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1. Introduction

1.1. Motivation

In any real-world electric energy system, it is required a Control Center to monitor and control the functioning

of the network in real-time, ensuring operation security. To accomplish this task the Control Center needs to know

accurately the actual state of the system (node voltages, power flows, etc.) at any time. These values are estimated by

the State Estimator (SE).

The State Estimator is a mathematical algorithm which computes the most-likely state of the network, given a

redundant set of measurements captured from the system. From the statistical point of view, the state estimation

algorithm is a nonlinear multiple regression problem, whose parameters to be estimated are those which characterize

the network state: node voltage magnitudes and angles.
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This estimated state is generally computed using the Maximum Likelihood Estimator, minimizing the weighted

sum of the squared residuals (i.e., Weighted Least Squares approach). Once the most-likely state is obtained, the

Control Center performs a “bad data detection and identification procedure” to detect and eliminate those measure-

ments whose associated standardized errors are larger thana pre-established tolerance. The statistical tests commonly

employed for these tasks are theχ2-test and the Largest Normalized Residual test, and are wellestablished in the

technical literature [1]. Once outliers have been removed,the nonlinear multiple regression problem is solved again,

and the final state estimate is obtained.

If outliers are not properly detected or eliminated, the final estimate will be biased, and the Control Center will

not have an accurate knowledge of the actual state of the system, leading eventually to an insecure operation of the

network. For this reason, the detection and identification of bad measurements have a notorious relevance in the

estimation process. In fact, an adequate and secure controlis only achieved in the case that the SE procedure is robust

enough to detect and eliminate the presence of corrupt measurements.

Traditionally, the “outlier elimination” problem is solved iteratively by detecting/removing suspected measure-

ments and re-estimating the state disregarding the rejected data. These estimators are based on the weighted least

squares, which shows a notable computational efficiency; however the lack of robustness deteriorates significantly

their performance in the presence of bad measurements. Specifically, the presence of multiple conforming bad mea-

surements in the measurement set may provoke a “masking effect”: good measurements may be rejected whereas

corrupted ones may not. This undesirable situation occurs when measurement dependencies are not properly mod-

eled.

1.2. Aim

The aim of this paper is to present a robust state estimator based on a weighted least squares regression, which

carries out the estimation and the bad data detection/identification processes simultaneously by successively adjusting

the weighting matrix and considering the effect of measurement dependencies. The obtained estimate does not require

further bad measurement processing algorithms.

1.3. Literature Review

The technical literature is rich in references concerning the state estimation problem, for instance, Schweppe and

Wildes (1970) or [1]; and there is a significant number of references on outlier detection: [2, 3]; Cook and Weisberg

(1982); [4]; Chatterjee and Hadi (1988); [5], [6], [7], . Theprevious works are focused mainly on the area of least

squares linear regression. Other statistical models and estimation methods, such as reweighed techniques [8, 9, 10, 11],

non-linear methods [12], heteroscedastic models [13], or some robust estimators [14, 15] have received comparatively
2
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less attention. Nevertheless, [16] report successful results from the application of the reweighted least deviances

method developed by [10], to detect data related to hurricanes and typhoon on wave hindcast databases.

However, no so many works address the power system WLS estimator using adjusted measurement weights.

The pioneering work reported in [17] proposes a method for readjusting the measurement variances based on the

residuals of previous estimations. Reference [18] develops this approach, improving the computational efficiency

and ensuring mathematical convergence. [19] propose an iterative reweighted least-squares estimator that is based on

Givens Rotations and improves the robustness against outliers.

In [20], the weights of the WLS estimator are artificially manipulated, leading to a more robust estimator with the

properties of the weighted least absolute value approach. Recently, in [21], the WLS regression is addressed using

estimated weights based on the measurement variances.

However, to the best of the authors’ knowledge and in the framework of power system state estimation, no prior

study has considered an iterative re-adjusting of a non-diagonal measurement variance-covariance matrix.

1.4. Contribution

The contribution of this paper is to provide an iterative state estimator that (i) takes into consideration the mea-

surement dependencies, (ii) is robust against multiple outliers, and (iii) is computationally efficient.

1.5. Paper Organization

The rest of this paper is organized as follows. Section 2 develops and formulates the Reweighted Least Squares

Estimator considering measurement dependencies. Section3 applies the Design of Experiments and ANOVA proce-

dures to the considered estimation problem. Section 4 provides and analyzes results from three realistic case studies.

Finally, Section 5 provides some relevant conclusions.

2. Dependent State Estimation Model

Any state estimator can be formulated as a nonlinear multiple regression problem, where the unknown parameters

are the node voltage magnitude and angle of every node, represented byVi andθi , respectively. These two sets of

variables form the state vectorx = [Vθ]T . There aren state variables.

The unknown parameters are estimated using the informationprovided by observations{z1, ..., zm}. These obser-

vations are captured from the system using measuring devices, and are related withx by means of a multifunctional

vector h(x). Depending on the measurement type, the functionshi(x) differ. The expression for this function for

3
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voltage measurements, active/reactive power flow, and active/reactive power injection measurements are provided

below:

hVi (x) = Vi (1)

hPi (x) = Vi

∑

j∈Ω

V j

(

Gi j cos(θi−θ j)+ Bi j sin(θi−θ j)
)

(2)

hQi (x) = Vi

∑

j∈Ω

V j

(

Gi j sin(θi−θ j)−Bi j cos(θi−θ j)
)

(3)

hPi j (x) = ViV j

(

Gi j cos
(

θi − θ j

)

+ Bi j sin
(

θi − θ j

))

−Gi j V
2
i (4)

hQi j (x) = ViV j

(

Gi j sin
(

θi − θ j

)

− Bi j cos
(

θi − θ j

))

+ V2
i

(

Bi j − bS
i j/2
)

(5)

where parametersGi j andBi j are the real and imaginary parts of the node admittance matrix,Ω is the set of all nodes,

and constantbS
i j is the shunt susceptance of linei– j.

Each observationzi is subject to a measurement error, i.e.

ztrue
i = zi + ei (6)

whereztrue is the true value for the observation,zi is the actual measurement, andei is the measurement error. This

error has been traditionally modeled as an independent unbiased Gaussian-distributed random variable.

The factual metering infrastructure within substations results in significant statistical correlations between mea-

surements. Works [22] and [23] numerically show that these correlations are significant, and its consideration may

improve the quality of the final estimate. Therefore, hereafter measurement errors are assumed to be dependent

Gaussian-distributed unbiased random variables. The dependence structure is modeled by means of definite-positive

non-diagonal variance-covariance matrixCz, which can be easily computed using the Point Estimate method [23].

2.1. State Estimation

Given the previous assumptions, the estimation of the statevariables are obtained by minimizing the weighted

sum of squared errors of the multiple nonlinear regression model, leading to a nonlinear optimization problem:

minimize

x

J = [ z − h(x)]TC−1
z [ z − h(x)] (7a)

4
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subject to

c(x) = 0 g(x) ≤ 0 (7b)

where the scalarJ is the objective function andc(x) and g(x) are the equality and inequality constraints modeling

zero-injections nodes and physical operating limits, respectively. Note that matrixCz is not diagonal, since the con-

sidered model takes into account the statistical correlations between measurement errors, but definite-positive as itis

a variance-covariance matrix.

2.2. Reweighted Least Squares Formulation

The Weighted Least Squares model (7a) accounts for the heteroscedasticity of error measurements within the sub-

station and their dependency. However, an alternative weighting matrix can be used accounting for i) heteroscedastic-

ity, ii) dependency, iii) and degree of confidence related toeach measurement.

In order to derive this weighting matrix let us consider vector e = z − h(x) and optimization problem (7). Using

the Cholesky decomposition of matrixCz, the objective function in (7a) becomes

J = [e]TC−1
z [e]

= eT
(

LLT
)−1

e = eT
(

L−1
)T

L−1e

=
(

L−1e
)T

L−1e = uTu

(8)

whereu a vector of standard independent normal random variables, with covariance matrix equal to the identity

matrix I, andL is the lower-triangular Cholesky factor of matrixCz.

The aim of most outlier detection methods is to determine whether or not a measurement should be considered

as an outlier, without allowing for intermediate situations. In contrast, the method proposed in this paper, originally

developed by [10], aims at empirically determining a diagonal matrixW to be included in model (8), i.e.

JR = uTWu (9)

wherewii is a weight for every observation ranging continuously from0, for observations that are completely unreli-

able, up to 1, for observations that are completely reliable.

Considering (9), the objective function (8) becomes:

JR = eT(L−1)TWL−1e = eTWRe. (10)

5
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From (8) and (10), the following observations are in order:

• The measurement error vectore (dependent normal random variables) is transformed into a vector of indepen-

dent standardized normal variablesu [24].

• The objective functionJ can be expressed as the sum of a set of squared independent standardized normal

random variables.

• The objective functionJR is computed as theweightedsum of squared independent standardized normal random

variables. Each factoru2
i is multiplied by the weighting factorwii ∈ [0, 1]. If the i-th weighting factor is null

(wii = 0), then the componentu2
i is not considered in the objective functionJR. If, on the other hand,wii = 1,

the componentu2
i is fully considered inJR.

The underlying idea of the RWLS method is to adjust empirically the weighting factors, based on the degree of

confidence of each measurement. The coefficients for those measurements completely unreliable are adjusted to zero

and, similarly, the weighting factors for those measurements completely reliable are adjusted to one.

The scheme of the iterative algorithm is the following:

• Step 0: Setwii = 1; i = 1, . . . , n.

• Step 1: Compute an estimation using the objective functionJR.

• Step 2: New weights are computed using the last-fit residuals.

• Step 3: Repeat the two previous steps until convergence.

Several methods have been proposed to update the weights in step 2 (see [25], Chatterjee and Mächler (1997) or

[10]). We use Tuckey’s biweight:

wii =























[

1−
(

yi

6

)2
]2

if |yi | ≤ 6

0 if |yi | > 6
(11)

whereyi =
ui

σ∗
is the standardized residual related to uncorrelated vector u, andσ∗ is the scaled median absolute

deviation estimatorσ∗:

σ∗ =
mediani |ui |

Φ(3/4)
≈
mediani |ui |

0.6745
(12)

The selection of updating formula (11) is based on numericalsimulations.

6
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Thus, the RWLS problem formulation is:

minimize

x

J = [ z − h(x)]TWR[ z − h(x)] (13a)

subject to

c(x) = 0 g(x) ≤ 0 (13b)

The algorithm of the RWLS estimator considering dependencies is:

1. Initial non-dependentestimation.An initial WLS estimation is performed to estimate the measurement variance-

covariance matrix. Using the initial estimation obtained ˆx0), matrix C0)
z is computed via the Point-Estimate

method in [23].

2. Parameter initialization.Weightswii are set to one:w0)
ii = 1,∀i ∈ {1,m}.

The iteration counter is set to 1,ν = 1.

3. Dependent state estimation. The state estimation problem (13) is solved considering measurement dependencies

and the reweighted matrixWν−1)
R . The obtained estimates are denoted as ˆxν).

4. Convergence checking.Once the estimates ˆxν) are available, if||x̂ν)− x̂ν−1)|| > ε the estimation process continues

in 5).

Otherwise, a solution with a toleranceε is x̂ν) and the algorithm concludes.

5. Update weighting matrixWR. Once the estimates of the state variables are available ( ˆxν)), the weighting matrix

WR
ν) is updated using (11).

Setν←− ν + 1 and go to step 3).

Note that the computational efficiency of this algorithm can be improved by using ˆxν−1) as the initial values of the

estimation in step 3).

3. Design of Experiments

Section 2 above presents a novel algorithm to estimate the state of a power system in a robust manner. In this

section, the statistical procedures “Design of Experiments” and “ANOVA” are briefly described as they are used (i) to

analyze the performance of the proposed method, and (ii) to compare it with other existing methodologies.

The methods considered in this paper are listed below:

7
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• WLS. The common Weighted Least Squares estimator is used as basic benchmark, using theχ2-test and the

Largest Normalized Residual (LNR) test to detect and identify bad measurements, respectively. These algo-

rithms are well-established in the technical literature [1]. The WLS results are the final estimates once the

χ2-test and LNR test have been successfully passed.

• DWLS. The estimation, detection, and identification algorithms considering dependencies, proposed in [22]

and [24], are employed to estimate the state and to detect badmeasurements including the statistical correlation

between measurements. Thus, the DWLS results correspond tothe final estimate once the bad measurements

have been removed.

3.1. Performance Assessment

In order to rigorously determine which is the method with best performance, a design of experiments is carried

out. This statistical procedure allows determining if the proposed algorithm is significantly better than the rest of

the approaches with a pre-specified confidence level, and taking into consideration the dissimilarities among the

considered measurement scenarios.

The performance of each method is assessed by means of the following metrics:

• Metric ǫVMET,ω, defined as the average absolute error of the voltage magnitude estimate for theω-th measurement

scenario, considering the method MET, i.e.,

ǫVMET,ω =

n
∑

i=1

|VMET
i,ω − Vtrue

i,ω |

n
(14)

Note that the previous metric is measured in p.u.

• Metric ǫθMET,ω, defined as the average absolute error of the voltage angle estimate for theω-th measurement

scenario, considering the method MET, i.e.,

ǫθMET,ω =

n
∑

i=2

|θMET
i,ω − θtrue

i,ω |

n− 1
(15)

The previous metric is measured in radians. Note that the considered reference angle is located at node 1, i.e.,

θ1 = 0 rad, for all the considered scenarios.

8
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• Metric CPUMET
ω , defined as the required CPU time to obtain the final estimate considering the method MET for

theω-th measurement scenario. Note that this metric is measuredin seconds.

3.2. ANOVA Model

The model employed in this design of experiments procedure comprises the factors “Method” and “Scenario”.

This model is described below,

yMET,ω = µ + αMET + γω + uMET,ω (16)

whereuMET,ω ∼
iid

N(0, σ2) and:

∑

MET

αMET = 0 ;
nω
∑

ω=1

γω = 0

whereµ is the global effect, i.e., the average value of the considered metricyMET,ω. ParameterαMET is the main

effect of the estimation method, and measures the increase/decrease of the average response of the factor “Method”

(MET) with respect to the average level. Likewise, parameter γω is the main effect of the block “Scenario” (ω), and

it measures the increase/decrease of the average response for all the methods with respect to the average level at the

ω-th measurement scenario. Finally, the random effect uMET,ω includes the effects of all other causes not modeled.

Taking into consideration that the particularities of eachmeasurement scenario may have influence on the method’s

performance, the effect “Scenario” is included in model (16).

The factors considered in this ANOVA analysis and the levelscorresponding to each factor are provided in Table 1.

Parameternω stands for the number of measurement scenarios considered.

Table 1. ANOVA model: factors, blocks, and levels.

Names Levels

Factors Method WLS
(MET) DWLS

RWLS

Block Scenario (ω) 1,...,nω

The background hypotheses of this model are: (i) normality,(ii) homocedasticity, and (iii) independence. To

ensure this statistical properties, an appropriate diagnosis procedure is performed after the residual computation.

Since the aim of this study is to find the most accurate estimation method and to check if it is significantly different

9
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from the other methods, the following tests are performed:























H0 : αMET = 0,∀MET

H1 : ∃MET | αMET , 0























H0 : γω = 0,∀ω = 1, ..., nω

H1 : ∃ω | γω , 0

The null hypothesis for the first test corresponds to the no statistically-significant influence of the method on the

average performance. The alternative hypothesis establishes that it exists at least one method performing different

from the average. The second test is analogous but related tothe factor “Scenario”.

To perform the above two statistical hypothesis testing, the ANOVA table is computed and analyzed. Table 2

provides the general structure for this table, particularized for the problem under consideration. The computation of

the elements of the table is well-established in the technical literature [26].

Table 2. ANOVA table structure

Source Squared Sum Deg. of freedom Mean-sqF-stat

Method S SM 3− 1 ŝ2
α ŝ2

α/ŝ
2
R

Scenario S SD nω − 1 ŝ2
γ ŝ2

γ/ŝ
2
R

Residual S Serror (nω − 1)(3− 1)

Total S Stotal 3nω − 1

In case that theF-statistic for the factor “Method” on Table 2 is higher than the critical value for theF-distribution

with two degrees of freedom and a given confidence level (1− α), then the related null hypothesis is rejected and it is

concluded that the response variable is significatively affected by the factor “Method”. Then, the average values for

each method with the confidence intervals are plotted to determine which is the method with best performance.

4. Case Study

In this section, three case studies are analyzed to check theestimation accuracy and computational efficiency of

the proposed state estimator.

The network under study is the 118-bus IEEE system2. To obtain statistically sound conclusions: (i) a set of one

hundred randomly-generated measurement scenarios is considered, and (ii) an ANOVA procedure is performed to

analyze the obtained results.

Each scenario involves:

(i) a random active/reactive power consumption level,

2Power Systems Test Case Archive. Available at:http://www.ee.washington.edu/research/pstca/

10
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(ii) random locations of voltage and active/reactive power meters (ensuring observability of the wholesystem),

(iii) a random redundancy level, and

(iv) Gaussian-distributed random errors in all measurements, (standard deviations of 0.01 pu and 0.02 pu for voltage

and power measurements, respectively).

The computational analyses have been performed using a Windows-based personal computer with a 64-bits eight-

core i7 processor at 1.73 GHz and 8 Gb of RAM.

4.1. First Case Study: No Gross Errors

In this case, the measurement vectorz is free of gross errors. For each measurement scenario, the estimates for

methods WLS, DWLS, and RWLS are computed and an ANOVA analysis is performed.

Table 3 provides the ANOVA analysis for metricsǫVMET, ǫθMET, and CPUMET, and Fig. 1 depicts the average value

for these metrics and the confidence intervals for a 95% confidence level. The last column of Table 3 provides the p-

value. The obtained value for this parameter allows deciding whether or not the null hypothesisH0 should be rejected.

If the p-value is smaller than 0.05, then the corresponding null hypothesis is rejected. Otherwise, there is not enough

statistical evidence to rejectH0.
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Figure 1. Results for the case study with no gross errors: performance comparison.

From Table 3 and Fig. 1, the following observations are in order:

• From Table 3, note that the three p-values corresponding to the factor “Method” denote that there are statisti-

cally significant differences regarding the performance of the considered methods, for numerical accuracy and

computational efficiency. Thus, the confidence interval plots (Fig. 1) are studied to determine which method

provides the best performance.

• Regarding estimation accuracy (left and center subplots),the WLS estimator is the least accurate, whereas the

DWLS and RWLS procedures provide the most accurate results for a confidence level of 95%.
11
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Table 3. ANOVA table for the first case study.

Metric ǫVMET

Source Squared Sum DoF Mean-sq F p-value

Method 5.9 · 10−6 2 2.9 · 10−6 81.0 < 10−25

Scenario 4.1 · 10−5 99 4.2 · 10−7 11.6 < 10−46

Residual 7.1 · 10−6 198 3.6 · 10−8

Total 5.4 · 10−5 299

Metric ǫθMET

Source Squared Sum DoF Mean-sq F p-value

Method 5.7 · 10−5 2 2.8 · 10−5 91.0 < 10−25

Scenario 6.5 · 10−5 99 6.5 · 10−7 1.8 1.8 · 10−4

Residual 7.1 · 10−5 198 3.5 · 10−7

Total 1.9 · 10−4 299

Metric CPUMET

Source Squared Sum DoF Mean-sq F p-value

Method 43.2 2 21.6 16.1 < 10−6

Scenario 183.9 99 1.8 1.3 0.028
Residual 265.8 198 1.3

Total 493.0 299

• There is no significant difference between the accuracy provided by the DWLS and RWLS methods.

• Regarding the required CPU time, the DWLS method is the most efficient. Note that the efficiency provided by

the WLS and RWLS algorithms are statistically similar.

4.2. Second Case Study: Three Gross Errors

In this case, three randomly-chosen substations are affected by a set of correlated gross errors. Then, the measure-

ment vectorz contains three sets of multiple bad data.

Again, Table 4 provides the ANOVA analysis for metricsǫVMET, ǫθMET, and CPUMET, and Fig. 2 depicts the average

value for these metrics and the confidence intervals for a 95%confidence level.

From Table 4 and Fig. 2, the following observations are in order:

• From Table 4, note that the three p-values corresponding to the factor “Method” denote that there are statisti-

cally significant differences regarding the performance of the considered methods, for numerical accuracy and

12
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Table 4. ANOVA table structure

Metric ǫVMET

Source Squared Sum DoF Mean-sq F p-value

Method 1.5 · 10−5 2 7.4 · 10−6 81.0 < 10−27

Scenario 4.7 · 10−5 99 4.7 · 10−7 11.6 < 10−24

Residual 1.7 · 10−5 198 8.5 · 10−8

Total 7.8 · 10−5 299

Metric ǫθMET

Source Squared Sum DoF Mean-sq F p-value

Method 1.1 · 10−4 2 5.2 · 10−5 70.1 < 10−23

Scenario 1.3 · 10−4 99 1.4 · 10−6 1.8 2.1 · 10−4

Residual 1.8 · 10−4 198 7.5 · 10−7

Total 3.9 · 10−4 299

Metric CPUMET

Source Squared Sum DoF Mean-sq F p-value

Method 341.2 2 170.7 69.9 < 10−22

Scenario 390.9 99 3.9 1.6 0.0023
Residual 483.8 198 2.4

Total 1214 299

computational efficiency. Thus, the confidence interval plots (Fig. 2) are studied to determine which method

provides the best performance.

• Regarding estimation accuracy (left and center subplots),the WLS estimator is the less accurate, whereas the

DWLS and RWLS procedures provide the most accurate results for a confidence level of 95%.

• There is no significant difference between the accuracy provided by the DWLS and RWLS methods.

• Regarding the required CPU time, the RWLS estimator is the most efficient. The efficiency provided by the

WLS and DWLS algorithms are statistically similar.

4.3. Third Case Study: Six Gross Errors

In this case, six substations are randomly chosen, and a set of multiple gross errors is located in each substation.

Thus, the measurement vector is corrupted by six sets of multiple bad data.

Table 5 provides the ANOVA analysis for metricsǫVMET, ǫθMET, and CPUMET, and Fig. 3 depicts the average value

for these metrics and the confidence intervals for a 95% confidence level.
13
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Figure 2. Results for the case study with three gross errors:performance comparison.
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Figure 3. Results for the case study with six gross errors: performance comparison.

From Table 5 and Fig. 3, the following observations are in order:

• Results from Table 5 allow withdrawing the same conclusionsas in the previous section: there are significant

differences among methods’ accuracy and efficiency.

• Again, the WLS estimator is the least accurate, whereas the DWLS and RWLS procedures provide the most

accurate results, without statistically-significant differences between these two approaches.

• Regarding the required CPU time, the RWLS estimator is the most efficient, and the DWLS algorithm is the

less efficient one.

• The required CPU time for the RWLS estimator is approximately 77% and 59% smaller than the CPU times

required by the DWLS and WLS methods, respectively.

4.4. Results Comparison

Analyzing jointly the results obtained for the three case studies, the following general conclusions can be with-

drawn:

1. The estimation accuracy of the proposed RWLS algorithm issignificantly better than the one provided by the

traditional WLS procedure, for a 95% confidence level and considering scenarios with zero, three, and six sets
14
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Table 5. ANOVA table structure

Metric ǫVMET

Source Squared Sum DoF Mean-sq F p-value

Method 1.35 · 10−5 2 6.7 · 10−6 78.0 < 10−24

Scenario 5.25 · 10−5 99 5.3 · 10−7 6.13 < 10−26

Residual 1.7 · 10−5 198 8.6 · 10−8

Total 8.3 · 10−5 299

Metric ǫθMET

Source Squared Sum DoF Mean-sq F p-value

Method 1.5 · 10−4 2 7.6 · 10−6 107.1 < 10−31

Scenario 1.3 · 10−4 99 1.3 · 10−7 1.9 < 10−4

Residual 1.4 · 10−4 198 7.1 · 10−8

Total 4.2 · 10−4 299

Metric CPUMET

Source Squared Sum DoF Mean-sq F p-value

Method 1747 2 1032 873.5 < 10−41

Scenario 911 99 6.95 9.2 0.001
Residual 1070 198 5.4

Total 37291 299

of multiple gross errors.

2. For a 95% confidence level, there is no significant difference between the estimation accuracy degree of methods

RWLS and DWLS. That is, the obtained estimate for both methods have the same accuracy.

3. The computational efficiency of the RWLS remains unaltered with independence of the number of multiple

gross errors corrupting the measurement set. This consideration can be graphically illustrated by plotting the

average required CPU time for each method as a function of thenumber of multiple bad measurement sets (see

Fig. 4).

4. Note that the most accurate estimates does not correspondto the WLS results. This is so because WLS estima-

tion do not consider measurement dependencies.

5. Conclusion

The method proposed in this paper is statistically proven tobe superior to alternative algorithms reported in the

technical literature, especially if the number of gross errors or outliers in the measurement set is large.
15
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Figure 4. Required CPU time comparison.

The proposed RWLS estimator takes into consideration measurement dependencies to improve accuracy and its

weights are automatically readjusted to increase robustness. In summary, it provides accurate estimates, is robust

against outliers, and is computationally efficient.

The method’s performance is tested using a realistic case study with single and multiple gross errors, and con-

sidering a high number of scenarios. These results are compared in detail using ANOVA techniques, which allows

proving the outperformance of the proposed method from a statistical point of view.

Since most of the state estimation algorithms used in practice are based on WLS techniques, such algorithms can

be easily adapted or modified to include RWLS features.
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