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Abstract—This paper analyzes the multiple bad data originated
by a gross error in any voltage or current transformer of the
measurement equipment. Considering the statistical cordations
among measurements, an identification algorithm based on th
largest normalized residual test is specifically designedotdeal

B. Contributions

The contribution of this paper is threefold. First, to study
the influence over the measurement set of a gross error
affecting any current or voltage transformer. Second, &ckh

with multiple bad data. Two case studies are analyzed and the performance of the traditional detection and identifice

conclusions duly drawn.

Index Terms—Multiple bad data identification, dependent
measurements, power system state estimation.

I. INTRODUCTION

A. Motivation and Aim

N any electric energy system, the control center regula
performs a state estimation to compute the most likely stat
of the network, fundamentally based on the measurement
transferred from each substation. One of the most relev
features of any estimation algorithm is to detect and totifien

the presence of bad data.

algorithms in the presence of multiple bad data. Third, - pr
pose a modification of the well-known identification method
based on the Largest Normalized Residual (LNR) test in order
to improve its robustness if multiple bad data are present.

C. Literature Review

Within the framework of power system state estimation,
methods and solution algorithms are well documented. The
ioneering work is due to Schwepgee¢ al [1]-[3] and others

X]-[6].
A{he capability of bad data detection and identification is a

Er%/ element of any estimator. Some studies focus on paramete

error identification [7], [8], topology error identificatio[9]—
[12] and, mainly, measurement error identification.
The elimination of bad data in the measurement set can

Although measurements are routinely considered indepgjy aqdressed by the use of robust estimators: least absolute

dent, some studies indicate that this hypothesis is inaﬁeurvame [13], least median of squares [14], etc. Concernirg th
since the signals frqm the volta_lge/current transformees %idely-used Weighted Least of Squares (WLS) estimator, two
processed and combined to Obtf""n the power flow and V_Oltaﬁ%thods are available [6]: the LNR test and the hypothesis
measurements that the state estimator employs. From timis p?esting identification.

of view, if an error occurs in a voltage or current transforme  reoferences [15], [16] describe and analyze an advanced
more than one “processed measurement” is generally C@-apa system. Reference [17] analyzes the measurement

(rjulimd’ leading a measurement set populated with multgde Byependencies due to measurement transformer influence and
ata.

proposes a technique to compute the measurement correlatio

To the best of our knowledge, no bad data detection agdefficients based on the point estimate method. Finally,

identification algorithm has been specifically designeddn-c [18] proposes an estimation algorithm that considers these
sider dependencies among measurements. However, if-stajispendencies.

tical correlations are properly considered in the idergtfan

procedure, a more reliable and robust bad data identifitatiD. Paper Organization
can be achieved. To develop such procedure is the aim of therhe rest of this paper is organized as follows: Section I

work reported in this paper.

E. Caro, A. J. Conejo, and R. Minguez are partly supportedlinyta
de Comunidades de Castilla — La Mancha (JCCM) through préj€di11-
0102-0275 and by the Ministry of Education and Science ofirSf@ough
CICYT Project DP12009-09573. Additionally, E. Caro is parsupported
by the Education and Science Council of JCCM; and R. Mingaeazartly
supported by the Spanish Ministry of Science and Innovafid@l) through
the Ramon y Cajal program.

E. Caro and A. J. Conejo are with Univ. Castilla-La Manchajdaid Real,

Spain (e-mails: Eduardo.Caro@uclm.es, Antonio.Conejd@.e@s).
R. Minguez is with the Environmental Hydraulics Instituté Cantabria,

Univ. de Cantabria, Cantabria, Spain (e-mail: Robertogugz@unican.es).

M. Zima and G. Andersson are with ETH Zirich, Zirich, Switand
(e-mails: bockarjova@eeh.ee.ethz.ch, andersson@esthzeh).

analyzes the measurement system and provides expressions
to compute the relative error of processed measurements.
Section Il discusses the drawbacks of traditional methods
and Section IV proposes a identification algorithm capable
of identifying multiple bad data. Section V analyzes two
insightful case studies and, finally, Section VI providemso
relevant conclusions.

Il. MEASUREMENTSYSTEM: DESCRIPTION ANDMODEL

In any electric power system, the control center regularly
performs a state estimation of the network state using the co
sidered system model and its parameters, and the measuremen
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data collected from all the substations located throughtweit  From (1)—(3), note that some input signals are required
network. in several equations simultaneously. Therefore, if one of
this shared input data is corrupted by a gross error, several
processed measurements are inaccurately computed. In othe
words, a single gross error in a voltage/current transforme
gﬂreads over several processed measurements, provoking mu
le interacting bad data.

Equations (1)—(3) can consider unbalanced and/or asym-
metric states. For the sake of clarity, hereinafter baldnce
;symmetric working conditions are assumed.

A. Measurement Infrastructure

Each substation transmits to the control center, using
electronic equipment called remote terminal unit (RTU),
measurement set usually formed by bus voltages and a
tive/reactive line power flows. This information is gener
ally obtained from a multifunction meter, which collecteth
analogic signals from a set of current/voltage transfoane
processes them digitally, and generates the measuremtant da
that the estimator uses. Thus, from the viewpoint of tHe: Measurement Error Model
multifunction meter, measurements can be classified into tw Reference [18] analyzes the measurement dependency and
groups: proposes a method to compute the correlation coefficient

« Input measurementsvhich are those measurements dioetween measurements. This technique is used in this paper.

rectly captured from the actual physical system. Notwithstanding the nonlinearities of (1)—(3), it has been

« Processed measurementshich are the data digitally humerically verified that the assumption of linear-depenge

generated by the multifunction meter, transmitted to tHetween measurements is sufficiently accurate [18].
control center and used by the state estimator. The measurement vecterthat the estimator uses (i.e., the

There are some different connection configurations for tIYSCtor of processed measurements) can be expressed as:

measurement equipment [17]. Fig. 1 provides an scheme of the z=2z"e 4 e 4)
widely-used three-phase configuration, in which the muritif

e .
tion meter is connected to three voltage/current transéesm Where 2 is the true measurement vector adis the

measurement error vector. Vectercan be statistically char-
acterized as a Gaussian-distributed linearly-dependeighie

O

1}
g - L 1277777 Power vector. Therefore, vectaz can be expressed as:
fall ° . RS R - System
g . Multifunction o-4-------- - State e=L.,v (5)
= meter o T Bt
= 9 S I ~| Estimator . . .
“ ° o ¢ ¢ where v is a vector of standard independent Gaussian ran-
% J? | — dom variables, and., is the lower-triangular Cholesky fac-
g §_< Processed tor of the measurement variance-covariance mafrix i.e.,
% B measurements C. = L.L". For more information, see the Appendix in [18].
§ | _§§_ From (4) and (5), it readily follows:
z1 Z‘{rue l11 U1
Fig. 1. Voltage and current signal connections in a thresphmeasuring . . . .
configuration. : : : . 0
Zi | = Z;ﬁrue +| i ... Vi (6)

For the sake of simplicity and without loss of generality, a
three-phase configuration is considered throughout thaystu
reported in this paper.

Zm, zlrue Il o i oo b || Um
wherel;; is theij component of matrixL.. In a real-world
system, the majority ofl;; coefficients are equal to zero,

B. Signal Processing
The i | sof . impl din th | pbecause measurement dependency can only be found between
e internal software routines implemented in the multl . ¢\ .o ments within each substation.

function meter [19] allow computing the output datq under,Providing a normalized Gaussian random veetoequation
the presence of non-fundamental harmonlcs As_sum_|_ng a ) can be used to generate measurement sets involving a
nusoidal system state, those equations can be simplified a; ealistic dependency, consistent with the routines impieted

B VA vVB4vL 1 in the multifunction meter. Note that a gross error in compo-
Vi=F() = 3 @) nentv; spreads over measurementif I;; is different from
Py = Fr,() = > Vleostw)) (@ ¢
f={A,B,C}
. D. Relative Error Computation
Qi = Fo,() = Y VlIlsm@]) @ P |
F={A.B,C} From (1)—(3), note that there are three types of input

data variables: voltage magnitude, current magnitude, and
whereV;’ is the voltage signal for phaseand busi, andZ};  voltage-current phase angl#’{, I}, andyf;, respectively).
and 1/);[7 are the current and voltage-current angle signals fBrepending on which type of input measurement is corrupted
phasef and line:; at terminali. by a gross error, the processed measurements are affected
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in one way or another. For example, if an error occurs in 1)
a current (or phase angle) input measurement, some of the
active/reactive power flow measurements are affected,asiser

the voltage processed measurement is not. Note that just one
bad input measurement can affect more than one processe®)
measurement and, thus, it can produce a measurement set
populated with multiple bad data.

The relative error of &; processed measurement caused by

Fig. 2(a) provides the relative error of processed mea-
surements in case of a gross error affecting any input
measuremerlfif . Note that the three types of processed
measurements behave identically.

Fig. 2(b) provides the relative error of processed mea-
surements in case of a gross error affecting any input
measuremedg{;.. Note that processed measuremdnyis
and @;; are distorted similarly, whereas the measure-

a badp; input measurement is computed as follows: mentV; is not influenced.

bad 3) Fig. 2(c) provides the relative error of processed mea-
Fz-(ptrue)_FZ-(p ) i i i
ep, (2i) 100 | == i 7) surements in case of a gross error affecting any input
! F.,(p'™e) measuremen’(/){j. For the sake of clarity, the surface
where g, (Vi) is not plotted; since its value is always zero.
bad . . rwerT Note that processed measuremeftsand);; are dis-
a rue rue rue . . . . .
p = [pi™, "+ Moy, py™] (8) torted similarly, while measuremeht is not influenced.

and the functional vectoF., (-) represents the equation im- From Fig. 2, it can be concluded that the magnitudes of the

plemented in the multifunction meter software to compute ifelative errors in processed measurements are not very high
processed measurement(equations (1)—(3)), and/ is the (due to the fact that processed measurements are computed

number of the standard deviations of the input measurem&Hn9 error-free parameters but the one under study). Hevev

gross error magnitude. those relative errors are large enough to deteriorate ttie es
Assuming a balanced sinusoidal system operation, Tabl&ftion accuracy and, consequently, the detection/idestifin

provides the expressions to compute the relative error @gorithms can fail in the presence of those multiple bad

the Vi, P,;, andQ;; processed measurements (columns) if Feasurements.
bad measurement occurs ¥, Ilf] w{j input measurements
(rows), respectively. II1. STATE ESTIMATION AND BAD DATA IDENTIFICATION
Considering that the standard deviations of input measure-Most state estimators in practical use are based on a math-
ments are known parameters, the relative errors in Tabla | camatical optimization problem which minimizes an objeetiv
be plotted using tridimensional graphs. (Standard denati function J, which usually can be expressed as a function of
used areoy = o = oy = 0.01 pu.) vectory = z — h(x), wherex is the state vector ankl(-) is
Fig. 2 provides the graphical characterization of thosenonlinear functional vector, such thiatz!™¢) = z*ue,
relative errors. Each tridimensional plot provides thatieé For example, the WLS approach can be expressed as:

error in processed measuremenis, (P;;, and Q;;) if a I B T
M-magnitude gross error is added to each type of input data: mlnlcm|ze J =z - h(@)] Wiz - h(z)] ©)
Vtifv I'L];! and’t/JZfJ T
=y Wy (10)
subject to:
g® (@) =0, gx)<0 (11)
% 10 whereW is the weighting matrixc(x) are the equality con-
@ 25 straints representing perfectly accurate measurements-(z
§ injection buses), andy(x) are inequality constraints used

to represent physical operating limits. The estimatedestat
computed as the solution of problem (9)—(11), is denoted as
x*, and it is assumed to be close enough to the true state.
Matrix W is computed as the inverse of the measurement
variance-covariance matrix considerdd.(;), i.e.,

: W = [Ces] . (12)
% Note that the traditional WLS estimator considers the mea-
4 surement variance matrix as diagon@ly(rs), whereas the
Dependent Weighted Least Squares (DWLS) approach re-
ported in [18] considers additionally the nondiagonal ®rm
(b) (CpwLs). Hereinafter, it is considered th&@f'pwrs = C.,
and Cwis = d1ag(CZ)
Fig. 2. Relative errors in processed measurements. It can be shown (see [18]) that the computation of matix

is robust and its coefficients do not vary significantly inecas

The following observations are in order: of either multiple bad measurements or Gaussian noise with
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TABLE |
RELATIVE ERRORS OFPROCESSEDM EASUREMENTS
er(V3) er(Pij) er(Qij)
o Mo Mo
f,bad v v -
" TR 100 v, 100 ——
3V 3|y true| SV
. i -
17 0 10021 100~ 7L
3|1 true) S
f,bad L Cos(wzfjtruc + Moy) — COS(w[jtruc) . Sin(wzfj,truc + Moy) — Sin(wzfjtruc)
uJij 0 00 f,true 00 : Tirue
3 CoS(wij ) 3sm(wij )

large standard deviation. However, if mati€X, is wrongly 1) Solve the estimation problem (9)—(11), and compute the
estimated the performance of the proposed approach can be normalized residual vector.

significantly deteriorated, as shown in Section V-A3. 2) If the largest normalized residual is larger than the cho-
The objective function/ can be expressed as: sen identification threshold (e.g., 3.0), the correspagndin
- T 1 o7 T 1 measurement is suspected as bad data: go to step 3).
d - Ly_l[C%St]L_:ly - yT[LCStLCSt] Y 13 Else, the procedure concludes.
= (Leat) (Leay) = wu 3) Eliminate the suspected measurement from the measure-
where L. is the lower-triangular Cholesky factor of matrix ment set and go to step 1).
Ces and vectoru is computed au = L y. Function  The normalized residuaf¥ can be computed as [21]:
follows a Chi-square distribution [4].
T%\I = |Zl — hi(:v*)|/\/ Qii (16)
A. Bad Data Detection where
The Chi-square test for bad dada detection can be applied Q = C.-HH'WH) 'H” (17)
in a simple manner. At the true stat&ue, z
w = L'y = Ll'[z— h(zi™e) 14) and HI is the Jacobian of functiork(x) evaluated at the
— I.le = LiL.w. optimal estimate, i.e.,
If the DWLS estimator is used, note that= v and the H = Oh(z) ' (18)
objective functionJ follows a x? distribution withm+p —n o | p_gp-

degrees of freedom, whereis the number of state variables

and p 1S the nu.mber of equality co_nst(alnts and act!ve e performed simultaneously bypassing the Chi-square test
equality constraints. Bad data detection is a hypothesisite and computing directly the normalized residuals. However

prqblem: the null hypothesig, corresponds to t_he Cas€ My e calculation of the normalized residuals is computaifign
which no bad data are present; and the alternative hypathe

. . e%ipensive and this cost may justify the use of the Chi-square
Ha corresp(_)nds tdH, not bglng true. IfJ” is the sum of test for preliminary bad measurement detection.
squared residuals at the estimated state, then

J* S XZn-Q—p—n,a? ac_ceptHO
> Ximtp-n,ar  €J€CtHg

Note that the detection and identification processes can

(15) cC. Discussion

From the previous subsection, note that if a bad measure-

\r,\ézeroenﬁinnwtig’g (;Sett:;gnhLiﬂﬁg;ige'sg\?;tathungggﬂftor ment is identified in step 2), it is directly removed from the
p 9 P Y measurement set in step 3) and the estimation problem (9)-

If the WLS esqmator IS employed, the non—@agonal e"?;l.l) is solved again neglecting this bad measurement.
ments of the variance-covariance matrix are disregarded. Section 1I-D above shows that a gross error affecting

this case, the objective functiah still follows a Chi-square .
R ny input measurement spreads over one or more processed
distribution but the degrees of freedom change because . X .
. 2 measurements, following a particular pattern defined by the
dependencies between measurements are eliminated [20]. ; . . .
measurement variance-covariance matrix. Therefore, ita-m

Both detection and identification traditional algorithme a .
) . . ) surement is suspected to be corrupted by a gross error, other
well-documented in the technical literature, e.g. in [4]. [ )
correlated measurements are likely to be affected.
o The traditional approach removes the suspected bad mea-
B. Bad Data Identification surement and its corresponding column/row from the matrix
If bad data are detected, bad measurements are identifi®&] which results in the loss of the correlation information
applying the traditional Largest Normalized Residual (QNRbetween the removed measurement and other same-substation
test. The LNR test can be viewed as a hypothesis testimgpasurements. As an alternative to this, the proposed hetho
problem, as detailed in [4]. This procedure is composed ofakes use of the correlation coefficients to remove from the
the following steps: correlated measurements the dispersed multiple gross erro
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V. PROPOSEDBAD DATA IDENTIFICATION voltage €y,) and active/reactive power injectionszg{

The aim of the proposed technique is to identify correct§nd zq.. respectively). Assume that the corresponding
the bad measurements by removing the effect of disperd8gasurement covariance matk. and its Cholesky factor

multiple bad data. are.
The proposed identification algorithm is based on the tra- 16 4 4 4 0 0
ditional one (see Section IlI-B), but the state estimatoni C.= |4 5 3|-107*, L.=|1 2 0[-1072.
step 1) is modified to eliminate the multiple bad data which 4 3 6 11 2
corrupt correct mea.sure.ments. This modification involves tThen, the measurement covariance matrices consideredby th
following considerations: WLS and DWLS procedures are:

1) Suspected bad data are not removed from the measure-

ment set. 16 0 O 16 4 4
2) Problem (9)—(11) is modified in such a way that the su§wis=| 0 5 0| 107", Cpwis={4 5 3| -107".
pected bad data do not “weight” in the objective function 0 0 6 4 36
J, and the error affecting correlated measurements isThe measurement vecteris computed as:
removed. e e
The above can be achieved by an adjustment of the weight- z=h(z") + e = h(z") + L.v (20)
ing matrix W, rendering matrixW * that is computed as: v hv, (™€) [4 0 0] [w
zp, | = | hp (7)) |41 2 0] |va| -1072
W* = [I" Lpyps]" [T L] (19) 2Q, hg, (1) 11 2 |vs
whereI* is formed as then x m identity matrix whose rows hy, ()] [4v1
corresponding to suspected bad measurements are removed. = | hp, (") |+|2v2 + 103 1072
Thus, vectoru is computed ast = I*L__ly. hq, (™) | |2v3 + 1vg + 1v;

Using this weighting matrix, the elements of vecwrare \ynqre the variables;, vs, andvs follow normalized indepen-
normalized independent Gaussian-distributed variablés-w yont Gaussian distributions.

out the influence of the suspected gross input measuremeni) State Estimation:Using the DWLS estimator, the fol-

error. lowing equations hold true at the true statéue
A. Proposed Algorithm u = Ly sy = Lpwise = LpwisL:v=v  (21)
. . . k7 25 0 0 400 V1 U1
The proposed algorithm is composed of the following steps: 195 50 0 12 0l.10-2
. . u =|— . . - | v =|v
1) An empty set for suspected bad d®tgy is defined, and uz _6.25 —925 50 11 2 vz vz

the weighting matrix is computed 8% = Cﬁ\leLs- 7 o o o
2) Solve the estimation problem (9)-(11) using the weight- JowLs = utu =i +v3 + 03 (22)
ing matrix W*, and compute the normalized residuajyhere Ly 5 is the Cholesky factor of the covariance matrix

vgctorrN. . ~ Cpwis. Observe that the objective functiofipwrs fol-
3) Find thek-th measurement with the largest normalizeghws a Chi-square distribution with three degrees of freedo
residualrl as in (16). (Jowrs ~ X2).

4) If ) is larger than the chosen identification threshold op, the other hand, using the WLS estimatorg&te:
(e.g., 3.0), thek-th measurement is suspected as bad

data: go to step 5). Else, the procedure concludes. u = Lyrsy = Lyrse = Ly s Lav # v (23)
5) Thek-th measurement is added to $Btp, and matrix U1 25 0 0 400 V1
W* is recomputed using (19). Go to step 2). ug| = |0 447 0 12 0[-1072 vy
To compute the normalized residuals in step 2), matrix us 0 0 408] |1 12 U3
W is employed, since matri¥%* is not invertible. It has V1
been numerically proved that this approximation does not = | 0.45v1 +0.89v2
deteriorate the method performance. 0.41v1 + 0.41vz + 0.8203
The proposed approach is mathematically consistent re- JwLs = ulu
gardless of the number of bad data corrupting the input = 1.4v% + 1.1vjvy + 0.67v103 (24)
measurement set. Specifically, the technique is also consis +0.97v3 + 0.67vgv3 + 0.67v3
tent in case of multiple bad data populating Same_SUbSta“vc\)/hereLWLs is the Cholesky factor of matriyys. Observe
measurements.

that the statemenfywrs ~ x3 does not hold true.
From (22) and (24), the statistical characterization of the
distributionsJpw1s and Jwys can be straightforwardly com-
In this section, an example is provided to show the derivauted. Fig. 3 depicts the probability density function for
tions and algorithms in Section IV-A. JpwLs, Jwrs and x3 distributions. Observe that the density
Three measurements, modeled as linearly-depend@niction of Jwrig is significantly different than that corre-
Gaussian-distributed variables, are obtained in a substat sponding toy3.

B. lllustrative Analytical Example
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—Chi-2 measurement configuration considered. In this sectionathe

0.2 --- JpwLs curacy of the measurement chain is assumed to be dominantly
> 0.2 - Jwrs determined by the measurement transformer, which results i
3 a standard deviation of 0.01 pu.
§ 0.1
& 0. Bus 1 Bus 2 Bus 4

0.0

OO 2 8 10
Data

Fig. 3. PDF for theJpwrs and Jwr,s distributions.

2) Gross Error: Consider that an input measurement is
distorted by a gross error whose magnitude is 5 standdig 4. Four-bus system and measurement configuration.

deviations. This can be modeled by setting= 5: _ L .
y "o 1) Introductory Example:This section illustrates numeri-

2v; hvy () | [4-5 cally the most relevant aspects of the proposed technique.
zp, | = | hp (™) [4+|2v2 +5 1072, Let us assume that a gross error corrupts one of the
2Qu hq, ()| |[2v3 +1vg +5 voltage transformers of substation two, increasing the tru

Note that all three measurements are corrupted due to fffi{age value in twenty standard deviations. Consider dhat
gross input-measurement error. hundred mea}sure_me_nt scenarios are generated adding zero-
mean Gaussian-distributed random errors to the true values

Since diagonal terms of matrik, are significantly larger )
than nondiagonal terms, both the traditional and the pr@qboscompUFEd by a converged power flow solution. In all these
scenarios, the same gross error affects the same transforme

identification techniques detee{, as bad measurement. X .
dhe obtained measurement vector is denoted.as

Using the traditional identification procedure, measur F h i . G ted as:
ment zy, is removed from vectog, and the resulting vector or €ach measurement scenario, veelas computed as:

u is computed as follows: w=L_}(z—h(z™) = L_I(z — 2'™). (26)
2| g1 o[-l I . 2.25 + 0.89v, where 2zt is the true measurement vector from the power
us3 WLS WLS™# 2.05+0.41v2 +0.82v3 | ©  flow solution and L., corresponds either tdwg or to

Note that the gross error is still affecting vecter LpwLis, depending on the estimator employed. Fig. 5 provides

On the other hand, using the proposed identification prod8€ Pox plot of vectow for all measurement scenarios, and for
dure, measurement;, is not removed from the measurement?om estimators. The range3o is indicated by dotted lines.

set, but it is included on the set of suspected bad data, WLS Estimation
Qpp = {zv, }. Matrix I" is computed as th8 x 3 identity 15 ES
matrix whose row corresponding to measurement is re- _ 101 - ]
moved. Vectoru is then computed as follows: D] E— - e T s |
B ottt o e L ST F S SaD
w=TI"Lyyse = I"LowsL.v, (1) ] LT T .
25 0 07400 1 1ot — .
[w]:[o 1 0] —125 50 0112001072, :{vz] . Vi Py Py Pis Qi Pris Puis Vo Py Py Qo Paa Vi Py Poy Qs Pay Vi Py Qu
us 001 —6.25 —25 501112 vs U3 g DWLS Estimation
. : =
Note that the terms ofu follow normalized independent _ tor * 7
Gaussian distributions. Thus, the gross error does nottaffi= Sf..... T T
vector u, i.e., the distortion over same-substation measurz (ETETEET. TEETETTETEET]
ments has been removed. > i
-10k .

lel P12 P13 lelz P13Vz P2P24 QQ P24VES PS PS4 Q3P34 V:LP4Q4
V. CASE STUuDY

Two case studies are presented to illustrate the overdf:- 5- Values ofu function using WLS and DWLS estimators.

performance of the bad data identification method presented]_he following observations are in order:

in this paper. o
1) From the upper plot in Fig. 5 (WLS), note that all
components of vectom corresponding to measure-
A. 4-Bus Case ments from the substation two, are out of the range
First case study analyzes in detail a small four-bus system. [—30,+30]. Thus, the measurements provided by sub-

Fig. 4 depicts the network topology of this system and the  station two form a set of multiple bad data.
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2) On the other hand, from the lower plot in Fig. 5 2) From Tables IlI-IV, note that the quality of the final
(DWLS), all components of vectar are located within estimate is significantly better using the DWLS estimator
the aforementioned range, except one measurerient: and the proposed identification technique.

Using the traditional WLS estimator, f; is removed from  For the sake of brevity, results of applying the traditional
the measurement set and box plots are plotted again, ittientification technique to the DWLS estimator are not pro-
components of vectofs have the same value as in Fig. Svided. In this case, results are very similar to the onesigeal/
(except for the measuremeWit that exists no more). Similarly, for the WLS estimator.
applying the proposed algorithm to the DWLS estimator, the 2) Statistical Analysis of the Algorithm Performanckn
components of vector have the same values as in the lowesrder to obtain statistically sound conclusions, the me:iher-
plot in Fig. 5. formance is analyzed using multiple measurement scenarios

However, if the estimator DWLS is considered and mea- Two types of scenarios are considered:
surementl; is directly removed from the measurement set a
(without the recomputation of matri ™), all the correlation
information about the multiple bad data is lost, and the DWLS
estimator provides a vectar which behaves as in the upper b)
plot in Fig. 5.

The traditional and the proposed bad data identification

algorithms (detailed in Section I1I-B and 1II-C, respeely) NQte that scenario type b) is more realistic than type a)esinc
are applied to a randomly-selected measurement scenans. ype b) ype ajes

Table 1l provides the results concerning the iteration nemb" & real-world system, gross errors affects indistinéynth

required and the measurements identified as bad data. TabI&YeNt and voltage transformers. The magnitude of thesgros

provides the true voltage magnitudes and angles, and ﬁ{éor considered is twenty standard deviations for botlkesyp

final estimates for both estimators. Finally, Table IV pans ° _?cenar;os.f hundred N .
the average relative error for the estimated variablegagel Wo Sets of oné hundred measurement scenarios are gener-

magnitudes and angles, active/reactive power injectians, ated and performance results are provided both in Fig. 6 and

A gross error is located in one of the voltage trans-
formers (randomly chosen) of a randomly-selected
substation.
A gross error is randomly located in a voltage or
in a current transformer (of a randomly-selected
substation).

active/reactive power flows. Table V:
o Fig. 6(a) provides the number of rejected measurements
TABLE Il using the traditional and the proposed methodologies

PERFORMANCE OF THEESTIMATORS.

(labeled as WLS and DWLS, respectively), for both types

- : 5 S of scenarios (labeled as (a) and (b), respectively).
Iteration; | 0 1° 2" 3" . .
| 7 « Fig. 6(b) provides the number of good measurements
wis | Removed | — | V2 | Vo, Py | Vo, Py O3 which have been misidentified, for both methodologies
LNRtest | V3 | Py | Qs and both cases.
pwLs LS80 | |2 « Table V provides the average relative error computed
P LNR test | 7, considering all scenarios.
TABLE V
TABLE IlI AVERAGE RELATIVE ERRORS(%).
TRUE AND ESTIMATED STATE VECTOR MeasuremenfWLS (a) WLS (b)| DWLS (a) DWLS (b)
Bus | V"™ Vi s Viwns | 0™ Ohis  Ohwis ey 0.58 0.48 0.54 0.45
1 [ 1.0000 0.9988  1.0004| 0.0000 0.0000  0.0000 €s 9.07 5.28 2.08 2.42
2 | 09824 09797  0.09831| -0.0170 -0.0185 -0.0165 ep 476 2.68 1.07 1.14
3 | 09690 09691  0.9699| -0.0327 -0.0316 -0.0324 o 479 2.97 1.22 1.40
4 | 1.0200 1.0219  1.0203| 0.0266  0.0299  0.0266 epp 7.02 3.87 1.52 1.76
€QF 7.14 4.18 1.65 1.97

TABLE IV

The following observations are in order:
AVERAGE RELATIVE ERRORS(%). 9

1) From Fig. 6(a), note that the proposed estimator gen-

Meas. WLS DWLS Meas. WLS DWLS Meas. WLS DWLS . . . .
v 015 006| cp 473 1.06|cpp 704 154 erally requires just one or two iterations, whereas the
cg 813 129 eq 523 127 |egp 751 123 traditional one needs more.

2) From Fig. 6(b), note that the number of misidentifica-
tions using the proposed method is insignificant. On the
The following observations are in order: other hand, note that in case of using the traditional
1) From Table II, note that the traditional algorithm re- one, it is likely than one or more good measurements
quires a larger number of iterations. Additionally, severa are removed from the measurement set.
good measurements are removed along with the bad3) From Table V, note that the relative errors of the
one. The remaining measurements are corrupted by non- proposed method are notably smaller than those of the
detectable conforming multiple bad data. traditional one.
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100% - . . . .
” Il 150, m 1% is populated with errors originated by the three considered
80% BTN 13%|-4% 399, — errors corrupting t_he input measuremen_ts.
] m>4 In order to achieve a better comparison, the results of a
60% 11 570, 0 | m4 WLS estimation using a measurement set free of gross errors
1 59% 94% . :
40% 1 o L o3 is provided. Those results are labeled as WLResults are
11 239 56% 02 provided in Fig. 7 and Table VI.
20% A —
1 119%]  |16% ol 100% 7 13%
0% . : : o : 11%
80% A 13% -
WLS (a) WLS(b) DWLS (@ DWLS (b) 19% m> 4
o | 21% -
: 60%
(a) Number of suspected/rejected measurements. 28% 06% =3
. 40% - 27% - o2
100% W I— =S B 23% 63% o1
= 6% 20% +— =
80% 1— 10% — =+ 8%] 26% 0o
0% 1] = | w2 0% = T% : ;
? 97% 9%6% a2 WLS(a) WLS(b) DWLS(a) DWLS (b)
26%
40% +— T4% — a1 ) o
Fig. 7. Number of misidentifications in the 39-bus system.
20% +— 31% | |o
0% ; ; ; TABLE VI
WLS (a) WLS (b) DWLS(a) DWLS (b) AVERAGE RELATIVE ERRORS(%).
(b) Number of misidentifications. Meas. Scenario (a) Scenario (b)
WLS WLS* DWLS|WLS WLS* DWLS
Fig. 6. Identification performance in a 4-bus system. ey | 058 056 054|048 044 045

eg |9.07 338 208|528 291 242
ep |4.76 155 107|268 131 114

. ) eQ | 479 199 1.22|297 1.66 1.40
3) Influence of MatrixC'pwis: The adequate performance cpp | 702 245 152|387 199 176

of the proposed method relies on the assumption that ma- cop | 714 318 165|419 244 197
trix Cpwrs has been properly estimated. If the consid-
ered covariance matrix does not correspond with the actual ) ) .
measurement-dependency structure, the numerical betavio 1he following observations are in order:
the proposed algorithm can be significantly deteriorated. 1) From Fig. 7, note that the number of misidentifications
To illustrate this limitation, a set of one hundred measure-  using the proposed procedure is significantly smaller
ment scenarios are generated and the proposed estimation than using the traditional one. Particularly, if gross
and identification DWLS algorithms are applied considering  errors only affect voltage transformers, only 4% of the
a wrongly-computed measurement covariance mafixyr.s. suspected measurements are misidentified.
In each scenario, the input measurement set of a randomly2) From Table VI, note that the relative errors of the
chosen substation is corrupted by a gross error of twenty sta ~ proposed method are smaller than those of the traditional
dard deviations. Additionally, the coefficients of the estted one and those of the WLS estimator without the bad
covariance matrixCpwrs corresponding to this substation measurements.
are intentionally altered with a distortion up to 200%. It is From the computational point of view, as reported in [18],
observed that: the DWLS algorithm comprises two estimations. Thus, the

1) Although the number of iterations does not vary sigcomputational burden of a single DWLS estimation is about
nificanﬂy (the variation is smaller than 3%)' the averad'éVice heavier than that of the traditional WLS method. On
number of misidentifications increases up to seven timdB€ contrary, the number of detection/identification itierzs is

2) Consequenﬂy, the average relative error for the esﬂ'ma{arger for the traditional WLS bad data detection/iderdificn

increases about ten times. technique.

The previous results highlight the need of using an accurateTable VII provides computational time statistics for both

estimate of the measurement covariance maiti . e_stimators, using MINOS 5.5 [22] under GAMS 23] on a
' ! varl Pvrs Linux-based server with four processors clocking at 2.6 GHz

and 32 GB of RAM.
B. 39-Bus Case Note than the required computation time for the DWLS

This section analyzes the performance of the propos@@orithm is moderately larger than that of the traditionalS

procedure applied to a larger case study: a 39-bus systéigorithm.

Two sets of one hundred measurement scenarios are generated

as in Section V-A2 (cases (a) and (b)), but three gross VI. CONCLUSIONS

errors affects three different substations at a time, each If the signal provided by a current or voltage transformer
processed measurement scenario (of each one of the two setgffected by a gross error, the measurement set used by
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TABLE VI
COMPUTATION TIME STATISTICS.

Statistic WLS (a) WLS (b)| DWLS (a) DWLS (b)
Average (s.) 0.859 0.910 1.169 1.185
Stand. dev. (s)) 0.198 0.221 0.421 0.438
Minimum (s.) | 0.352 0.431 0.507 0.491
Maximum (s.)| 1.282 1.493 2.271 2.592

the state estimator can be corrupted by multiple bad data.
In such situation, the performance of the traditional ilent?1]
fication algorithm based on the LNR test can be significantly

improved if the procedure is modified to consider the siatikt
correlations between measurements. An insightful arcalti
example illustrates the proposed methodology, and its co
paratively improved performance is demonstrated through t
case studies. Future research will focus on multiple bad d
identification using the method proposed in [24]. This edfiti

By
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