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Abstract—Currents, voltages and voltage-current phase angles
are directly measured in substations and converted through
nowadays complex measurement systems into power injection
and power flow measurements. Since voltages, currents and phase
angles are directly measured, they are affected by errors that
are statistically independent and generally Gaussian distributed.
However, power injections and flows, which are fabricated out
of currents, voltages and phase angles, are affected by errors
that are generally neither independent nor Gaussian. This paper
describes a procedure to estimate the correlation matrix that
identifies the dependencies among all measurements within a
substation. The proposed technique that relies on Point Estimate
is both accurate and computationally efficient. A realistic case
study is used to compare the results obtained from the proposed
technique with those obtained using a cumbersome Monte Carlo
algorithm.

Index Terms—Dependent measurements, Correlation coeffi-
cients, Point estimate.

I. INTRODUCTION

A. Motivation and Aim

Currents, voltages and voltage-current phase angles are
directly measured in substations. The metering systems reduce
the values of currents and voltages, and then carry out the
actual measurements. Meters for currents and voltages are
generally independent devices affected by independent mea-
surement errors. Moreover, these errors are generally Gaussian
distributed.

Once measurements for voltages, currents and phase an-
gles are available, the measurement system combines them
mathematically to fabricate power injection and power flow
measurements. Due to the calculations involved, the errors
affecting these fabricated power measurements are generally
neither independent nor Gaussian.

However, measurement processing assumes in general that
all measurements are independent and Gaussian. This is the
case of most state estimation algorithms that routinely consider
all measurements (raw or fabricated) statistically independent
and Gaussian distributed.

We provide in this paper a procedure to estimate the corre-
lation matrix of all measurements pertaining to a substation.
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We show that dependencies among measurements are very
significant, and that these dependencies vary very significantly
with the operating conditions of the substation.

Measurement correlation matrices are important to process
properly the information provided by the set of measurements
available in a substation. Particularly, these matrices are im-
portant to achieve an accurate estimation of the state of the
system based on the available measurement set.

The technique used to estimate the correlation matrix relies
of a well-known statistical procedure known as point estimate,
which provide adequate accuracy for moderate computational
effort [14]–[25]. A specialized yet cumbersome Monte Carlo
algorithm [26] is also provided in this paper, which is mostly
used to appraise the accuracy of the point-estimate algorithm.

B. Literature Review

The technical literature is rich in references concerning
substation measurements [1]–[4] and its applications, e.g.,
state estimation, [5]–[13]. All of these references assume that
measurements are independent and Gaussian. To the best of
our knowledge, no references questioning these assumptions
have been found.

C. Contributions

Within the context above, the contributions of this paper are
threefold:

1) To provide an efficient yet accurate technique (based on
point estimate) to estimate the correlation matrix of the
set of measurements within a substation.

2) To validate this point-estimate technique through a
Monte Carlo algorithm.

3) To emphasize the importance of taking into account the
correlation matrix to process the set of measurements of
a substation, particularly for state estimation studies.

D. Paper Organization

The rest of this paper is organized as follows. Section II
provides a general overview of the measuring system in a
substation. In Section III a point-estimate method is developed
for estimating the covariance (or variance-covariance) matrix.
Section IV analyzes the characteristics of the measurement
correlation matrix. Section V develops a Monte Carlo method
to estimate the correlation matrix. Section VI provides and
analyzes results from an illustrative case study. Finally, Sec-
tion VII provides some relevant conclusions.
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Fig. 1. Measurement connection configurations: (a) two-phase and (b) three-
phase connections.

II. MEASUREMENT DEPENDENCY

Each substation of a power system is equipped with elec-
tronic devices called Remote Terminal Units (RTUs). These
units collect and process various types of measurements from
the measurement system, in order to compute the values of ac-
tive/reactive power flows and active/reactive power injections.

Traditionally, all these measurements are considered (i)
statistically independent and (ii) Gaussian distributed. In order
to check these assumptions, the measurement topology and the
processing of the measured data should be studied.

A. Measurement Configuration

In this section, the measurement configuration of a substa-
tion is examined. Each measurement group is composed of a
set of current and voltage transformers. These electric devices
provide the current and voltage analog signals to be digitalized
and processed by an electronic multifunction meter. Then, by
means of a set of software routines, the multifunction meter
computes the digital output data (processed measurements),
using the analog input data (“raw measurements”).

There are two usual configurations for the measurement
group connection: the two-phase (see Fig. 1.a) and the three-
phase (see Fig. 1.b) connections. In this paper, the three-phase
connection is studied because it is the most common config-
uration in practice. However, the proposed methodology can
be straightforwardly extended to the two-phase connection.

In Fig. 2, the considered measurement group configuration
is depicted. Note that throughout this study the input signal
errors are considered statistically independent and Gaussian-
distributed. Note also that input measurements not only pro-
vide the voltage magnitude and current magnitude for each
phase, but also the phase angle.

B. Multifunction Meter Equations

In this section, the internal software routines of the mul-
tifunction meter, which compute the processed measurement
values, are described and studied. These computational rou-
tines are implemented in such a way that the possible presence
of harmonics, imbalances or asymmetries in the network state
are considered, [1]–[2]. For the sake of clarity, a sinusoidal

Fig. 2. Voltage signals, current signals and processed measurements.

system state is considered throughout this study, i.e., no other
harmonics except the fundamental harmonic are taken into
account.

Processed measurements are usually: voltage at bus i, Vi;
current through line ij, Iij ; and active and reactive power
flows for line ij, Pij and Qij , respectively. The internal
software routines for computing this set of processed mea-
surements are based on the following equations:

Vi =
V A

i + V B
i + V C

i

3
(1)

Iij =
IA
ij + IB

ij + IC
ij

3
(2)

Pij =
∑

f∈{A,B,C}
V f

i If
ij cos(ψf

ij) (3)

Qij =
∑

f∈{A,B,C}
V f

i If
ij sin(ψf

ij) , (4)

where V f
i is the voltage magnitude signal for phase f and bus

i, If
ij , and ψf

ij are the current magnitude and voltage-current
phase angle signals for phase f and line ij.

Note that equations (1)–(4) include the case of an imbal-
anced and/or asymmetric network state. However, for the sake
of clarity, hereafter symmetric balanced working conditions
are considered.

Fig. 2 and equations (1)–(4) describe the case in which the
measuring group is connected to just one line. However, a
substation includes generally more than one power line and,
therefore, either a more complex multifunction meter should
be connected, or a set of basic ones. In these cases, two
new processed measurements should be defined: the active
and reactive power injection of bus i, Pi and Qi, which are
computed using the following expressions:

Pi =
∑

f={A,B,C}
V f

i If
i cos(ψf

i ) (5)

Qi =
∑

f={A,B,C}
V f

i If
i sin(ψf

i ) , (6)
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where If
i and ψf

i are the current magnitude and voltage-
current phase angle signals for phase f pertaining to the
generator/load of the considered bus i, respectively.

C. Definitions

For the sake of clarity, measurements are organized into
vectors, yielding the input signal vector p and processed
measurement vector z:

p = [p1, . . . , pl, . . . , pη]T

= [V f
i , If

i , ψf
i If

ij , . . . , I
f
ik, ψf

ij , . . . , ψ
f
ik]T ,

z = [z1, . . . , zq, . . . , zν ]T

= [Vi, Ii, Iij , . . . , Iik, Pi, Qi, Pij , . . . , Pik, Qij , . . . , Qik]T .

From (1)–(4), the transformation functional vector F (·)
which relates p and z is defined, satisfying is zq = Fq(p),
for q = 1, . . . , ν.

D. Structure of the Correlation Matrix

The mathematical software routines (1)–(6), implemented
in the multifunction meter, produce a statistical dependency
structure between the processed measurements z, where z
which can be studied by means of the correlation matrix Φz .

Matrix Φz is always symmetric, with diagonal elements
[Φz]ii equal to 1, and non-diagonal elements {[Φz]ij |i 6= j}
ranging from -1 to +1. Note that each non-diagonal element
(i, j) corresponds to the statistical correlation between mea-
surements zi and zj , denoted as ρzizj . This matrix can be
easily computed from the covariance matrix of the processed
measurements z, Cz , using the following expression:

ρzizj =
czizj√
σ2

zi
σ2

zj

, (7)

where σ2
zi

is the variance of measurement zi (i-th diagonal
element of Cz), and czi,zj is the covariance between measure-
ments zi and zj . The algorithm to estimate the measurement
covariance matrix Cz is detailed in Section III below.

III. POINT ESTIMATE

A. Overview

Point estimate constitutes a methodology to obtain an ap-
proximate description of the statistical properties of the output
random variables of a problem. For this, just commonly avail-
able information on the random behavior of input variables
is required, specifically, their first statistical moments (e.g.,
mean, variance and skewness).

In particular, the aim of any point-estimate method is to
compute the moments of a random variable zq that is function
Fq of η input random variables pl, i.e.,

zq = Fq(p1, p2, . . . , pl, . . . , pη). (8)

This task is accomplished by concentrating the statistical
information provided by the first few central moments of an
input random variable on K points for each variable, named
concentrations. The k-th concentration (pl,k, wl,k) of a random
variable pl can be defined as a pair consisting of a location

pl,k and a weight wl,k. The location pl,k corresponds to the
k-th value at which function Fq(·) is evaluated. The weight
wl,k is a weighting factor that quantifies the influence of this
evaluation on the random behavior of the corresponding output
random variable zq .

Several point-estimate methods have been proposed in the
technical literature [14]–[21]. They mainly differ on the type
of variables that they can deal with (skewed or symmetric,
correlated or not) and on the number of evaluations needed.
From among all of them, Hong’s two-point estimate method
[21] has been deemed to be the most appropriate for the
purpose of this paper for three reasons:

1) This method is easily implementable as analytical ex-
pressions for the determination of locations and weights
are available.

2) Hong’s two-point estimate method has been reported
to perform satisfactorily in other electrical engineering
applications, [22]–[25], especially if the number of input
variables involved is relatively low and these variables
can be assumed to be normally distributed [24]. Note
that these two conditions are satisfied in the present
study.

3) The number of simulations needed by the two-point
estimate method grows linearly with the number η of
input random variables. Specifically, function Fq(·) is to
be evaluated only twice for each input variable pl, which
turns the two-point estimate method into an efficient
alternative to other computationally much more costly
approaches, e.g., a Monte Carlo simulation.

Next, the analytical expressions to determine the locations
and weights used by the two-point estimate method are intro-
duced.

B. Locations and Weights

Each input variable pl is evaluated at two locations pl,k

given by:

pl,k = µpl
+ ξl,kσpl

, k = 1, 2 , (9)

where ξl,k is the standard location, and µpl
and σpl

(input
data) are the mean and standard deviation of pl.

The standard location ξl,k and the weight wl,k are obtained
by solving the non-linear system of equations [21]:

2∑
k=1

wl,k = 1
m

2∑
k=1

wl,k (ξl,k)j = λl,j j = 1, 2, 3





(10)

where λl,j denote the j-th standard central moment of the
random variable pl with probability density function gpl

, that
is:

λl,j =
Mj (pl)

(σpl
)j

(11)

Mj (pl) =

∞∫

−∞
(pl − µpl

)j
gpl

dpl . (12)
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Note that λl,1 equals zero, λl,2 equals one, and λl,3 is the
skewness coefficient of pl.

The non-linear system of equations (10) can be solved
analytically and, as a result, standard locations and weights
can be directly obtained from the following expressions:

ξl,1 =
λl,3

2
+

√
η +

(
λl,3

2

)2

ξl,2 =
λl,3

2
−

√
η +

(
λl,3

2

)2

(13)
and

wl,1 = −1
η

ξl,2

ξl,1 − ξl,2
wl,2 =

1
η

ξl,1

ξl,1 − ξl,2
. (14)

Then, taking into account the mean and standard deviation of
pl, the locations pl,1 and pl,2 can be computed from (9).

In the following subsection, the two-point estimate method
is particularized for its application to the calculation of the
measurement covariance matrix.

C. Estimation of the Measurement Covariance Matrix

The covariance matrix Cz associated to the processed mea-
surements can be computed by using the two-point estimate
method described above, where the input random variable vec-
tor p, the output random variable vector z and the functional
vector F (·) are defined in Section II-C.

As stated in Section II-A, input random measurements are
considered Gaussian-distributed, i.e. their skewness coefficient
is zero. Thus, expressions (13) and (14) determining locations
and weights of the two-point estimate method boil down to:

ξl,1 =
√

η , ξl,2 = −√η , (15)

wl,1 =
1
2η

, wl,2 =
1
2η

. (16)

Using (9) and (15)–(16), all concentrations (pl,k, wl,k) are
obtained. Subsequently, function F (·) is evaluated 2η times
(l = 1, . . . , η; k = 1, 2), yielding vector Z(l, k), whose
components Zq(l, k) are computed as:

Zq(l, k) = Fq(µp1 , . . . , µpl−1 , pl,k, µpl+1 , . . . , µpη )
= Fq(µp1 , . . . , µpl−1 , µpl

+ ξl,kσpl
, µpl+1 , . . . , µpη ) .

1) Calculation of diagonal terms of Cz: Using weighting
factors wl,k and Zq(l, k) values, the j-th non-cross moment
of the output random variable zq can be estimated as follows
(see [24]):

E[zj
q ] ≈

η∑

l=1

2∑

k=1

wl,k(Zq(l, k))j , (17)

where E[·] denotes the expectation operator.
Note that variances of the processed measurements σ2

zq
,

which constitute the diagonal terms of Cz , can be easily
computed from (17) as:

σ2
zq

= E[z2
q ]− (E[zq])

2 = E[z2
q ]− µ2

zq
. (18)

2) Calculation of non-diagonal terms of Cz: Point-
estimate methods were developed to compute approximately
the statistical moments of the marginal distributions (non-
crossed moments) pertaining to the output random variables
of a system under uncertainty [14]. Nevertheless, in this paper,
it is experimentally and theoretically shown (see Section VI
and the Appendix, respectively) that these methods can be
revised easily to estimate the covariance (second order crossed
moment), czqzq′ , between two output measurements zq and zq′

through the following expressions:

E[zqzq′ ] ≈
η∑

l=1

2∑

k=1

wl,k(Zq(l, k)Zq′(l, k)) , (19)

czqzq′ = E[zqzq′ ]− E[zq]E[zq′ ] . (20)

Note the analogy existing between equations (17)–(18)
and (19)–(20). In the Appendix, it is shown that expres-
sions (19)–(20) constitute a first-order approximation of the
covariance czqzq′ . Likewise, in the case study discussed in
Section VI, this approximation is shown to be highly accurate
for the problem tackled in this paper.

IV. CHARACTERIZATION OF MEASUREMENT
CORRELATIONS

In the previous section, a point-estimate technique is devel-
oped for estimating the measurement covariance matrix Cz .
On the other hand, as stated in Section II, the correlation
matrix Φz can be computed using Cz and equation (7). In this
section, the numerical structure of this matrix is numerically
explored.

Pursuing clarity and simplicity, a simple measurement sys-
tem is studied: a multifunction meter connected in the three-
phase configuration (as depicted in Fig. 2). It provides the
following output measurements: voltage V and active/reactive
power flows, P and Q, respectively.

The internal software routines of the multifunction meter
have nine independent input variables, {V f , If , ψf} for each
phase f , and three output variables, {V, P, Q}. The correla-
tion coefficients are {ρV P , ρV Q, ρPQ}. Considering balanced
symmetric working conditions, input variables are equal for
each phase.

Input variables are characterized by their means and stan-
dard deviations, as a result of being considered normally
distributed. Therefore, the value of each correlation co-
efficient is determined as a function of input parameters
{µV , µI , µψ, σV , σI , σψ}. Due to standard deviations are de-
termined by measurement device accuracies, they are consid-
ered known parameters. Therefore, {ρV P , ρV Q, ρPQ} values
are studied as a function of {µV , µI , µψ}.

A. Analysis of the Absolute Values of the Correlations

Some general characteristics regarding how correlation ab-
solute values evolve as input variable average values vary
within typical ranges are highlighted below.

The considered variation ranges of parameters µV , µI ,
and µψ are [0.9, 1.1] (p.u.), [0, 1.5] (p.u.), and [0, 1.5] (rad),
respectively. Observe that 1.5 ≈ π/2.
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Fig. 3. Absolute correlation values |ρ|, for several µI and µψ [µV = 1.0].

For each value of {µV , µI , µψ}, coefficients
{|ρV P |, |ρV Q|, |ρPQ|} are computed using the proposed point-
estimate technique. Considering a large number of evaluations,
it has been observed that (i) mean voltage magnitude
variation does not cause substantial changes in the correlation
coefficients, and that (ii) the numerical relationships between
{|ρV P |, |ρV Q|, |ρPQ|} and {µV , µI , µψ} can be depicted in a
three-dimensional plot.

The correlation absolute values are plotted in Fig. 3 as a
function of the mean current magnitude, µI , and mean phase
angle, µψ.

From Fig. 3 some trends of these coefficients can be
inferred:

1) If the mean current value µI is low, the coefficient |ρPQ|
has generally a large absolute value, whereas |ρV P | and
|ρV Q| values are close to zero.

2) If the mean current value is high, |ρV P | and |ρV Q|
values are generally higher than the value of |ρPQ|.

3) Within ranges where the value of µI is high, |ρV P |
and |ρV Q| values depend on µψ , and the following
relationships can be inferred:




0 = ψ −→ |ρV P | > |ρV Q| = 0
0 < ψ < π

4 −→ |ρV P | > |ρV Q|
ψ = π

4 −→ |ρV P | = |ρV Q|
π
4 < ψ < π

2 −→ |ρV P | < |ρV Q|
ψ = π

2 −→ 0 = |ρV P | < |ρV Q|

Note that Fig. 3 can be used to estimate approximately the
correlation values for any bus i, once measurements {If

ij , ψ
f
ij}

for line ij are known.
For the sake of conciseness, note that (i) the correlation

coefficient sign is not considered in this study, and (ii) the
variation range for µψ is rather small.

V. MONTE CARLO METHOD

The Monte Carlo method [26] is generally applied if it is
infeasible to use analytical expressions. In our case, there is
no procedure to obtain the measurement correlation matrix in
an exact manner. Therefore, a Monte Carlo method is used
to determine approximately this matrix. Due to the fact that
the Monte Carlo method is a computational algorithm which
is based on repeated random sampling, its computational
efficiency is particularly low. In our study, this method is used
as a benchmark, to test point-estimate results.

If the correlation matrix Φz is numerically estimated by a
Monte Carlo method, its coefficients are subject to error. This
error depends on the considered sample size n. In order to
check point-estimate results, the confidence intervals of Monte
Carlo results should be computed. Parameters rlo and rup

define this range, satisfying:

P[rlo ≤ ρPOP ≤ rup] = 1− α , (21)

where ρPOP is the population correlation coefficient, 1−α is
the confidence level (usually α = 0.05), and P [xlo ≤ x ≤ xup]
is the probability of x being in the range of [xlo, xup].

Hypotheses about the population correlation value ρPOP

can be tested using the Fisher transformation [27] applied
to the sample correlation ρ. Applying this transformation,
the confidence interval of ρPOP are defined by rlo(n, ρ) and
rup(n, ρ), through the following expressions:

rlo(n, ρ) = tanh

[
1
2
log

(
1 + ρ

1− ρ

)
+

erfinv (α− 1)
√

2√
n− 3

]
(22)

rup(n, ρ) = tanh

[
1
2
log

(
1 + ρ

1− ρ

)
− erfinv (α− 1)

√
2√

n− 3

]
(23)

where erfinv(·) is the value of the inverse error function, and ρ
is the sample correlation coefficient (provided by Monte Carlo
simulation). Note that these limits depend on the number of
samples n and the value of the sample correlation coefficient
ρ.

The Confidence Interval Width (hereafter called CIW), at
a confidence level 1 − α, can be computed as the difference
between rup(n, ρ) and rlo(n, ρ):

CIW(n, ρ) = rup(n, ρ)− rlo(n, ρ) . (24)

Fig. 4 depicts the CIW values as a function of n and ρ. Note
that sample size axis is logarithmical.

In order to ensure a desired tolerance in the Monte Carlo
results, a minimum sample size n should be considered.
Fig. 5 depicts the required sample size for several confidence
interval widths and absolute correlation coefficients |ρ|, for a
confidence level of 95% (α = 0.05). Note, from Fig. 4–5, that
the CIW is larger if |ρ| is closer to zero.

VI. CASE STUDY

In this section, the IEEE 30-bus system [28] is considered
in order to (i) check the traditional assumption about Gaussian
errors in processed measurements, (ii) to compute the correla-
tion matrix using the Monte Carlo method, (iii) to compute this



SUBMITTED TO IEEE TRANSACTIONS ON POWER DELIVERY 6

0

0.5

1
2

3

4

5

6

0

0.1

0.2

0.3

0.4

10m sample size

CIW in function of |ρ| and n

Abs. corr. coeff.
(|ρ|)

C
IW

Fig. 4. Confidence interval width versus n and ρ (α = 0.05).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

Abs. corr. coef. (|ρ|)

10
m

 s
am

pl
e 

si
ze

Number of samples required.

tol = 10−2

tol = 10−3

tol = 10−4

Fig. 5. Required sample size versus correlation, for several tolerances.

matrix using a point-estimate technique, (iv) to compare both
methods in terms of accuracy and computational efficiency,
and (v) to study the correlation coefficient values for some
illustrative buses.

In this case study three realistic assumptions are consid-
ered: (i) the power system working conditions are symmetric
and balanced; (ii) the measurement configuration for each
multifunction meter is the three-phase connection; and (iii)
the multifunction meter output data are assumed to include
voltage, active/reactive power flows and active/reactive power
injections.

A. Gaussian Assumption

In this subsection the traditional assumption about
Gaussian-distributed measurements is examined. A converged
power flow solution is considered in order to obtain the true
value of each measurement. Afterwards, a random zero-mean
Gaussian error (which a standard deviation characterized by
the measurement device accuracy) is added to these mea-
surements, in order to obtain realistic measurements (input
data). Subsequently, processed measurements (output data) are
computed using (1)–(4).

The statistical distribution of each processed measurement
can be characterized by generating a large sample of mea-

surement scenarios. This characterization can be numerical
(e.g., computing its skewness and kurtosis) or graphical (e.g.,
plotting its probability density function, or its cumulative
density function).

Considering one million of measurement scenarios, the
skewness and kurtosis for the statistical distribution of each
processed measurement are computed. Table I provides the
statistical characterization (mean and standard deviation) for
the skewness and kurtosis of each type of the processed
measurement. Note that the skewness and kurtosis of a perfect
Gaussian distribution are zero and three, respectively.

TABLE I
NUMERICAL CHARACTERIZATION OF THE PROCESSED MEASUREMENTS

STATISTICAL DISTRIBUTIONS.

Type of Skewness Kurtosis
measurement Average Std. Dev. Average Std. Dev.

Vi -0.0003 0.0022 3.0011 0.0049
Pi 0.0001 0.0047 3.0669 0.3605
Qi -0.0057 0.0252 3.0697 0.3638
Pij 0.0001 0.0064 3.0008 0.0046
Qij -0.0004 0.0592 3.0604 0.3097

From Table I it can be concluded that the distribution
of the processed measurements can be considered Gaussian:
the average skewness is approximately zero, and the average
kurtosis is slightly above three. This numerical validation as
well as others graphical characterizations have been considered
for all processed measurements in the 30-bus system, as well
as in other realistic systems, and the obtained results are
similar. Therefore, it can be concluded that the traditional
assumption about Gaussian errors is realistic.

B. Monte Carlo Results
In this subsection, the Monte Carlo method is used to

compute the correlation matrix Φz , used below as a benchmark
for comparison purposes. For the sake of conciseness, only
correlations between voltage and active power flow/injections
are displayed.

As stated in Section V, the Monte Carlo method provides
an accuracy level dependent on the sample size n. Considering
ten million of measurement scenarios (n = 107), the CIW is
approximately 10−3 for a confidence level of 95% (see Fig. 5).

Using the Monte Carlo (MC) method to compute ΦMC
z at

bus 1, a bus connected to buses 2 and 3 through lines 1–2 and
1–3, respectively, obtaining the following matrix:

ΦMC
z =




V P P1,2 P1,3

V 1.0000 0.6126 0.4590 0.2523
P 0.6126 1.0000 0.2816 0.1544
P1,2 0.4590 0.2816 1.0000 0.1159
P1,3 0.2523 0.1544 0.1159 1.0000




Using (22)–(23), lower (and upper) bounds for each cor-
relation coefficient are estimated for a 95% confidence level,
resulting the following values of ΦMC

z (ΦMC
z ):




V P P1,2 P1,3

1.0000(1.0000) 0.6122(0.6130) 0.4586(0.4595) 0.2517(0.2529)
0.6122(0.6130) 1.0000(1.0000) 0.2810(0.2822) 0.1538(0.1550)
0.4586(0.4595) 0.2810(0.2822) 1.0000(1.0000) 0.1152(0.1165)
0.2517(0.2529) 0.1538(0.1550) 0.1152(0.1165) 1.0000(1.0000)
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Note that
[
ΦMC

z

]
ij

(and
[
ΦMC

z

]
ij

) components are com-

puted using (22)–(22) with n = 107 and ρ = 0. Note also that
all these three matrices are symmetric with unitary diagonal
terms.

C. Point-Estimate Results

The point-estimate (PE) algorithm, described in Sec-
tion III-C, is used to determine the processed measurement
variance matrix CPE

z at bus 1. Using (7), correlation coeffi-
cient matrix ΦPE

z can be easily computed from CPE
z , yielding:

ΦPE
z =




V P P1,2 P1,3

V 1.0000 0.6126 0.4591 0.2525
P 0.6126 1.0000 0.2812 0.1547
P1,2 0.4591 0.2812 1.0000 0.1159
P1,3 0.2525 0.1547 0.1159 1.0000




Comparing ΦPE
z and ΦMC

z , it is observed that both matrices
are remarkably similar. Since ΦPE

z and ΦMC
z values diverge

at fourth decimals, it is proved that point-estimate technique
provides precise results, according to the selected accuracy
level. Note also that every

[
ΦPE

z

]
ij

element is comprised

within the range defined by
[
ΦMC

z

]
ij

and
[
ΦMC

z

]
ij

.

D. Computational Comparison

In this section, Monte Carlo and point-estimate methods
are compared from a computational point of view. Table II
provides the computational characterization for both tech-
niques. For these simulations, a Linux-based server with four
processors clocking at 2.6 GHz and 32 GB of RAM is used.

TABLE II
COMPUTATIONAL COMPARISON BETWEEN MC AND PE METHODS.

Parameters Monte Carlo Point Estimate

Sample size 104 105 106 107 –
CIW (×10−3) 39 12 3.9 1.1 –
Time (s) 0.075 0.55 3.95 44.14 0.004

Memory (Mb) 3.618 35.89 358.6 3585 0.02244

Table II shows that point-estimate method clearly outper-
forms computationally the Monte Carlo technique for every
accuracy level.

E. Correlation Study

In this section, the correlation matrices of several buses are
compared to illustrate (i) that Φz values are notably dissimilar
from one bus to other, and (ii) that these values can be
estimated approximately using Fig. 3.

Three buses are considered to highlight several trends. For
the purpose of conciseness, we only provide results for one
line at each bus. Considered buses are 1, 7, 23, and the
lines considered are 1-2, 7-5, 23-24, respectively. Table III
provides the voltage, current and phase angle actual values
for each line. The last three columns of this table provide
the correlation coefficient values computed using the point-
estimate technique.

TABLE III
VOLTAGES (P.U.), CURRENTS (P.U.), PHASE ANGLES (RAD), AND

CORRELATION COEFFICIENTS.

Bus Line Vi Iij ψij ρV P ρV Q ρPQ

1 1–2 1.0600 0.55 -0.14 0.459 -0.129 -0.213
7 7–5 1.0047 0.06 -0.65 0.062 -0.062 -0.992
23 23–24 1.0045 0.01 0.71 0.007 0.007 1.000

−0.16−0.14−0.12−0.1−0.080.1 0.15 0.20.98 1 1.02
−0.16

−0.14

−0.12

−0.1

−0.08

Q
F

7−
5

0.1

0.15

0.2

P
F

7−
5

QF
7−5
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7−5

0.98

1

1.02

V
7

V
7

Fig. 6. Graphical study of correlations for line 7-5 at bus 7.

Results from simulating ten thousand measurement sce-
narios are summarized in Fig. 6. This figure is composed
of nine graphics: the diagonal graphics depict each output
measurement histogram ({Vi, Pij , Qij}); and the non-diagonal
graphics are paired, and depict the plot of confronted sample
measurement vectors ({Vi−Pij , Vi−Qij , Pij−Qij}). For the
non-diagonal graphics the regression line and 95% confidence
interval bounds are also plotted.

The following observations are in order:

1) From Fig. 6, it is observed that the correlation between
measurements P7,5 and Q7,5 is high, and can be detected
visually. It can be concluded that disregarding the depen-
dency between some measurement pairs is unrealistic.

2) From histograms of Fig. 6, note that the distribution
of processed measurements can be considered normal,
supporting the traditional assumption about Gaussian-
distributed measurement errors.

3) Fig. 3 allow us to estimate the correlation coefficient
absolute value in an approximate way, once we know
the {V f

i , If
ij , ψ

f
ij} actual values. The accuracy of this

procedure is reasonably high. Note that disregarding the
voltage value makes no any significant difference.

4) As shown in Table III, if the largest absolute correlation
value is low, the rest of the correlation values are
significant (as it occurs with line 1–2). This trend can
be derived from Fig. 3. On the other hand, if the
largest absolute correlation value is high, the rest of the
correlation coefficient values are almost insignificant, as
shown in Fig. 6 and Table III.

5) From Table III, note that the correlation coefficient value



SUBMITTED TO IEEE TRANSACTIONS ON POWER DELIVERY 8

can be very high and close to one. In this case, the values
of other correlation coefficients are approximately zero.
Note also that a correlation coefficient absolute value of
1.000 is possible under normal operating conditions in
a electric energy system.

VII. CONCLUSIONS

Processing current, voltage and power measurements within
a substation clearly requires taking into account their statistical
dependency. This is particularly relevant to achieve an accurate
estimation of the state of an electric energy system through
state-estimation algorithms.

The technique provided in this paper allows estimating the
correlation matrix of the set of measurements pertaining to
a substation. This estimation is carried out using a simple
mathematical algorithm - point estimate - that involving low
computational burden achieves high accuracy.

The systematic comparison through different case studies of
the proposed technique with a cumbersome Monte Carlo algo-
rithm shows the good performance of the technique proposed.
Likewise, numerical simulations carried out corroborates the
traditional normality assumption whereby measurement errors
are considered normal distributed.

APPENDIX

For the sake of simplicity and without loss of generality,
let us consider a vectorial function z = F (p) in which both
output and input variable vectors z and p, respectively, are
composed of two components, that is:

z =
(

z1

z2

)
, p =

(
p1

p2

)
,

(
z1

z2

)
=

(
F1(p1, p2)
F2(p1, p2)

)
.

Likewise, let us assume that input random variables p1 and p2

are independent, which can be statistically stated as E[(p1 −
µp1)

i(p2 − µp2)
j ] = 0, ∀(i, j)|i 6= j.

Function F (·) can be expanded in bivariate Taylor series
around the mean vector µ = (µp1 , µp2) = (E[p1], E[p2]).
Then, by making use of this series expansion and applying
definitions (11) and (12), expectation over the product of
variables z1 and z2, i.e., E[z1z2], can be expressed as:

E[z1z2] = F1(µ)F2(µ) + F1(µ)
∞∑

i=1

1
i!

∂iF2

∂pi
1

∣∣∣∣
µ

λ1,i (σ1)i

+ F1(µ)
∞∑

j=1

1
j!

∂jF2

∂pj
2

∣∣∣∣∣
µ

λ2,j (σ2)j

+ F2(µ)
∞∑

i=1

1
i!

∂iF1

∂pi
1

∣∣∣∣
µ

λ1,i (σ1)i

+ F2(µ)
∞∑

j=1

1
j!

∂jF1

∂pj
2

∣∣∣∣∣
µ

λ2,j (σ2)j

+
∞∑

i=1

∞∑

j=1

1
i!j!

∂iF1

∂pi
1

∣∣∣∣
µ

∂jF2

∂pj
1

∣∣∣∣∣
µ

λ1,i+j (σ1)i+j

+
∞∑

i=1

∞∑

j=1

1
i!j!

∂iF1

∂pi
2

∣∣∣∣
µ

∂jF2

∂pj
2

∣∣∣∣∣
µ

λ2,i+j (σ2)i+j ,

(25)

where all the terms containing crossed moments of input
variables have been eliminated from (25) under the assumption
of independency.

On the other hand, the estimate of expectation E[z1z2]
given by the two-point estimate method is the one shown
in equation (19). This estimate can be also expanded by
using univariate Taylor series around the mean vector µ =
(µp1 , µp2). If the location definition (9) is introduced into this
series, the estimate of E[z1z2] can be expressed as:

E[z1z2] ∼= [w11 + w12 + w21 + w22]F1(µ)F2(µ)

+F1(µ)
∞∑

i=1

1
i!

∂iF2

∂pi
1

∣∣∣∣
µ

[w11 ξi
11 + w12 ξi

12] σi
1

+F2(µ)
∞∑

i=1

1
i!

∂iF1

∂pi
1

∣∣∣∣
µ

[w11 ξi
11 + w12 ξi

12] σi
1

+
∞∑

i=1

∞∑

j=1

1
i!j!

∂iF1

∂pi
1

∣∣∣∣
µ

∂jF2

∂pj
1

∣∣∣∣∣
µ

[w11 ξi+j
11 + w12 ξi+j

12 ] σi+j
1

(26)
And subtracting the above estimate from (25), the estimation

error can be cast as follows:

error = F1(µ)
∞∑

i=4

1

i!

∂iF2

∂pi
1

∣∣∣∣
µ

[λ1,i − (w11 ξi
11 + w12 ξi

12)] σi
1

+F1(µ)
∞∑

i=4

1

i!

∂iF2

∂pi
2

∣∣∣∣
µ

[λ2,i − (w21 ξi
21 + w22 ξi

22)] σi
2

+F2(µ)
∞∑

i=4

1

i!

∂iF1

∂pi
1

∣∣∣∣
µ

[λ1,i − (w11 ξi
11 + w12 ξi

12)] σi
1

+F2(µ)
∞∑

i=4

1

i!

∂iF1

∂pi
2

∣∣∣∣
µ

[λ2,i − (w21 ξi
21 + w22 ξi

22)] σi
2

+
∞∑

i=1

∞∑

j=1
i+j>3

1

i!j!

∂iF1

∂pi
1

∣∣∣∣
µ

∂jF2

∂pj
1

∣∣∣∣∣
µ

[λ1,i+j − (w11 ξi+j
11 + w12 ξi+j

12 )] σi+j
1

+
∞∑

i=1

∞∑

j=1
i+j>3

1

i!j!

∂iF1

∂pi
2

∣∣∣∣
µ

∂jF2

∂pj
2

∣∣∣∣∣
µ

[λ2,i+j − (w21 ξi+j
21 + w22 ξi+j

22 )] σi+j
2

(27)

Note that, in order to derive (27), the system of equations
(10) has been used. Finally, it should be also noted that, for
estimation error to be zero, F1 and F2 are required to be
linear functions. Therefore, it can be concluded that Hong’s
two-point estimate method provides a linear approximation of
the covariance matrix.
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