 2.393 −1.043 −2.154 2.393
15 −1.366 −1.366 1.932 0.070 1.346 1.348 −0.070 −1.346 1.348
16 −0.689 −0.689 0.975 −0.382 0.584 0.698 0.382 −0.584 0.698
17 −1.986 −1.986 2.809 0.278 1.997 2.017 −0.278 −1.997 2.017
18 −1.403 −1.403 1.985 −0.382 1.279 1.335 0.382 −1.279 1.335
19 −1.558 −1.558 2.203 0.278 1.580 1.604 −0.278 −1.580 1.604
20 0.893 0.893 1.262 2.850 −0.220 2.859 −2.850 0.220 2.859
21 −1.152 −1.152 1.629 0.070 1.138 1.140 −0.070 −1.138 1.140
22 −1.438 −1.438 2.033 0.070 1.416 1.417 −0.070 −1.416 1.417
23 −0.975 −0.975 1.379 −0.382 0.862 0.943 0.382 −0.862 0.943
24 −0.151 −0.151 0.213 −0.626 0.004 0.626 0.626 −0.004 0.626
25 0.063 0.063 0.090 −0.243 −0.117 0.270 0.243 0.117 0.270
26 −0.547 −0.547 0.773 −0.382 0.445 0.587 0.382 −0.445 0.587
27 −0.652 −0.652 0.923 0.070 0.651 0.655 −0.070 −0.651 0.655
28 −0.151 −0.151 0.213 −0.243 0.091 0.260 0.243 −0.091 0.260
29 −1.191 −1.191 1.685 0.313 1.231 1.270 −0.313 −1.231 1.270
30 1.170 1.170 1.655 2.885 −0.482 2.925 −2.885 0.482 2.925
31 −1.008 −1.008 1.425 −0.243 0.926 0.957 0.243 −0.926 0.957
32 0.352 0.352 0.498 −0.869 −0.541 1.024 0.869 0.541 1.024
33 0.477 0.477 0.675 −0.487 −0.575 0.754 0.487 0.575 0.754
34 1.964 1.964 2.777 2.850 −1.263 3.117 −2.850 1.263 3.117
35 −1.272 −1.272 1.799 0.278 1.302 1.331 −0.278 −1.302 1.331
36 1.329 1.329 1.880 −1.077 −1.540 1.879 1.077 1.540 1.879
37 0.328 0.328 0.464 −0.765 −0.494 0.910 0.765 0.494 0.910
38 0.477 0.477 0.675 −0.487 −0.575 0.754 0.487 0.575 0.754
39 0.471 0.471 0.666 −0.765 −0.633 0.992 0.765 0.633 0.992
40 1.086 1.086 1.535 −0.417 −1.152 1.225 0.417 1.152 1.225
41 −0.651 −0.651 0.920 −0.243 0.578 0.627 0.243 −0.578 0.627
42 0.192 0.192 0.271 −0.487 −0.297 0.570 0.487 0.297 0.570
43 0.732 0.732 1.035 −0.660 −0.863 1.087 0.660 0.863 1.087
44 0.691 0.691 0.978 −0.487 −0.784 0.923 0.487 0.784 0.923
45 1.130 1.130 1.598 −0.834 −1.290 1.536 0.834 1.290 1.536
46 0.049 0.049 0.069 −0.487 −0.158 0.512 0.487 0.158 0.512
47 −0.832 −0.832 1.177 −0.382 0.723 0.818 0.382 −0.723 0.818

determining the sensitivity of any point already existing in the sample. Notice that the closer
the point to the regression line the lower the objective function sensitivity. Note also that the
closer the points to the center of gravity the smaller the sensitivity with respect to the beta
parameters.

The most interesting revelation of sensitivity analysis can be seen in figure 3. The upper
graph shows that only one of the four giant stars exert undue sensitivity on the objective
function estimates. However, the lower graph shows that the four giant stars are the ones with
the greatest sensitivities on the parameters.



451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

10 E. Castillo et al.

Figure 3. Scatter plot of the star cluster data with the sensitivity contours. The number next to a point refers to
the rank of the point according to its sensitivity with respect to the objective function (upper graph) and the slope
parameter (lower graph).

We have seen in section 3 that existing diagnostic measures (e.g., the studentized residuals
and Cook’s distance) based on least squares fail to detect the influence of the four giant stars
on the least squares regression line, which is due to the masking problem. On the contrary,
the four stars are clearly separated from the rest of the points in the index plot of the Y - and
XY -sensitivities. Thus, revealing the superiority of the proposed method with respect to the
existing ones. One reason for the success of the proposed sensitivity measures is that they
measure local sensitivities and not global sensitivities, like the existing diagnostic measures.

We should note here that the proposed sensitivity measures have been tested with other data
sets and have shown similar performance, but the results are not reported here because of lack
of space (figure 4).Q4
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Figure 4. Index plots of the sensitivities in the last three columns in table 2.

5. Minimax regression

5.1 The primal minimax regression problem

The minimax method estimates the regression coefficient by minimizing the maximum error,
that is,

Minimize
β

ZMM = max
i

|yi − xT
i β|, (34)

which is equivalent to the linear programming problem

Minimize
β,ε

ZMM = ZMM = ε (35)

subject to

yi − xT
i β ≤ ε; μ

(1)
i , i = 1, . . . , n, (36)

xT
i β − ẏi ≤ ε; μ

(2)
i , i = 1, . . . , n, (37)

where μ
(1)
i and μ

(2)
i are the dual variables.

We note that the constraint ε ≥ 0, used by practically all authors, is not required because it
is implied by equations (36) and (37).

To obtain the sensitivities of the β estimates with respect to that data, it is convenient to
assume that we are not in a degenerate case, i.e., we assume that a total of exactly k constraints
in equations (36) and (37) are active (degenerated cases can also be dealt with in similar
methods). It is also convenient to reduce the analysis to the sensitivities that are known to be
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non-null. Then, following the steps in section 2, we have

yi − xT
i β − ε = 0; μ+

i , i ∈ I+, (38)

xTβ − yi − ε = 0; μ−
i , i ∈ I−, (39)

i.e., the sets I+ and I−, with cardinals p+ and p−, respectively, give the data points that
correspond to the active constraints. Note that μ+ and μ− are the column vectors of the dual
variables associated with the sets I+ and I−, respectively. Apart from degenerate cases, we
have p+ + p− = k + 1.

Then, the problem (35)–(37) can be written as

Minimize β,εZMM = ε (40)

subject to

Q

⎛
⎝ β

– –
ε

⎞
⎠ =

⎛
⎝X+ | 1

– – + – –
X− | 1

⎞
⎠

⎛
⎝ β

– –
ε

⎞
⎠ =

⎛
⎝Y+

– –
Y−

⎞
⎠ , (41)

where the meaning of matrix Q becomes obvious from the first equation in equation (41), and
X+, X−,Y+, and Y− refer to the X and Y matrices associated with I+ and I−, respectively.

Since the problem (40)–(41) is a linear programming problem, we can directly apply the
formulas in equation (16) to obtain the following sensitivities:

∂βj

∂yi

= qji, (42)

∂βj

∂xst

= −qjsβt , (43)

∂μj

∂yi

= 0, (44)

∂μj

∂xst

= −qtjμs, (45)

∂Z∗
MM

∂yi

= −μi, (46)

∂Z∗
MM

∂xst

= μsβt , (47)

where qij are the elements of Q−1, the indices refer to the positions of the data sets in the set
I+ ∪ I−, and the sensitivities refer only to the data in I+ and I−, because the sensitivities
with respect to other data items are null.

Note also that the sensitivities are proportional to the corresponding regression coefficient
βj and to the dual variable μi(s) value.

The standardized sensitivities of the MM objective function with respect to the response
variable in equation (46) values are,

SMM(yi) = (∂Z∗
MM/∂yi) − m

s
, i = 1, 2, . . . , n, (48)

where m and s are the mean and standard deviation of ∂Z∗
MM/∂yi , i = 1, 2, . . . , n.



601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

Duality and local sensitivity analysis 13

Similarly, the standardized sensitivities with respect to the predictor variables in
equation (47) are

SMM(xij) = (∂Z∗
MM/∂xij ) − mj

sj

, i = 1, 2, . . . , n, j = 1, 2, . . . , k, (49)

where mj and sj are the mean and standard deviation of the sensitivities in equation (47), after
replacing βj by its MM estimate.

5.2 A numerical example

Now fitting a regression line to the star cluster data using the minimax method and solving
the optimization problem (35)–(37), one gets the line

y = 7.89850 − 0.70093x,

with an optimal value ε∗ = 1.03776. These estimates are associated with the points in the sets
I+ = {2, 34} and I− = {14}, i.e., only data points 2, 14, and 34 have active constraints. The
optimal values of the dual variables are

μ+ = (−0.243, −0.257)T ; μ− = {−0.50}.
Figure 5 shows the data points, the minimax regression line, and the corresponding parallel

bands at a vertical distance ε = 1.03776 up and down from the regression line. Note that the
data points 2, 14, and 34 are at the bands.

Since point 2 and 4 are coincident, we have a degenerate case. However, we can eliminate
the degeneration problem by removing point 4, because it has no influence on the final solution.
In addition, the left directional derivatives of the optimal solution with respect to these two
points are null, because the other points lead to the optimal solution. Then, there are no partial
derivatives with respect to these two points.

Figure 5. Minimax regression. The number next to a point refers to the rank of the point according its sensitivity
with respect the objective function.
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Using formulas (42) to (47), the following sensitivities are obtained:

∂β

∂z
=

⎛
⎝−3.505 4.005 0.5 27.682 −2.457 −31.631 2.807 −3.949 0.35

0.935 −0.935 0 −7.382 0.655 7.382 −0.655 0 0
0.243 0.257 −0.5 −1.919 0.17 −2.03 0.18 3.949 −0.35

⎞
⎠ ,

∂μ

∂z
=

⎛
⎝0 0 0 −0.852 0.227 −0.901 0.24 1.752 −0.467

0 0 0 0.973 −0.227 1.029 −0.24 −2.002 0.467
0 0 0 −0.121 0 −0.128 0 0.25 0,

⎞
⎠

∂ZMM

∂z
= (

0.243 0.257 −0.500 −1.919 0.170 −2.030 0.180 3.949 −0.350
)
.

where we have denoted

β = (β0, β1, ε), (50)

z = (y2, y34, y14, x1,2, x2,2, x1,34, x2,34, x1,14, x2,14), (51)

Table 3 shows the sensitivities of Z∗
MM, β0, and β1 with respect to the data for the minimax

regression method. They have been extracted from the above matrices.
The results in table 3 lead to the following conclusions that are not particular to the data in

this example, but of general validity:

1. One of the hyperplane bands (upper or lower, depending on the case) passes through k data
points (k = 2, here, and the data points are 2 and 34 as can be seen in figure 5). They are
all points associated with one of the active constraints (36) or (37). We call these points
the band points, because they define the corresponding hyperplane band.

2. There exist one point (point 14 in figure 5) associated with the only active constraint in the
other set of the pair (36) or (37). We call this point the ε point, because it gives the optimal
value of ε, i.e., the vertical distance from it to the hyperplane defining the band above (see
figure 5).

3. With the exception of degenerate cases, no more active constraints exist. This implies a
total of exactly k + 1 active constraints. This is due to the fact that in linear programming
optimal solutions coincide with basic solutions, that are defined by k + 1 constraints if the
space of the unknowns (the regression coefficients β and ε) is of dimension k + 1.

4. The sensitivities of the estimated regression parameters with respect to the ε-data point (in
our example ∂β1/∂y14 and ∂β1/∂x14) are null because a small change in the ε-data point
does not alter the estimated regression hyperplane or the bands, which is defined only by
the band points.

5. The sensitivities of the objective function ε with respect to the y coordinate of the ε point
has always absolute value 1/2, because the regression line does not change, when changing
only the ε point ordinate and is half way from it to the band. The sign of this sensitivity

Table 3. Sensitivities of Z∗, β0, and β1 with respect to data for the
minimax regression method.

Z∗
MM β0 β1

Index Y X Y X Y X

2 0.243 0.170 −3.505 −2.457 0.935 0.655
14 −0.500 −0.350 0.500 0.350 0 0
34 0.257 0.180 4.005 2.807 −0.935 −0.655
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Duality and local sensitivity analysis 15

is positive or negative, depending on whether the ε point is below or above the regression
hyperplane, respectively.

6. The absolute values of the estimated regression parameters sensitivities with respect to the
band points (∂β1/∂y2, ∂β1/∂y34, ∂β1/∂x2, and ∂β1/∂x34 in our example) are identical but
with opposite signs, because the changes in the slope depend on those points.

5.3 The dual minimax regression problem

Klingman and Mote [28] give an interpretation of the dual of the minimax problem as a
capacitated generalized network problem. In this section, we give an interpretation in terms
of probabilities.

The problem (35)–(37) can be written in matrix form as

Minimize
β,ε

ZMM = ε, (52)

subject to ⎛
⎝−Xn×k | −1n×1

– – – + – – –
Xn×k | −1n×1

⎞
⎠ (

β

ε

)
≤

⎛
⎝−yn×1

– – –
yn×1

⎞
⎠ :

⎛
⎝μ(1)

– –
μ(2)

⎞
⎠ (53)

The corresponding dual problem is

Maximize
μ(1),μ(2)

n∑
i=1

yi

(
μ

(2)
i − μ

(1)
i

)
(54)

subject to
⎛
⎝−XT

k×n | XT
k×n

– – – + –––
−11×n | −11×n

⎞
⎠

⎛
⎝μ(1)

– –
μ(2)

⎞
⎠ =

⎛
⎝0k×1

– –
1

⎞
⎠ , (55)

μ(1), μ(2) ≤ 0, (56)

where μ(1) and μ(2) are the dual variables.
Letting λ

(j)

i = −2μ
(j)

i ; j = 1, 2, this dual problem can be written as

Maximize
λ(1),λ(2)

n∑
i=1

yiλ
(2)
i −

n∑
i=1

yiλ
(1)
i (57)

subject to

−
n∑

i=1

λ
(1)
i xij +

n∑
i=1

λ
(2)
i xij = 0, j = 2, 3, . . . , k, (58)

n∑
i=1

λ
(1)
i =

n∑
i=1

λ
(2)
i , (59)

n∑
i=1

λ
(1)
i +

n∑
i=1

λ
(2)
i = 2, (60)

λ(1), λ(2) ≥ 0. (61)
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16 E. Castillo et al.

Because of equation (59) and (61) we can divide equation (57), (58), and (60) by
∑n

i=1 λ
(1)
i

and letting ρ
(r)
2 = λ(r)

s /
∑n

i=1 λ
(r)
i ; r = 1, 2, then equations (57)–(61) become

Minimize
ρ(1),ρ(2)

n∑
i=1

yiρ
(2)
i −

n∑
i=1

yiρ
(1)
i (62)

subject to

n∑
i=1

ρ
(1)
i xij =

n∑
i=1

ρ
(2)
i xij, j = 2, 3, . . . , k, (63)

n∑
i=1

ρ
(1)
i =

n∑
i=1

ρ
(2)
i = 1, (64)

ρ(1), ρ(2) ≥ 0, (65)

showing that the dual variables ρ(1) and ρ(2) can be interpreted as two probability mass
functions on the set

S = {(yi, xi )|i = 1, 2, . . . , n}.
Hence, the objective function in equation (62) can be interpreted as the difference of marginal
means E(2)[Y ] − E(1)[Y ]. Similarly, the constraints in equation (63) can be interpreted as
the equality of marginal means, E(1)[Xj ] = E(2)[Xj ]j = 2, 3, . . . , k. Accordingly, one can
think of the dual as a problem of finding two probability mass functions on the set S such that
they minimize the difference of marginal means E(2)[Y ] − E(1)[Y ] subject to the equality of
expectations E(1)[Xj ] = E(2)[Xj ]j = 2, 3, . . . , k.

The above interesting interpretations of the dual problem can be illustrated using figure 5, as
an example. In this case, the probability mass function ρ(1) assigns probability 0.486 to point 2,
and probability 0.514 to point 34, and the probability mass functions ρ(2) assigns probability
1 to point 14. Other points are assigned probability zero by both probability measures.

These two probabilities assigned to points 2 and 14 are inversely proportional to the distances
of these points to the point P0 in the same band whose abscissa coincides with x14. Minimizing
the difference of marginal expectations E(2)[Y ] − E(1)[Y ] means minimizing the vertical
distance between point P0 and point 14. Note that, in fact, the set of sample points is partitioned
into two sets: those above and those below the regression line. The supports of these two
probabilities are inside these two sets.

6. The least-absolute-value (LAV) regression

6.1 The primal LAV regression problem

In the LAV regression problem (see, for example, [29], we minimize the sum of the distances
between observed and predicted values instead of their squares, i.e.:

Minimize
β

ZLAV =
n∑

i=1

|yi − xT
i β|. (66)

This method treats all errors equally. Thus, this method must be used when the user is concerned
about any level of error. In fact, what is important is the sum of all absolute errors, not a single
error.
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Due to the presence of the absolute-value function, it is difficult to solve equation (66)
using standard regression techniques. The LAV problem in equation (66) is equivalent to the
following problem

Minimize
β,εi

ZLAV =
n∑

i=1

εi (67)

subject to

yi − xT
i β ≤ εi, i = 1, . . . , n, (68)

xT
i β − yi ≤ εi, i = 1, . . . , n. (69)

We note that the set of constraints εi ≥ 0; i = 1, . . . , n, used by practically all authors, is
not required because it is implied by equations (68) and (69).

To obtain the sensitivities of the β estimates with respect to data it is convenient to assume
that we are not in a degenerate case, i.e., a total of exactly n constraints in equations (68)
and (69) are active, and for exactly k points both are active. Let I+ and I− the sets of indices
associated with the active constraints in equations (68) and (69), respectively, andL = I+ ∪ I−
and I 0 = I+ ∩ I−, where we keep the order of the elements in I+ and I−.

It is also convenient to reduce the analysis to the sensitivities that are known to be non-null.
Then, following the steps in section 2, we have

yi − xT
i β − εi = 0; μ+

i , i ∈ I+ (70)

xT
i β − yi − εi = 0; μ−

i , i ∈ I−, (71)

xT
i β − yi = 0; μ0

i , i ∈ I 0, (72)

where the sets I+, I− and I 0, have cardinals p+, p−, and p0, respectively, where for non-
degenerate cases p+ + p− + p0 = n + k. Note that μ+, μ−, and μ0 are the column vectors
of dimension n with the dual variables associated with the sets I+, I−, and I 0, respectively,
and null values, otherwise.

Then, the problem (67)–(69) can be written as

Minimize
β,εi

ZLAV =
n∑

i=1

εi (73)

subject to

Q =

⎛
⎜⎜⎜⎜⎝

β

– –
ε+
– –
ε−

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

X+ | I | 0
– – + – – + – –
X− | 0 | I
– – + – – + – –
X0 | 0 | 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

β

– –
ε+
– –
ε−

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

Y+
– –
Y−
– –
Y0

⎞
⎟⎟⎟⎟⎠ , (74)

where the meaning of matrix Q becomes obvious from the first equation in equation (74), and
X+, X−, X0,Y+,Y− and Y 0 refer to the X and Y matrices associated with I+, I− and I 0,
respectively.
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Since the problem (73)–(74) is a linear programming problem, we can directly apply the
formulas in equation (16) to obtain the following sensitivities:

∂βj

∂yi

= qji, (75)

∂βj

∂xst

= −q jsβt , (76)

∂μj

∂yi

= 0, (77)

∂μj

∂xst

= −q tjμs, (78)

∂Z∗
MM

∂yi

= −μi, (79)

∂Z∗
MM

∂xst
= μsβt , (80)

where qij are the elements of Q−1, the indices refer to the positions of the data sets in the
set I+ ∪ I− ∪ I 0, and the sensitivities refer only to the data in I+, I−, and I 0, because the
sensitivities with respect to other data items are null.

Note that the matrix Q can be inverted symbolically and gives

Q−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

X+ | I | 0

−− + −− + −−
X− | 0 | I

−− + −− + − − − − −
X0 | 0 | 0

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 | 0 | (X0)−1

−− + −− + − − −−
I | 0 | −X+(X0)−1

−− + −− + − − − − −
0 | I | −X−(X0)−1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (81)

which facilitates the obtention of the above sensitivities.
Note also that the sensitivities are proportional to the corresponding regression coefficient

βj and to the dual variable μ
(s)
i value.

The mean and standard deviation of ∂Z∗
LAV/∂yi are not known, so we use the mean, m, and

standard deviation, s, of ∂Z∗
LAV/∂yi ; i = 1, 2, . . . , n, and obtain the standardized sensitivities

of the LAV objective function with respect to the response values:

SLAV(yi) = (∂Z∗
LAV/∂yi) − m

s
, i = 1, 2, . . . , n. (82)

Replacing βj by its LAV estimate β̂j and letting mj and sj be the mean and standard deviation
of ∂ZLAV/∂xij, i = 1, 2, . . . , n, j = 1, 2, . . . , k, we obtain the standardized sensitivities of the
LAV objective function with respect to xij,

SLAV(xij) = (∂Z∗
LAV/∂xij) − mj

sj

, i = 1, 2, . . . , n, j = 1, 2, . . . , k. (83)
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6.2 A numerical example

Consider again the data and the model in section 4, where now we use the LAV method.
Solving the optimization problem (67)–(69) one gets the line

y = 8.1492 − 0.69318x.

Note that the LAV method is known to be robust with respect to outliers in the Y direction but
not with respect to the outliers in the X space. Therefore, the LAV line has a negative slope.
The LAV solution leads to an optimal value ZLAV = 22.1452, and to the optimal values for
the dual variables:

μ+ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T, (84)

μ− = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T, (85)

μ0 = (0.205, 0.795)T, (86)

Analysing the constraints, one gets the sets:

I+ = {1, 2, 4, 5, 6, 8, 9, 12, 13, 20, 30, 32, 33, 34, 36, 37, 38, 39, 40, 43, 44, 45},
I− = {3, 7, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 35, 41, 42, 46, 47},
I 0 = {10, 11}.

Figure 6 shows the data points and the LAV regression line. Note that the data points 10
and 11 are on the LAV regression line. They are the points in I 0.

Table 3 shows the sensitivities of Z∗
LAV, β0, and β1 with respect to the data for the LAV

regression method. They have been calculated using expressions (75)–(80) and the matrix in
equation (81).

The results in table 4 and figure 6 lead to the following conclusions:

1. The LAV regression hyperplane passes through k data points (in our example k = 2 and
the points are 10 and 11). We call these points regression hyperplane-points.

Figure 6. Data points and LAV regression line passing through points 3 and 17.
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Table 4. Sensitivities of Z∗
LAV, β0, β1 with respect to data for the LAV regression method.

ZLAV β0 β1

Index Y X Y X Y X

1 1 0.693 0 0 0 0
2 1 0.693 0 0 0 0
3 −1 −0.693 0 0 0 0
4 1 0.693 0 0 0 0
5 1 0.693 0 0 0 0
6 1 0.693 0 0 0 0
7 −1 −0.693 0 0 0 0
8 1 0.693 0 0 0 0
9 1 0.693 0 0 0 0

10 0.205 0.142 −3.966 −2.749 1.136 0.788
11 0.795 0.551 4.966 3.442 −1.136 −0.788
12 1 0.693 0 0 0 0
13 1 0.693 0 0 0 0
14 −1 −0.693 0 0 0 0
15 −1 −0.693 0 0 0 0
16 −1 −0.693 0 0 0 0
17 −1 −0.693 0 0 0 0
18 −1 −0.693 0 0 0 0
19 −1 −0.693 0 0 0 0
20 1 0.693 0 0 0 0
21 −1 −0.693 0 0 0 0
22 −1 −0.693 0 0 0 0
23 −1 −0.693 0 0 0 0
24 −1 −0.693 0 0 0 0
25 −1 −0.693 0 0 0 0
26 −1 −0.693 0 0 0 0
27 −1 −0.693 0 0 0 0
28 −1 −0.693 0 0 0 0
29 −1 −0.693 0 0 0 0
30 1 0.693 0 0 0 0
31 −1 −0.693 0 0 0 0
32 1 0.693 0 0 0 0
33 1 0.693 0 0 0 0
34 1 0.693 0 0 0 0
35 −1 −0.693 0 0 0 0
36 1 0.693 0 0 0 0
37 1 0.693 0 0 0 0
38 1 0.693 0 0 0 0
39 1 0.693 0 0 0 0
40 1 0.693 0 0 0 0
41 −1 −0.693 0 0 0 0
42 −1 −0.693 0 0 0 0
43 1 0.693 0 0 0 0
44 1 0.693 0 0 0 0
45 1 0.693 0 0 0 0
46 −1 −0.693 0 0 0 0
47 −1 −0.693 0 0 0 0

2. Apart from degenerate cases, infinitesimal changes in the remaining points produce no
change in the regression hyperplane, and so, the corresponding sensitivities are null.

3. With the exception of degenerate cases, a total of k + n active constraints exist, which
correspond to constraints (68) and (69). This is due to the fact that optimal solutions in
linear programming coincide with basic solutions, that are defined by k + n constraints,
if the space of the unknowns (the k regression coefficients β and the n ε-variables) is
of dimension k + n. This is the reason why in table 4 the sensitivities ∂β0/∂yi , ∂β1/∂yi ,
∂β0/∂xi , and ∂β1/∂xi for the data points not in the LAV regression hyperplane vanish.
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4. Infinitesimal changes in the regression hyperplane points lead to changes in the regres-
sion hyperplane and thus in their slopes and intercept parameters. So, their corresponding
sensitivities are not null.

5. The sensitivities of the objective function with respect to the regression hyperplane points
are different from zero. The sensitivities with respect to yi take value 1 or −1, depending
on whether they are above or below the LAV regression hyperplane.

6. The sensitivities of the objective function with respect to xi are different from zero and
have positive or negative sign, depending on whether they are on the left or the right hand
side of the LAV regression hyperplane. All of them have the same absolute value but the
sign can be different, as indicated.

The above conclusions are valid in general, i.e., they are not particular to this example.

6.3 The dual LAV regression problem

The primal problem in equations (67)–(69) can be written in matrix form as:

Minimizeβ,ε1,ε2,...,εn
ZLAV =

n∑
i=1

εi (87)

subject to ⎛
⎝−Xn×k | −In

−− + −−
Xn×k | −In

⎞
⎠ (

β

ε

)
≤

⎛
⎝−yn×1

− − −
yn×1

⎞
⎠ ;

⎛
⎝ μ(1)

− − −
μ(2)

⎞
⎠. (88)

The corresponding dual problem is

Maximizeμ(1),μ(2)

n∑
i=1

yi(μ
(2)
i − μ

(1)
i ) (89)

subject to
⎛
⎜⎝

−XT
k×n | −XT

k×n

−− + −−
−In | −In

⎞
⎟⎠

⎛
⎜⎝

μ(1)

−−
μ(2)

⎞
⎟⎠ =

⎛
⎜⎝

0k×1

−−
1n×1

⎞
⎟⎠, (90)

μ(1), μ(2) ≤ 0, (91)

where μ(1) and μ(2) are the dual variables.
Letting λ

(j)

i = −μ
(j)

i ; j = 1, 2, this dual problem can be written as

Minimizeλ(1),λ(2)

n∑
i=1

yiλ
(2)
i −

n∑
i=1

yiλ
(1)
i (92)

subject to

n∑
i=1

λ
(1)
i =

n∑
i=1

λ
(2)
i , (93)

−
n∑

i=1

λ
(1)
i xij +

n∑
i=1

λ
(2)
i xij = 0, j = 2, 3, . . . , k, (94)
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λ
(1)
i + λ

(2)
i = 1, i = 1, 2, . . . , n, (95)

λ(1), λ(2) ≥ 0, (96)

which shows that the sets of dual variables λ(1) and λ(2) can be interpreted as a set of n

probability mass functions defined on the set

S = {(−yi, −xi )|i = 1, 2, . . . , n} ∪ {(yi, xi )|i = 1, 2, . . . , n}}
and such that

Pr((−yi, −xi )) = λ
(1)
i , Pr((yi, xi )) = λ

(2)
i .

Then, the constraints (94) can be interpreted as zero means, E[Xij], and the objective function
as the sum of n means

∑n
i=1 E[Yi]. So the dual problem consists of assigning n different

probability mass functions to the set S such that they minimize the sum of expectations∑n
i=1 E[Yi] subject to the equality

∑n
i=1 λ

(1)
i = ∑n

i=1 λ
(2)
i .

It is interesting to interpret the dual with the help of figure 6. The λ(1) and λ(2) assign
non-zero probability to points above, below, and on the regression line, respectively (see the
correspondence with sets I+ and I−).

7. Summary

In this paper, we presented closed formulas for assessing the sensitivity of the results of three
standard regression estimation methods (LS, MM, and LAV) to changes in the data. The results
include the objective function and the estimated parameters. Sensitivity contours are also
presented to help in assessing the sensitivity of each observation in the sample. All sensitivities
are illustrated both numerically and graphically. Additionally, interesting interpretations of the
dual problems and dual variables are given. The method is new and very general because it can
be applied to any model including linear and nonlinear models and to any method of estimation
that can be formulated as an optimization problem. The proposed sensitivity measures are
shown to deal more effectively with the masking problem than the existing methods.
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