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Abstract

This paper presents a perturbation approach for performing sensitivity analysis

of mathematical programming problems. Contrary to standard methods, the active

constraints are not assumed to remain active if the problem data are perturbed,

nor the partial derivatives are assumed to exist. In other words, all the elements,

variables, parameters, Karush–Kuhn–Tucker multipliers and the objective function

values may vary provided that optimality is maintained, and the general structure

of a feasible perturbation (which is a polyhedral cone) is obtained. This allows

determining: (a) the local sensitivities, (b) whether or not partial derivatives exist,

and (c) if the directional derivative for a given direction exists. A method for

the simultaneous obtention of the sensitivities of the objective function optimal

value and the primal and dual variable values with respect to data is given. Three

examples illustrate the concepts presented and the proposed methodology. Finally,

some relevant conclusions are drawn.

Key Words: Local sensitivity, mathematical programming, duality, polyhedral cone.
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1 Introduction

Sensitivity analysis consists of determining “how” and “how much” specific changes in

the parameters of an optimization problem influence the optimal objective function value

and the point (or points) where the optimum is attained.

The problem of sensitivity analysis in nonlinear programming has been discussed by

several authors, as, for example, Vanderplaats (Ref. 1), Sobiesky et al. (Ref. 2), Enevold-

sen (Ref. 3), Roos, Terlaky and Vial (Ref. 4), Bjerager and Krend (Ref. 5), etc. There

are at least three ways of deriving equations for the unknown sensitivities: (a) the La-

grange multiplier equations of the constrained optimum (see Sobiesky et al. (Ref. 2)), (b)

differentiation of the Karush–Kuhn–Tucker conditions to obtain the sensitivities of the

objective function with respect to changes in the parameters (see Vanderplaats (Ref. 1),

Sorensen and Enevoldsen (Ref. 6) or Enevoldsen (Ref. 3)), and (c) the extreme conditions

of a penalty function (see Sobiesky et al. (Ref. 2)).

The existing methods for sensitivity analysis may present four main limitations:

(i) They provide the sensitivities of the objective function value and the primal variables

values with respect to parameters, but not the sensitivities of the dual variables with

respect to parameters.
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(ii) For different cases there are diverse methods for obtaining each of the sensitivities

(optimal objective function value or primal variable values with respect to parame-

ters), but there is no integrated approach providing all the sensitivities at once.

(iii) They assume the existence of partial derivatives of the objective function or the

optimal solutions with respect to the parameters; however, this is not always the

case. In fact, there are cases in which partial or directional derivatives fail to exist.

In addition, most techniques reported in the literature do not distinguish between

right and left derivatives. Ross, Terlaky and Vial (Ref. 4) state: “It is surprising

that in the literature on sensitivity analysis it is far from common to distinguish

between left- and right-shadow prices”. By left- and right-shadow prices they mean

left- and right-derivatives of the objective function with respect to parameters at

the current optimal value.

(iv) They assume that the active constraints remain active, which implies that there is

no need to distinguish between equality or inequality constraints, because all the

active constraints can be considered as equality constraints, and inactive constraints

will remain inactive for small changes in the parameters. As a consequence, the set

of possible changes (perturbations) has (locally) the structure of a linear space.
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The aim of this paper is twofold: (a) to perform a general analysis, without assuming

neither the existence of partial derivatives, nor that the active inequality constraints

remain active, and (b) to give an integrated approach that gives all sensitivities (objective

function value, primal and dual variables values with respect to parameters) at once. As

a consequence, a distinction between equality and inequality constraints is necessary,

because the active inequality constraints may become inactive, but equality constraints

are always active. Since we deal with local sensitivity in this paper, we do not need

to consider inactive constraints because if they are inactive, they will remain inactive

after a differential change. So, in what follows we could consider only active inequality

constraints.

The above considerations lead to a set of feasible changes that has the structure of a

cone for the most general case. Furthermore, this analysis allows determining whether or

not partial or directional derivatives with respect to parameters exist.

This paper is structured as follows. In Section 2 we derive the general structure of

feasible changes for a Karush–Kuhn–Tucker solution to remain a Karush–Kuhn–Tucker

solution. In Section 3 a method for determining the set of all feasible perturbations is

provided. In Section 4 a method for dealing with directional and partial derivatives is

introduced. In Section 5 one regular non-degenerate, one regular degenerate and one
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non-regular illustrative examples are presented (regularity and degeneracy are precisely

defined below). In Section 6 some conclusions are provided.

2 Sensitivity Analysis

In this section we analyze the sensitivity of the optimal solution of a nonlinear program-

ming problem to changes in the data values. Many authors, as those already mentioned,

have studied different versions of this problem. Some of them have dealt with the linear

programming problem and discussed the effect of changes of (i) the cost coefficients, (ii)

the right hand sides of the constraints or (iii) the constraint coefficients on either (a) the

optimal value of the objective function or (b) the optimal solution. A similar analysis has

been done for nonlinear problems. However, these authors have dealt only with changes

that keep invariant the set of active constraints.

In the following, we deal with the calculation of partial derivatives with respect to

parameters without forcing the set of active constraints to remain active.

It is relevant to note that to perform a local sensitivity analysis, the objective function

(1) and the nonlinear constraints in (2)-(3) of the general problem below can be replaced by

the corresponding quadratic approximations that share tangent hyperplanes and Hessian

matrices, at the solution point.
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Consider the following Nonlinear Programming Problem (NLPP):

min
x

z = f(x, a), (1)

s.t. h(x, a) = 0, (2)

g(x, a) ≤ 0, (3)

where f : IRn × IRp → IR, h : IRn × IRp → IR`, g : IRn × IRp → IRm with h(x, a) =

(h1(x, a), . . . , h`(x, a))T and g(x, a) = (g1(x, a),. . ., gm(x, a))T are functions over the feasi-

ble region S(a) = {x|h(x, a) = 0, g(x, a) ≤ 0} and f, h, g ∈ C2.

Let x∗ be a local solution of problem (1)-(3) and a regular point of the constraints. If

J is the set of indices j for which gj(x
∗, a) = 0, a local solution x∗ is a regular point of the

constraints h(x, a) = 0 and g(x, a) ≤ 0 if the gradient vectors ∇xhk(x
∗, a), ∇xgj(x

∗, a),

k = 1, . . . , `; j ∈ J are linearly independent. Note that other regularization conditions are

possible, see Luenberger (Ref. 7).

Then, there exists a pair of vectors λ∗ ∈ IR` and µ∗ ∈ IRm such that (Bazaraa, Sherali

and Shetty (Ref. 8) or Luenberger (Ref. 7)):

∇xf(x∗, a) +
∑̀

k=1

λ∗k ∇xhk(x
∗, a) +

m∑

j=1

µ∗j ∇xgj(x
∗, a) = 0n (4)

hk(x
∗, a) = 0; k = 1, 2, · · · , `, (5)

gj(x
∗, a) ≤ 0; j = 1, 2, · · · ,m, (6)
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µ∗j gj(x
∗, a) = 0; j = 1, 2, . . . , m, (7)

µ∗ ≥ 0m (8)

As is well known, the vectors λ∗ and µ∗ are called the Karush–Kuhn–Tucker mul-

tipliers. Conditions (4)-(8) are denominated Karush-Kuhn-Tucker (KKT) conditions.

Conditions (5)–(6) are called the primal feasibility conditions. Condition (7) is known as

the complementary slackness condition. Condition (8) requires the nonnegativity of the

multipliers of the inequality constraints, and is referred to as the dual feasibility conditions.

Furthermore, the Hessian of the Lagrangian at x∗, µ∗ and λ∗

∇xxf(x∗, a) +
∑̀

k=1

λ∗k ∇xxhk(x
∗, a) +

m∑

j=1

µ∗j ∇xxgj(x
∗, a) (9)

is assumed to be positive definite on the subspace that is orthogonal to the subspace

spanned by the gradients of the constraint functions.

Then, for λ and µ ≥ 0 near λ∗ and µ∗, the dual function is defined as

φ(λ, µ) = minimum
x

[
f(x, a) +

∑̀
k=1

λk hk(x, a) +
m∑

j=1
µj gj(x, a)

]
(10)

where the minimum is taken locally near x∗, and the dual problem is

max
λ, µ ≥ 0

φ(λ, µ) (11)

whose solution is λ∗, µ∗.
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We aim at determining the sensitivity of the optimal solution (x∗, λ∗, µ∗, z∗) of (4)

- (8) to changes in the parameters, i.e., we perturb or modify x∗, a, λ∗, µ∗, z∗ in such

a way that the KKT conditions still hold. Thus, to obtain the sensitivity equations we

differentiate (1) and (4)-(8), as follows:

(∇xf(x∗, a))T dx + (∇af(x∗, a))T da− dz = 0 (12)


∇xxf(x∗, a)+

∑̀

k=1

λ∗k∇xxhk(x
∗, a)+

m∑

j=1

µ∗j∇xxgj(x
∗, a)


dx

+


∇xaf(x∗, a)+

∑̀

k=1

λ∗k∇xahk(x
∗, a)+

m∑

j=1

µ∗j∇xagj(x
∗, a)


da

+∇xh(x∗, a)dλ +∇xg(x∗, a)dµ = 0n (13)

(∇xh(x∗, a))T dx + (∇ah(x∗, a))T da = 0` (14)

(∇xgj(x
∗, a))T dx + (∇agj(x

∗, a))T da = 0, if µ∗j 6= 0, j ∈ J (15)

(∇xgj(x
∗, a))T dx + (∇agj(x

∗, a))T da ≤ 0, if µ∗j = 0, j ∈ J (16)

−dµj ≤ 0, if µ∗j = 0, j ∈ J (17)

dµj

[
(∇xgj(x

∗, a))T dx + (∇agj(x
∗, a))T da

]
= 0, if µ∗j = 0, j ∈ J (18)

where all the matrices are evaluated at the optimal solution, and redundant constraints

have been removed. More precisely, the constraints (15)-(18) are simplifications of the

constraints that result directly from differentiating (6)- (8), i.e., from

(∇xgj(x
∗, a))T dx + (∇agj(x

∗, a))T da ≤ 0, j ∈ J, (19)
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and

(µ∗j + dµj) (gj(x
∗, a) + dgj(x

∗, a)) = µ∗jdgj(x
∗, a) + dµj (gj(x

∗, a) + dgj(x
∗, a)) , j ∈ J.

(20)

Since all these inequality constraints are active, we have gj(x
∗, a) = 0; ∀j ∈ J and then

(20) results in (15) for µ∗j 6= 0, and in (18) for µ∗j = 0.

Finally, since (15) implies (19), for µ∗j 6= 0, (19) must be written only for µ∗j = 0, i.e.,

(16).

Note that constraint (15) forces the constraints gj(x
∗, a) = 0 whose multipliers are

different from zero (µ∗j 6= 0) to remain active, constraint (16) allows the optimal point

to move inside the feasible region, constraint (17) forces the Lagrange multipliers to be

greater or equal to zero, and (18) forces the new point to hold the complementary slackness

condition for µ∗j = 0. This last constraint is a second order constraint that implies that

one of the constraints (16) or (17) has to be an equality constraint.

In matrix form, the system (12)-(17) can be written as:

Mδp =




Fx | Fa | 0 | 0 | −1

Fxx | Fxa |HT
x | GT

x | 0

Hx | Ha | 0 | 0 | 0

G1
x | G1

a | 0 | 0 | 0







dx
da
dλ
dµ
dz




= 0 (21)

Nδp =

[
G0

x | G0
a | 0 | 0 | 0

0 | 0 | 0 | −I0
mJ

| 0

]
δp ≤ 0 (22)
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where mJ = card(J) is the number of active inequality constraints and the meaning of

matrices M and N becomes clear from the system (12)-(17), and the submatrices are

defined below (corresponding dimensions in parenthesis)

Fx(1×n) = (∇xf(x∗, a))T , (23)

Fa(1×p) = (∇af(x∗, a))T , (24)

Fxx(n×n) = ∇xxf(x∗, a) +
∑̀

k=1

λ∗k∇xxhk(x
∗, a) +

mJ∑

j=1

µ∗j∇xxgj(x
∗, a), (25)

Fxa(n×p) = ∇xaf(x∗, a) +
∑̀

k=1

λ∗k∇xahk(x
∗, a) +

mJ∑

j=1

µ∗j∇xagj(x
∗, a), (26)

Hx(`×n) = (∇xh(x∗, a))T , (27)

Ha(`×p) = (∇ah(x∗, a))T , (28)

Gx(mJ×n) = (∇xg(x∗, a))T , (29)

Ga(mJ×p) = (∇ag(x∗, a))T , (30)

where G0
x and G0

a refer to the submatrices of Gx and Ga, respectively, associated with the

null µ-multipliers of active constraints, G1
x and G1

a refer to the submatrices of Gx and Ga,

respectively, associated with the non-null µ-multipliers of active constraints, and −I0
mJ

is

the negative of a unit matrix after removing all rows j ∈ J such that µ∗j 6= 0.

In order to consider the second order condition (18) the system (21)-(22) has to be

modified extracting from (22) and adding to (21) the row associated with either the term
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G0 or −I0
mJ

for each constraint such that µ∗j = 0; j ∈ J . The interpretation is simple, we

add into (21) the term related to G0 for the constraints we want to remain active after

the perturbation, or the term associated with −I0
mJ

for the constraints we want to allow

to become inactive. Note that 2m0 combinations (systems) are possible, where m0 in the

number of constraints whose µ∗j = 0. In what follows we initially consider the system

(21)-(22) and later we take into account (18).

3 Determining the Set of All Feasible Perturbations

Conditions (21)-(22) define the set of feasible perturbations δp = (dx, da, dλ, dµ, dz)T ,

i.e., for moving from one KKT solution to another KKT solution.

Since (21)-(22) constitute an homogeneous linear system of equalities and inequalities

in dx, da, dλ, dµ and dz, its general solution is a polyhedral cone (see Padberg (Ref. 9),

Castillo, Cobo et al. (Ref. 10) and Castillo, Jubete et al. (Ref. 11)):

δp =
t∑

i=1

ρivi +
q∑

j=1

πjwj, (31)

where ρi ∈ IR; i = 1, 2, · · · , t, and πj ∈ IR+; j = 1, 2, · · · , q, and vi and wj are vectors that

generate the linear space and the proper cone parts of the polyhedral cone, respectively.

It should be noted that since a linear space is a particular case of a cone, one can

obtain a linear space as the solution of a homogeneous system of linear inequalities.
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The vertex cone representation (31) of the feasible perturbations can be obtained using

the Γ-algorithm (see Padberg (Ref. 9) and Castillo et al. (Ref. 12)) that is known to be

computational intensive for large problems. However, one can obtain first the solution

of (21) (the corresponding null space), and then use the Γ-algorithm to incorporate the

constraints in (22), which are only a reduced number (active inequality constraints with

null µ-multipliers) or none. Note that the null space computation is a standard procedure

whose associated computational burden is similar to that of solving a linear homogeneous

system of N equations, O(N3) (Ref. 13).

Nevertheless, as we shall see, the obtention of the vertex cone representation (31),

though convenient, could be unnecessary.

Once (31) is known, all feasible perturbations become available. Note that if we

want to take into account (18) all possible combinations of the system (21)-(22) must

be solved so that several solutions (31) exist. Any selection of ρi ∈ i = 1, 2, . . . , t and

πj ∈ IR+; j = 1, 2, . . . , q in any solution leads to a feasible perturbation and all of them

can be obtained in this form.
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4 Discussion of Directional and Partial Derivatives

Conditions (21)-(22) can be written as

U
[

dx | dλ | dµ | dz
]T

= Sda (32)

V
[

dx | dλ | dµ | dz
]T ≤ Tda (33)

where the matrices U , V , S and T are:

U =




Fx | 0 | 0 | −1

Fxx | HT
x | GT

x | 0

Hx | 0 | 0 | 0

G1
x | 0 | 0 | 0




, S = −




Fa

Fxa

Ha

G1
a




, (34)

V =


 G0

x | 0 | 0 | 0

0 | 0 | −I0
mJ

| 0


 , T = −


 G0

a

0


 . (35)

Note that as system (32)-(33) comes from (21)-(22) and due to condition (18), several

systems (32)-(33) corresponding to the different combinations may exist.

An optimal point (x∗, λ∗, µ∗, z∗) can be classified as follows:

Regular Point: The solution (x∗, λ∗, µ∗, z∗) is a regular point if the gradient vectors

of the active constraints are linearly independent. Under this circumstance, the

optimal point can be nondegenerate or degenerate:

(i) Nondegenerate: The Lagrange multipliers µ∗ of active inequality constraints

are different from zero, there is no matrix V and U−1 exists.
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(ii) Degenerate: The Lagrange multipliers µ∗ of active inequality constraints are

different from zero, there is no matrix V and U−1 does not exist. Alternatively,

some of the Lagrange multipliers multipliers of active inequality constraints in

µ∗ are equal to zero and matrix U−1 does not exist because U is not a square

matrix.

Nonregular Point: The gradient vectors of the active constraints are linearly depen-

dent. Note that the KKT conditions do not characterize adequately this case

because there are infinite Lagrange value combinations that hold. However, the

method also provides the sensitivities for given values of the Lagrange multipliers.

In this case no difference is made between non-degenerate and degenerate cases

because matrix U is never invertible.

Note that the most common situation occurs when we have a regular non-degenerate

point. The cases of regular degenerate and non-regular points are exceptional. However,

since we deal with a set of parametric optimization problems (we use parameters a),

normally there exist particular values for the parameters such that these two cases occur

as important transition situations.

Expressions (32) and (33) allow determining: (a) Directional derivatives if they exist.

(b) Partial derivatives if they exist. (c) All partial derivatives at once when they exist.
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Note that existence means that there is a feasible perturbation where the KKT con-

ditions still hold. We deal with all these problems in the following subsections.

4.1 Determining Directional Derivatives

To check if a directional derivative exists, we replace da by the corresponding unit vector

and solve all possible combinations of the system (32)-(33). If it exists (existence) at

least for one of the combinations and the solution is unique (uniqueness) the directional

derivative exists.

One can obtain first the solution of (32) (the corresponding null space), and then use

the Γ-algorithm to incorporate the constraints in (33), which are only a reduced number

(active inequality constraints with null µ-multipliers).

4.2 Partial Derivatives

A partial derivative is a special case of directional derivative. The partial derivative of

u with respect to ak means the increment in u due to a unit increment in ak and null

increments in ar, r 6= k. Then, in a feasible perturbation δp that contains a unit component

dak together with null values for components dai,∀i 6= k, the remaining perturbation

components contain the corresponding right-derivatives (sensitivities) with respect to ak,
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that is:

δp =

(
dx1

da+
k

, . . . ,
dxn

da+
k

, 0, . . . , 0, 1, 0, . . . , 0,
dλ1

da+
k

, . . . ,
dλp

da+
k

,
dµ1

da+
k

, . . . ,
dµmJ

da+
k

,
dz

da+
k

)T

(36)

Similarly, a feasible perturbation of the form

δp =

(
dx1

da−k
, . . . ,

dxn

da−k
, 0, . . . , 0,−1, 0, . . . , 0,

dλ1

da−k
, . . . ,

λp

da−k
,
dµ1

da−k
, . . . ,

dµmJ

da−k
,

dz

da−k

)T

(37)

contains as the remaining components all the left-derivatives with respect to ak. If both

exist, and coincide in absolute value but not in sign, the corresponding partial derivative

exists.

The partial derivative is obtained solving the directional derivatives for dak and −dak,

respectively, and checking if both exist, and coincide in absolute value but not in sign. If

the answer is positive the corresponding partial derivative exists.

Note that this procedure also allows to know if there are directional derivatives for

any arbitrary vector da in both directions da and −da.

4.3 Obtaining All Sensitivities at Once

If the solution (x∗, λ∗, µ∗, z∗) is a nondegenerate regular point, then the matrix U is

invertible and the system (32)-(33) is unique and it becomes

[
dx | dλ | dµ | dz

]T
= U−1S da , (38)

where (33) is satisfied trivially since V does not exist.
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Several partial derivatives can be simultaneously obtained if the vector da in (38) is

replaced by a matrix including several vectors (columns) with the corresponding unit di-

rections. In particular, replacing da by the unit matrix Ip in (38) all the partial derivatives

are obtained. The matrix with all partial derivatives becomes:

[
dx/da dλ/da dµ/da dz/da

]T
= U−1S (39)

For any vector da the derivatives in both directions da and −da are obtained simul-

taneously.

In some particular cases the system (38) can be easily solved by decomposition. For

example, if Hx or Gx are square invertible matrices, one gets dx = H−1
x Hada or dx =

(Gx)
−1 Gada, respectively and one can proceed to solve dλ, dµ and dz, using the remaining

equations.

It should be noted that the previous study has been done assuming that one is in-

teresting in calculating the directional or partial derivatives of x, λ, µ and z with respect

to a. However, one can think of calculating the derivatives with respect to x, λ, µ or

z, of the corresponding variables, or even the derivatives with respect to a combination

of components of x, a, λ, µ and z, of the remaining components. Thus, the applicability

of the above relations is much more important that this simple example of directional

or partial derivatives. However, a detailed analysis of all these possibilities is out of the
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scope of this paper.

5 Illustrative Examples

In this section we illustrate the theory developed in Sections 2, 3 and 4 by its application

to a regular non-degenerate (it is the most common case), a regular degenerate and a

non-regular examples.

5.1 Regular Nondegenerate Example

In this section we apply the above method to the problem of estimating the parameters of

a uniform distribution based on a sample using the method of moments with constraints.

Consider the uniform random variable family with densities of the form f(y; a, b) =

1/(b− a); a ≤ y ≤ b, with mean (a + b)/2 and variance (b− a)2/12.

To estimate the parameters a and b based on a random sample, we use the constrained

method of moments, that consists of solving the optimization problem:

min
a, b

z = ((a + b)/2− ȳ)2 + ((b− a)2/12− σ2)
2

(40)

s. t. a− ymin ≤ 0 : µ1 (41)

ymax − b ≤ 0 : µ2 (42)

where ȳ and σ2 are the sample mean and variance, respectively, µ1 and µ2 are the corre-

sponding dual variables, and ymin and ymax are the minimum and maximum values of the
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sample, respectively.

In this case, the system (12)-(17) becomes:

0 =

[
a + b

2
− ȳ − b− a

3

(
(b− a)2

12
− σ2

)]
da +

[
a + b

2
− ȳ +

b− a

3

(
(b− a)2

12
− σ2

)]
db

− 1

n

n∑

i=1

[
a + b− 2ȳ + 4(yi − ȳ)

(
(b− a)2

12
− σ2

)]
dyi − dz (43)

0 =

[
1

2
+

(b− a)2

18
+

1

3

(
(b− a)2

12
− σ2

)]
da +

[
1

2
− (b− a)2

18
− 1

3

(
(b− a)2

12
− σ2

)]
db

− 1

n

n∑

i=1

(
1− 2(b− a)(yi − ȳ)

3

)
dyi + dµ1 (44)

0 =

[
1

2
− (b− a)2

18
− 1

3

(
(b− a)2

12
− σ2

)]
da +

[
1

2
+

(b− a)2

18
+

1

3

(
(b− a)2

12
− σ2

)]
db

− 1

n

n∑

i=1

(
1 +

2(b− a)(yi − ȳ)

3

)
dyi − dµ2 (45)

0 = −db + dyn (46)

Note that data is ordered increasingly so that ymax = yn and ymin = y1. For the sake

of a detailed illustration, we have chosen a sample of size n = 5 from a uniform parent

function with a = 0 and b = 1, and data y1 = 0.2, y2 = 0.3, y3 = 0.4, y4 = 0.5, y5 = 0.95.

We have selected such a small sample size to be able to present the whole mathematical

structure of the solution.

The corresponding parameter estimates using the constrained method of moments

proposed above are:

â = −0.00468, b̂ = 0.95. (47)
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The values of the dual variables are µ1 = 0; µ2 = 0.0053, showing that the minimum

and maximum values of the sample, y1 = 0.2 and y5 = 0.95, force the constraint (41)

to become inactive and the constraint (42) to become active, respectively. Since (41) is

inactive, we ignore it in what follows.

In this case the matrices U and S become (see (34)):

U =




0.0000 0.0053 0 −1
0.5534 0.4465 0 0
0.4465 0.5534 −1 0
0.0000 0.0053 0 0


 , S =




−0.0007 0.0000 0.0006 0.0013 0.0043
0.2344 0.2217 0.2090 0.1962 0.1390
0.1657 0.1784 0.1911 0.2039 0.2611
0.0000 0.0000 0.0000 0.0000 −1.0000




(48)

and the matrices V and T do not exist.

Since U is invertible, the problem is non-degenerate, and from (39) we obtain the

partial derivatives:



∂a/∂y1 · · · ∂a/∂y5

∂b/∂y1 · · · ∂b/∂y5

∂µ2/∂y1 . . . ∂µ2/∂y5

∂z/∂y1 · · · ∂z/∂y5


 = U−1S =




0.4235 0.4005 0.3775 0.3545 −0.5560
0.0000 0.0000 0.0000 0.0000 1.0000
0.0235 0.0005 −0.0225 −0.0455 0.0440
0.0007 0.0001 −0.0006 −0.0013 0.0010


(49)

5.2 Regular Degenerate Example

Consider the following simple nonlinear programming problem:

min
x1, x2

f(x) = a1x
2
1 + x2

2 (50)

s.t. h(x) = x1x
2
2 − a2 = 0 : λ (51)

g(x) = −x1 + a3 ≤ 0 : µ (52)
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with λ, µ the multipliers corresponding to the constraints (51) and (52), respectively.

The solution of this problem for the particular case a1 = a3 = 1 and a2 = 2 is:

x∗1 = 1, x∗2 =
√

2, λ∗ = −1, µ∗ = 0, z∗ = 3. (53)

A vector of changes δp = (dx1, dx2, da1, da2, da3, dλ, dµ, dz)T must satisfy the system

(12)-(17), which for this example becomes (in matrix form):

Mδp =




2 2
√

2 1 0 0 0 0 −1

2 −2
√

2 2 0 0 2 −1 0

−2
√

2 0 0 0 0 2
√

2 0 0

2 2
√

2 0 −1 0 0 0 0




δp = 0 (54)

Nδp =

( −1 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 0

)
δp ≤ 0. (55)

In this case, matrix U has no inverse because is not a square matrix, the gradients of

the constraints are linearly independent and one of the Lagrange multipliers is null; so,

we have a regular degenerate case.

Note that we have not considered (18) yet. If we want (i) the inequality constraint to

remain active the first equation in (55) should be removed and included in (54), whereas

if we want (ii) the inequality constraint to be allowed to become inactive then the second

equation in (55) should be removed and included in (54). The corresponding solutions
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are the cones



dx1

dx2

da1

da2

da3

dλ
dµ
dz




=ρ1




1
0
−2
2
1
1
0
0




+ρ2




0
1√
2

1
2
0
0
0
3




+π




0
− 1√

2
2
−2
0
0
6
0




and




dx1

dx2

da1

da2

da3

dλ
dµ
dz




=ρ1




1
0
−2
2
1
1
0
0




+ρ2




0
1√
2

1
2
0
0
0
3




+π




1
0
−2
2
0
1
0
0




, (56)

respectively, where ρ1, ρ2 ∈ IR and π ∈ IR+, that give all feasible perturbations. Note, for

example, that the component associated with dµ = (6π1 or 0) is always positive for (8) to

hold, whereas the component related to the equality constraint dλ = (ρ1 or ρ1 + π) can

be positive or negative.

In order to study the existence of directional derivatives with respect to a1 we use

the directions da = ( 1 0 0 )T and da = (−1 0 0 )T , and solve the two possible

combinations of (32)-(33) that lead to:

dp∗

da+
1

=




0
0
0
2
1




;
dp∗

da−1
= [∅], and

dp∗

da+
1

= [∅]; dp∗

da−1
=




1
3

− 1
3
√

2
1
3

0
−1




, (57)

respectively, where dp∗/da1 = ( dx1/da1 dx2/da1 dλ/da1 dµ/da1 dz/da1 ) and [∅] means

that there is no solution, which implies that both directional derivatives exist (existence

and uniqueness) but only the partial derivative of z with respect a1 exists
∂z

∂a1

= 1. For

the remaining variables the directional derivatives do not coincide in absolute value, there-

fore, the corresponding partial derivatives do not exist. Note that in the right-derivative
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the solution point remains the same but the Lagrange multiplier µ associated with the in-

equality constraint becomes different from zero. For the left-derivative the solution point

changes and the inequality constraint becomes inactive, note that the Lagrange multiplier

associated with the equality constraint h(x) changes but it is sufficient for getting a new

optimal solution whereas the one related to the inequality constraint remains equal to

zero.

The directional derivatives with respect to a2 are obtained using the directions da =

( 0 1 0 )T and da = ( 0 −1 0 )T , and solving the two possible combinations of (32)-

(33) leading to:

dp∗

da+
2

= [∅], dp∗

da−2
=




0
− 1

2
√

2
0
1
−1




and
dp∗

da+
2

=




1
6
1

3
√

2
1
6

0
1




,
dp∗

da−2
= [∅], (58)

respectively, which implies that both directional derivatives exist (existence and unique-

ness) but only the partial derivative of z with respect a2 exists
∂z

∂a2

= 1. For the remaining

variables the partial derivatives do not exist. Note that in the right-derivative the solu-

tion point changes and the inequality constraint becomes inactive. The gradients of the

objective and equality constraint remain with the same direction but different magni-

tude whereas for the left derivative the solution point changes as well but the inequality

constraint remains active with Lagrange multiplier different from zero. Note that the
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inequality constraint forces the new solution point to move along its limit.

Analogously, the directional derivatives with respect to a3 are obtained using the

directions da = ( 0 0 1 )T and da = ( 0 0 −1 )T , and solving the two possible com-

binations of (32)-(33) leading to:

dp∗

da+
3

=




1
− 1√

2
1
6
0




,
dp∗

da−3
= [∅] and

dp∗

da+
3

= [∅], dp∗

da−3
=




0
0
0
0
0




, (59)

respectively, which implies that both directional derivatives exist (existence and unique-

ness) but only the partial derivative of z with respect a3 exists
∂z

∂a3

= 0. For the remaining

variables the partial derivatives do not exist. Note that in the right-derivative the solution

point changes but the inequality constraint remains active with Lagrange multiplier dif-

ferent from zero. The inequality constraint forces the solution point to move to the right.

For the left-derivative the solution point does not change and the inequality constraint

becomes inactive.

5.3 Nonregular Example

Consider the following simple nonlinear programming problem:

min
x1, x2

f(x) = x2
1 + x2

2 (60)

s.t. h(x) = −x1 + a1 = 0 (61)
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g1(x) = −x1 − x2 + 2a1 ≤ 0 (62)

g2(x) = a2x1 − x2 ≤ 0 (63)

with λ , µ1, µ2 the multipliers corresponding to the constraints (61)-(63).

The solution of this problem for the particular case a1 = a2 = 1 is:

x1 = x2 = 1; µ1 =
4− λ

2
; µ2 =

λ

2
. (64)

Note that the dual problem has infinite solutions. Since the two inequality con-

straints are active, they will remain active or inactive in a neighborhood of the opti-

mum depending on the values of the Lagrange multipliers. Then, a vector of changes

δp = (dx1, dx2, da1, da2, dλ, dµ1, dµ2, dz)T must satisfy the system (12)-(17).

For all possible cases, the M matrix in (21) can be obtained from the following matrix

M =




2 2 0 0 0 0 0 −1
2 0 0 µ2 −1 −1 1 0
0 2 0 0 0 −1 −1 0

−1 0 1 0 0 0 0 0
−1 −1 2 0 0 0 0 0

1 −1 0 1 0 0 0 0




(65)

by removing the rows corresponding to the null µ-multipliers, and the matrix N in (22)

can be obtained from the matrix

N =




−1 −1 2 0 0 0 0 0
1 −1 0 1 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0


 (66)

by removing the rows corresponding to the non null µ-multipliers.

We analyze the only possible two different cases (see Equation (64)):
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Case 1: µ1, µ2 6= 0. For example λ = 2; µ1 = 1; µ2 = 1. In this case, the matrix U is

singular because the gradients of the active constraints are not linearly independent;

so, we have a non-regular case. Since all µ-multipliers are non-null, the N matrix

does not exist and the system (21)-(22), using expression (65), becomes

Mδp =




2 2 0 0 0 0 0 −1
2 0 0 1 −1 −1 1 0
0 2 0 0 0 −1 −1 0

−1 0 1 0 0 0 0 0
−1 −1 2 0 0 0 0 0

1 −1 0 1 0 0 0 0




δp = 0. (67)

Note that in this example there is no need to consider (18) because the Lagrange

multipliers are different from zero. The solution is the linear space




dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz




= ρ1




1
1
1
0
0
2
0
4




+ ρ2




0
0
0
0
2
−1
1
0




=




ρ1

ρ1

ρ1

0
2ρ2

2ρ1 − ρ2

ρ2

4ρ1




, ρ1, ρ2 ∈ IR (68)

that gives all feasible perturbations. Note that the vector associated with ρ2 cor-

responds to the feasible changes in the Lagrange multipliers owing to the linearly

dependence of the constraint gradients.

In order to study the existence of partial derivatives with respect to a1 we use the

directions da = ( 1 0 )T and da = (−1 0 )T , that imply (see (68)) ρ1 = 1 and
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ρ1 = −1, respectively, and



dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz




=




1
1
1
0
0
2
0
4




+ ρ2




0
0
0
0
2
−1
1
0




,




dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz




=




−1
−1
−1
0
0
−2
0
−4




+ ρ2




0
0
0
0
2
−1
1
0




, (69)

which implies that the following partial derivatives exist:
∂x1

∂a1

=
∂x2

∂a1

= 1, and

∂z

∂a1

= 4 because they are unique. However, the partial derivatives
∂λ

∂a1

,
∂µ1

∂a1

and

∂µ2

∂a1

do not exist, because the corresponding dλ, dµ1, dµ2 are not unique (they

depend on the arbitrary real number ρ2).

Alternatively, it is possible to consider the direction in which the desired partial

derivative is looked for, da = ( 1 0 )T , and solve (32)-(33) with da and −da leading

to:

dp∗

da+
1

=




1
1
0
2
0
4




+ ρ2




0
0
2
−1
1
0




,
dp∗

da−1
=




−1
−1
0
−2
0
−4




+ ρ2




0
0
2
−1
1
0




, (70)

where dp∗/da1 = ( dx1/da1 dx2/da1 dλ/da1 dµ1/da1 dµ2/da1 dz/da1 ).

As (33) does not exist in this case, this condition holds strictly and (70) provides the

partial derivatives if the solution is unique. The partial derivatives obtained coincide

with the ones obtained from (69) , i.e., ∂x1/∂a1 = ∂x2/∂a1 = 1, and ∂z/∂a1 = 4,

whereas the partial derivatives ∂λ/∂a1, ∂µ1/∂a1 and ∂µ2/∂a1 do not exist, because
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they are not unique (they depend on the arbitrary real number ρ2).

Since in (68) da2 = 0, the partial derivatives with respect to a2 do not exist. The

same result can be obtained considering the direction da = ( 0 1 )T in (32), that

has no solution, that is, no derivative exist with respect to da2.

Note that in this case the active constraints remain active (all µ multipliers are

positive). This implies that the cone degenerates to a linear space.

Case 2: µ1 = 0; µ2 6= 0. For example, λ = 4; µ1 = 0; µ2 = 2. In this case, the

matrix U is singular because the gradients of the active constraints are not linearly

independent; so, we also have a non-regular case. The system (21) - (22), using

expression (65) and (66), becomes:

Mδp =




2 2 0 0 0 0 0 −1
2 0 0 2 −1 −1 1 0
0 2 0 0 0 −1 −1 0

−1 0 1 0 0 0 0 0
1 −1 0 1 0 0 0 0




δp = 0 , (71)

Nδp =

( −1 −1 2 0 0 0 0 0
0 0 0 0 0 −1 0 0

)
δp ≤ 0 . (72)

Note that we have not considered (18) yet. If we want (i) the inequality constraint

g1(x) to remain active the first equation in (72) should be removed and included

in (71), whereas if we want (ii) the inequality constraint to be allowed to become

inactive then the second equation in (72) should be removed and included in (71).
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The corresponding solutions are the cones




dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz




= ρ




1
1
1
0
4
0
2
4




+ π




0
0
0
0
−2
1
−1
0




and




dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz




= ρ




1
1
1
0
4
0
2
4




+ π




−1
1
−1
2
4
0
2
0




, (73)

respectively, where ρ ∈ IR and π ∈ IR+. Analogously to the previous case, the vector

associated with π for the first hypothesis corresponds to the feasible changes in the

Lagrange multipliers owing to the linearly dependence of the constraint gradients

but only positive increments are allowed because as µ1 = 0, a negative increment

would imply a negative multiplier which is incompatible with KKT conditions.

Note that constraint g1(x) it is not necessary for getting the optimal solution (64),

this means that it could be removed and the same optimal solution would still

remain.

In order to study the existence of partial derivatives with respect to a1 we use the

directions da = ( 1 0 )T and da = (−1 0 )T , that imply considering (73)-left,
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ρ = 1 and ρ = −1, respectively, leading to:




dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz




=




1
1
1
0
4
0
2
4




+ π




0
0
0
0
−2
1
−1
0




,




dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz




=




−1
−1
−1
0
−4
0
−2
−4




+ π




0
0
0
0
−2
1
−1
0




, (74)

and considering (73)-right, ρ = 1, π = 0 and ρ = −1, π = 0, respectively, dealing to:




dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz




=




1
1
1
0
4
0
2
4




,




dx1

dx2

da1

da2

dλ
dµ1

dµ2

dz




=




−1
−1
−1
0
−4
0
−2
−4




, (75)

respectively, which imply that the following partial derivatives exist: ∂x1/∂a1 =

∂x2/∂a1 = 1 and ∂z/∂a1 = 4, because they are unique and have the same absolute

value and different sign. However, the partial derivatives ∂λ/∂a1, ∂µ1/∂a1 and

∂µ2/∂a1 do not exist, because the corresponding dλ, dµ1, dµ2 are not unique (they

depend on the arbitrary real number π in (74)).

Alternatively, it is possible to consider the directions in which the desired directional

derivatives are looked for, da = ( 1 0 )T and da = (−1 0 )T , and solve the two
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possible combinations of (32)-(33) leading to:

dp∗

da+
1

=




1
1
4
0
2
4




+ π




0
0
−2
1
−1
0




,
dp∗

da−1
=




−1
−1
−4
0
−2
−4




+ π




0
0
−2
1
−1
0




, π ∈ IR+, (76)

and

dp∗

da+
1

=




1
1
4
0
2
4




,
dp∗

da−1
=




−1
−1
−4
0
−2
−4




, (77)

where the same results as in (74) and (75) are obtained.

In order to study the existence of partial derivatives with respect to a2, we use the

directions da = ( 0 1 )T and da = ( 0 −1 )T , that imply considering (73)-right,

that ρ = π = 1/2 and as the value of π can just be positive, it is not possible to get

da2 = −1 neither from (73)-left nor from (73)-right and then no partial derivatives

exist with respect to a2. Therefore, as π > 0 only right-derivatives can exist:

δp = [ 0 1 0 1 4 0 2 2 ]T , (78)

which implies: ∂x1/∂a+
2 = 0, ∂x2/∂a+

2 = 1, ∂λ/∂a+
2 = 4, ∂µ1/∂a+

2 = 0, ∂µ2/∂a+
2 =

2 and ∂z/∂a+
2 = 2 because they are unique.
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Alternatively, if we try to solve (32)-(33) using da = ( 0 1 )T and da = ( 0 −1 )T :

dp∗

da+
2

= π




0
0
−2
1
−1
0




,
dp∗

da−2
= π




0
0
−2
1
−1
0




and
dp∗

da+
2

=




0
1
4
0
2
2




,
dp∗

da−2
= [∅], (79)

where the same results as in (78) are obtained.

Note that in this example constraint g1 becomes inactive.

6 Conclusions

In the context of sensibility analysis in nonlinear programming, the main conclusions

derived from the work reported in this paper are the following:

(i) There is no need to assume that the active constraints remain active after small

perturbations in the neighborhood of a solution point, the method allows active

constraints with multipliers equal to zero to become inactive after the perturbation.

(ii) The theory of polyhedral cones allows deriving the most general feasible perturba-

tion.

(iii) The proposed method allows determining whether or not a given directional or

partial derivative exists.

(iv) The method allows calculating left and right derivatives in all directions if they
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exist.

(v) The feasible directions define directions with existing directional derivatives.

(vi) For regular non-degenerate cases (the most common in real world applications),

the proposed method allows obtaining simultaneously the partial derivatives of the

objective function and the primal and dual variables with respect to the data in an

elegant and neat way, just solving a system of linear equations. For the degenerate

regular and non-regular cases, alternative procedures with higher computational

burden are provided.
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