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Abstract—This paper analyzes the multiple bad data originated
by a gross error in any voltage or current transformer of the
measurement equipment. Considering the statistical correlations
among measurements, an identification algorithm based on the
largest normalized residual test is specifically designed to deal
with multiple bad data. Two case studies are analyzed and
conclusions duly drawn.
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I. I NTRODUCTION

A. Motivation and Aim

I N any electric energy system, the control center regularly
performs a state estimation to compute the most likely state

of the network, fundamentally based on the measurement set
transferred from each substation. One of the most relevant
features of any estimation algorithm is to detect and to identify
the presence of bad data.

Although measurements are routinely considered indepen-
dent, some studies indicate that this hypothesis is inaccurate,
since the signals from the voltage/current transformers are
processed and combined to obtain the power flow and voltage
measurements that the state estimator employs. From this point
of view, if an error occurs in a voltage or current transformer,
more than one “processed measurement” is generally cor-
rupted, leading a measurement set populated with multiple bad
data.

To the best of our knowledge, no bad data detection and
identification algorithm has been specifically designed to con-
sider dependencies among measurements. However, if statis-
tical correlations are properly considered in the identification
procedure, a more reliable and robust bad data identification
can be achieved. To develop such procedure is the aim of the
work reported in this paper.
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B. Contributions

The contribution of this paper is threefold. First, to study
the influence over the measurement set of a gross error
affecting any current or voltage transformer. Second, to check
the performance of the traditional detection and identification
algorithms in the presence of multiple bad data. Third, to pro-
pose a modification of the well-known identification method
based on the Largest Normalized Residual (LNR) test in order
to improve its robustness if multiple bad data are present.

C. Literature Review

Within the framework of power system state estimation,
methods and solution algorithms are well documented. The
pioneering work is due to Schweppeet al [1]–[3] and others
[4]–[6].

The capability of bad data detection and identification is a
key element of any estimator. Some studies focus on parameter
error identification [7], [8], topology error identification [9]–
[12] and, mainly, measurement error identification.

The elimination of bad data in the measurement set can
be addressed by the use of robust estimators: least absolute
value [13], least median of squares [14], etc. Concerning the
widely-used Weighted Least of Squares (WLS) estimator, two
methods are available [6]: the LNR test and the hypothesis
testing identification.

References [15], [16] describe and analyze an advanced
SCADA system. Reference [17] analyzes the measurement
dependencies due to measurement transformer influence and
proposes a technique to compute the measurement correlation
coefficients based on the point estimate method. Finally,
[18] proposes an estimation algorithm that considers these
dependencies.

D. Paper Organization

The rest of this paper is organized as follows: Section II
analyzes the measurement system and provides expressions
to compute the relative error of processed measurements.
Section III discusses the drawbacks of traditional methods
and Section IV proposes a identification algorithm capable
of identifying multiple bad data. Section V analyzes two
insightful case studies and, finally, Section VI provides some
relevant conclusions.

II. M EASUREMENTSYSTEM: DESCRIPTION ANDMODEL

In any electric power system, the control center regularly
performs a state estimation of the network state using the con-
sidered system model and its parameters, and the measurement
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data collected from all the substations located throughoutthe
network.

A. Measurement Infrastructure

Each substation transmits to the control center, using an
electronic equipment called remote terminal unit (RTU), a
measurement set usually formed by bus voltages and ac-
tive/reactive line power flows. This information is gener-
ally obtained from a multifunction meter, which collects the
analogic signals from a set of current/voltage transformers,
processes them digitally, and generates the measurement data
that the estimator uses. Thus, from the viewpoint of the
multifunction meter, measurements can be classified into two
groups:

• Input measurements, which are those measurements di-
rectly captured from the actual physical system.

• Processed measurements, which are the data digitally
generated by the multifunction meter, transmitted to the
control center and used by the state estimator.

There are some different connection configurations for the
measurement equipment [17]. Fig. 1 provides an scheme of the
widely-used three-phase configuration, in which the multifunc-
tion meter is connected to three voltage/current transformers.

Fig. 1. Voltage and current signal connections in a three-phase measuring
configuration.

For the sake of simplicity and without loss of generality, a
three-phase configuration is considered throughout the study
reported in this paper.

B. Signal Processing

The internal software routines implemented in the multi-
function meter [19] allow computing the output data under
the presence of non-fundamental harmonics. Assuming a si-
nusoidal system state, those equations can be simplified as:

Vi = FVi
(·) =

V Ai + V Bi + V Ci
3

(1)

Pij = FPij
(·) =

∑

f={A,B,C}

V fi I
f
ij cos(ψ

f
ij) (2)

Qij = FQij
(·) =

∑

f={A,B,C}

V fi I
f
ij sin(ψ

f
ij) (3)

whereV fi is the voltage signal for phasef and busi, andIfij
andψfij are the current and voltage-current angle signals for
phasef and lineij at terminali.

From (1)–(3), note that some input signals are required
in several equations simultaneously. Therefore, if one of
this shared input data is corrupted by a gross error, several
processed measurements are inaccurately computed. In other
words, a single gross error in a voltage/current transformer
spreads over several processed measurements, provoking mul-
tiple interacting bad data.

Equations (1)–(3) can consider unbalanced and/or asym-
metric states. For the sake of clarity, hereinafter balanced
symmetric working conditions are assumed.

C. Measurement Error Model

Reference [18] analyzes the measurement dependency and
proposes a method to compute the correlation coefficient
between measurements. This technique is used in this paper.
Notwithstanding the nonlinearities of (1)–(3), it has been
numerically verified that the assumption of linear-dependency
between measurements is sufficiently accurate [18].

The measurement vectorz that the estimator uses (i.e., the
vector of processed measurements) can be expressed as:

z = ztrue + e (4)

where ztrue is the true measurement vector ande is the
measurement error vector. Vectore can be statistically char-
acterized as a Gaussian-distributed linearly-dependent variable
vector. Therefore, vectore can be expressed as:

e = Lzv (5)

wherev is a vector of standard independent Gaussian ran-
dom variables, andLz is the lower-triangular Cholesky fac-
tor of the measurement variance-covariance matrixCz, i.e.,
Cz = LzL

T
z . For more information, see the Appendix in [18].

From (4) and (5), it readily follows:
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(6)

where lij is the ij component of matrixLz . In a real-world
system, the majority oflij coefficients are equal to zero,
because measurement dependency can only be found between
measurements within each substation.

Providing a normalized Gaussian random vectorv, equation
(6) can be used to generate measurement sets involving a
realistic dependency, consistent with the routines implemented
in the multifunction meter. Note that a gross error in compo-
nent vi spreads over measurementzj if lji is different from
zero.

D. Relative Error Computation

From (1)–(3), note that there are three types of input
data variables: voltage magnitude, current magnitude, and
voltage-current phase angle (V fi , Ifij , andψfij , respectively).
Depending on which type of input measurement is corrupted
by a gross error, the processed measurements are affected
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in one way or another. For example, if an error occurs in
a current (or phase angle) input measurement, some of the
active/reactive power flow measurements are affected, whereas
the voltage processed measurement is not. Note that just one
bad input measurement can affect more than one processed
measurement and, thus, it can produce a measurement set
populated with multiple bad data.

The relative error of azi processed measurement caused by
a badpj input measurement is computed as follows:

εpj (zi) = 100

∣

∣

∣

∣

Fzi(p
true)− Fzi(p

bad)

Fzi(p
true)

∣

∣

∣

∣

(7)

where

pbad = [ptrue1 , · · · , ptruej +Mσj , · · · , ptrueη ]T (8)

and the functional vectorFzi(·) represents the equation im-
plemented in the multifunction meter software to compute the
processed measurementzi (equations (1)–(3)), andM is the
number of the standard deviations of the input measurement
gross error magnitude.

Assuming a balanced sinusoidal system operation, Table I
provides the expressions to compute the relative error of
the Vi, Pij , andQij processed measurements (columns) if a
bad measurement occurs inV fi , Ifij , ψ

f
ij input measurements

(rows), respectively.
Considering that the standard deviations of input measure-

ments are known parameters, the relative errors in Table I can
be plotted using tridimensional graphs. (Standard deviations
used are:σV = σI = σψ = 0.01 pu.)

Fig. 2 provides the graphical characterization of those
relative errors. Each tridimensional plot provides the relative
error in processed measurements (Vi, Pij , and Qij) if a
M -magnitude gross error is added to each type of input data:
V fi , Ifij , andψfij .
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Fig. 2. Relative errors in processed measurements.

The following observations are in order:

1) Fig. 2(a) provides the relative error of processed mea-
surements in case of a gross error affecting any input
measurementV fi . Note that the three types of processed
measurements behave identically.

2) Fig. 2(b) provides the relative error of processed mea-
surements in case of a gross error affecting any input
measurementIfij . Note that processed measurementsPij
andQij are distorted similarly, whereas the measure-
mentVi is not influenced.

3) Fig. 2(c) provides the relative error of processed mea-
surements in case of a gross error affecting any input
measurementψfij . For the sake of clarity, the surface
ε
ψ

f
ij
(Vi) is not plotted; since its value is always zero.

Note that processed measurementsPij andQij are dis-
torted similarly, while measurementVi is not influenced.

From Fig. 2, it can be concluded that the magnitudes of the
relative errors in processed measurements are not very high
(due to the fact that processed measurements are computed
using error-free parameters but the one under study). However,
those relative errors are large enough to deteriorate the esti-
mation accuracy and, consequently, the detection/identification
algorithms can fail in the presence of those multiple bad
measurements.

III. STATE ESTIMATION AND BAD DATA IDENTIFICATION

Most state estimators in practical use are based on a math-
ematical optimization problem which minimizes an objective
function J , which usually can be expressed as a function of
vectory = z − h(x), wherex is the state vector andh(·) is
a nonlinear functional vector, such thath(xtrue) = ztrue.

For example, the WLS approach can be expressed as:

minimize
x

J = [z − h(x)]TW [z − h(x)] (9)

= yTWy (10)

subject to:

c(x) = 0 , g(x) ≤ 0 (11)

whereW is the weighting matrix,c(x) are the equality con-
straints representing perfectly accurate measurements (zero-
injection buses), andg(x) are inequality constraints used
to represent physical operating limits. The estimated state,
computed as the solution of problem (9)–(11), is denoted as
x∗, and it is assumed to be close enough to the true state.

Matrix W is computed as the inverse of the measurement
variance-covariance matrix considered (Cest), i.e.,

W = [Cest]
−1 . (12)

Note that the traditional WLS estimator considers the mea-
surement variance matrix as diagonal (CWLS), whereas the
Dependent Weighted Least Squares (DWLS) approach re-
ported in [18] considers additionally the nondiagonal terms
(CDWLS). Hereinafter, it is considered thatCDWLS = Cz,
andCWLS = diag(Cz).

It can be shown (see [18]) that the computation of matrixCz

is robust and its coefficients do not vary significantly in case
of either multiple bad measurements or Gaussian noise with
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TABLE I
RELATIVE ERRORS OFPROCESSEDMEASUREMENTS.

εr(Vi) εr(Pij) εr(Qij)

V
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∣

∣
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∣
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sin(ψf,trueij +Mσψ)− sin(ψf,trueij )

3 sin(ψf,trueij )

∣

∣

∣

∣

∣

large standard deviation. However, if matrixCz is wrongly
estimated the performance of the proposed approach can be
significantly deteriorated, as shown in Section V-A3.

The objective functionJ can be expressed as:

J = yT [Cest]
−1y = yT [LestL

T
est]

−1y

= (L−1
esty)

T (L−1
esty) = uTu

(13)

whereLest is the lower-triangular Cholesky factor of matrix
Cest and vectoru is computed asu = L−1

esty. FunctionJ
follows a Chi-square distribution [4].

A. Bad Data Detection

The Chi-square test for bad dada detection can be applied
in a simple manner. At the true statextrue,

u = L−1
esty = L−1

est [z − h(xtrue)]

= L−1
este = L−1

estLzv .
(14)

If the DWLS estimator is used, note thatu = v and the
objective functionJ follows aχ2 distribution withm+p−n
degrees of freedom, wheren is the number of state variables
and p is the number of equality constraints and active in-
equality constraints. Bad data detection is a hypothesis testing
problem: the null hypothesisH0 corresponds to the case in
which no bad data are present; and the alternative hypothesis
H1 corresponds toH0 not being true. IfJ∗ is the sum of
squared residuals at the estimated state, then

J∗

{

≤ χ2
m+p−n,α, acceptH0

> χ2
m+p−n,α, rejectH0

(15)

whereχ2
m+p−n,α is the Chi-square distribution function cor-

responding to a detection confidence level with probabilityα.
If the WLS estimator is employed, the non-diagonal ele-

ments of the variance-covariance matrix are disregarded. In
this case, the objective functionJ still follows a Chi-square
distribution but the degrees of freedom change because the
dependencies between measurements are eliminated [20].

Both detection and identification traditional algorithms are
well-documented in the technical literature, e.g. in [4], [6].

B. Bad Data Identification

If bad data are detected, bad measurements are identified
applying the traditional Largest Normalized Residual (LNR)
test. The LNR test can be viewed as a hypothesis testing
problem, as detailed in [4]. This procedure is composed of
the following steps:

1) Solve the estimation problem (9)–(11), and compute the
normalized residual vectorrN.

2) If the largest normalized residual is larger than the cho-
sen identification threshold (e.g., 3.0), the corresponding
measurement is suspected as bad data: go to step 3).
Else, the procedure concludes.

3) Eliminate the suspected measurement from the measure-
ment set and go to step 1).

The normalized residualrNi can be computed as [21]:

rNi = |zi − hi(x
∗)|/

√
Ωii (16)

where

Ω = Cz −H(HTWH)−1HT (17)

and H is the Jacobian of functionh(x) evaluated at the
optimal estimate, i.e.,

H =
∂h(x)

∂x

∣

∣

∣

∣

x=x∗

. (18)

Note that the detection and identification processes can
be performed simultaneously bypassing the Chi-square test
and computing directly the normalized residuals. However,
the calculation of the normalized residuals is computationally
expensive and this cost may justify the use of the Chi-square
test for preliminary bad measurement detection.

C. Discussion

From the previous subsection, note that if a bad measure-
ment is identified in step 2), it is directly removed from the
measurement set in step 3) and the estimation problem (9)–
(11) is solved again neglecting this bad measurement.

Section II-D above shows that a gross error affecting
any input measurement spreads over one or more processed
measurements, following a particular pattern defined by the
measurement variance-covariance matrix. Therefore, if a mea-
surement is suspected to be corrupted by a gross error, other
correlated measurements are likely to be affected.

The traditional approach removes the suspected bad mea-
surement and its corresponding column/row from the matrix
W , which results in the loss of the correlation information
between the removed measurement and other same-substation
measurements. As an alternative to this, the proposed method
makes use of the correlation coefficients to remove from the
correlated measurements the dispersed multiple gross error.
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IV. PROPOSEDBAD DATA IDENTIFICATION

The aim of the proposed technique is to identify correctly
the bad measurements by removing the effect of dispersed
multiple bad data.

The proposed identification algorithm is based on the tra-
ditional one (see Section III-B), but the state estimation in
step 1) is modified to eliminate the multiple bad data which
corrupt correct measurements. This modification involves the
following considerations:

1) Suspected bad data are not removed from the measure-
ment set.

2) Problem (9)–(11) is modified in such a way that the sus-
pected bad data do not “weight” in the objective function
J , and the error affecting correlated measurements is
removed.

The above can be achieved by an adjustment of the weight-
ing matrixW , rendering matrixW ∗ that is computed as:

W ∗ = [I∗L−1

DWLS
]T [I∗L−1

DWLS
] (19)

whereI∗ is formed as them×m identity matrix whose rows
corresponding to suspected bad measurements are removed.
Thus, vectoru is computed asu = I∗L−1

esty.
Using this weighting matrix, the elements of vectoru are

normalized independent Gaussian-distributed variables with-
out the influence of the suspected gross input measurement
error.

A. Proposed Algorithm

The proposed algorithm is composed of the following steps:
1) An empty set for suspected bad dataΩBD is defined, and

the weighting matrix is computed asW ∗ = C−1

DWLS
.

2) Solve the estimation problem (9)–(11) using the weight-
ing matrix W ∗, and compute the normalized residual
vectorrN.

3) Find thek-th measurement with the largest normalized
residualrNk as in (16).

4) If rNk is larger than the chosen identification threshold
(e.g., 3.0), thek-th measurement is suspected as bad
data: go to step 5). Else, the procedure concludes.

5) Thek-th measurement is added to setΩBD, and matrix
W ∗ is recomputed using (19). Go to step 2).

To compute the normalized residuals in step 2), matrix
W is employed, since matrixW ∗ is not invertible. It has
been numerically proved that this approximation does not
deteriorate the method performance.

The proposed approach is mathematically consistent re-
gardless of the number of bad data corrupting the input
measurement set. Specifically, the technique is also consis-
tent in case of multiple bad data populating same-substation
measurements.

B. Illustrative Analytical Example

In this section, an example is provided to show the deriva-
tions and algorithms in Section IV-A.

Three measurements, modeled as linearly-dependent
Gaussian-distributed variables, are obtained in a substation:

voltage (zV1
) and active/reactive power injections (zP1

and zQ1
, respectively). Assume that the corresponding

measurement covariance matrixCz and its Cholesky factor
are:

Cz =





16 4 4
4 5 3
4 3 6



·10−4 , Lz =





4 0 0
1 2 0
1 1 2



·10−2 .

Then, the measurement covariance matrices considered by the
WLS and DWLS procedures are:

CWLS=





16 0 0
0 5 0
0 0 6



 · 10−4 , CDWLS=





16 4 4
4 5 3
4 3 6



 · 10−4 .

The measurement vectorz is computed as:

z=h(xtrue) + e = h(xtrue) +Lzv (20)




zV1

zP1

zQ1



=





hV1
(xtrue)

hP1
(xtrue)

hQ1
(xtrue)



+





4 0 0
1 2 0
1 1 2









v1
v2
v3



 · 10−2

=





hV1
(xtrue)

hP1
(xtrue)

hQ1
(xtrue)



+





4v1
2v2 + 1v1
2v3 + 1v2 + 1v1



 · 10−2

where the variablesv1, v2, andv3 follow normalized indepen-
dent Gaussian distributions.

1) State Estimation:Using the DWLS estimator, the fol-
lowing equations hold true at the true statextrue

u = L−1

DWLS
y = L−1

DWLS
e = L−1

DWLS
Lzv = v (21)





u1
u2
u3



=





25 0 0
−12.5 50 0
−6.25 −25 50



·





4 0 0
1 2 0
1 1 2



·10−2 ·





v1
v2
v3



=





v1
v2
v3





JDWLS = uTu = v21 + v22 + v23 (22)

whereLDWLS is the Cholesky factor of the covariance matrix
CDWLS. Observe that the objective functionJDWLS fol-
lows a Chi-square distribution with three degrees of freedom
(JDWLS ∼ χ2

3).
On the other hand, using the WLS estimator, atxtrue:

u = L−1

WLS
y = L−1

WLS
e = L−1

WLS
Lzv 6= v (23)





u1
u2
u3



 =





25 0 0
0 44.7 0
0 0 40.8



·





4 0 0
1 2 0
1 1 2



·10−2 ·





v1
v2
v3





=





v1
0.45v1 + 0.89v2
0.41v1 + 0.41v2 + 0.82v3





JWLS = uTu

= 1.4v21 + 1.1v1v2 + 0.67v1v3
+0.97v22 + 0.67v2v3 + 0.67v23

(24)

whereLWLS is the Cholesky factor of matrixCWLS. Observe
that the statementJWLS ∼ χ2

3 does not hold true.
From (22) and (24), the statistical characterization of the

distributionsJDWLS andJWLS can be straightforwardly com-
puted. Fig. 3 depicts the probability density function for
JDWLS, JWLS andχ2

3 distributions. Observe that the density
function of JWLS is significantly different than that corre-
sponding toχ2

3.
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2) Gross Error: Consider that an input measurement is
distorted by a gross error whose magnitude is 5 standard
deviations. This can be modeled by settingv1 = 5:





zV1

zP1

zQ1



 =





hV1
(xtrue)

hP1
(xtrue)

hQ1
(xtrue)



+





4 · 5
2v2 + 5
2v3 + 1v2 + 5



 · 10−2 .

Note that all three measurements are corrupted due to this
gross input-measurement error.

Since diagonal terms of matrixLz are significantly larger
than nondiagonal terms, both the traditional and the proposed
identification techniques detectzV1

as bad measurement.
Using the traditional identification procedure, measure-

mentzV1
is removed from vectorz, and the resulting vector

u is computed as follows:
[

u2
u3

]

=L−1

WLSe=L−1

WLSLzv=

[

2.25 + 0.89v2
2.05 + 0.41v2 + 0.82v3

]

.

Note that the gross error is still affecting vectoru.
On the other hand, using the proposed identification proce-

dure, measurementzV1
is not removed from the measurement

set, but it is included on the set of suspected bad data,
ΩBD = {zV1

}. Matrix I∗ is computed as the3 × 3 identity
matrix whose row corresponding to measurementzV1

is re-
moved. Vectoru is then computed as follows:

u = I∗L−1

DWLSe = I∗L−1

DWLSLzv , (25)
[

u2
u3

]

=

[

0 1 0
0 0 1

]





25 0 0
−12.5 50 0
−6.25 −25 50









4 0 0
1 2 0
1 1 2



·10−2 ·





v1
v2
v3



=

[

v2
v3

]

.

Note that the terms ofu follow normalized independent
Gaussian distributions. Thus, the gross error does not affect
vector u, i.e., the distortion over same-substation measure-
ments has been removed.

V. CASE STUDY

Two case studies are presented to illustrate the overall
performance of the bad data identification method presented
in this paper.

A. 4-Bus Case

First case study analyzes in detail a small four-bus system.
Fig. 4 depicts the network topology of this system and the

measurement configuration considered. In this section, theac-
curacy of the measurement chain is assumed to be dominantly
determined by the measurement transformer, which results in
a standard deviation of 0.01 pu.

Fig. 4. Four-bus system and measurement configuration.

1) Introductory Example:This section illustrates numeri-
cally the most relevant aspects of the proposed technique.

Let us assume that a gross error corrupts one of the
voltage transformers of substation two, increasing the true
voltage value in twenty standard deviations. Consider thatone
hundred measurement scenarios are generated adding zero-
mean Gaussian-distributed random errors to the true values
computed by a converged power flow solution. In all these
scenarios, the same gross error affects the same transformer.
The obtained measurement vector is denoted asz.

For each measurement scenario, vectoru is computed as:

u = L−1
est(z − h(xtrue)) = L−1

est(z − ztrue). (26)

whereztrue is the true measurement vector from the power
flow solution andLest corresponds either toLWLS or to
LDWLS, depending on the estimator employed. Fig. 5 provides
the box plot of vectoru for all measurement scenarios, and for
both estimators. The range±3σ is indicated by dotted lines.

Fig. 5. Values ofu function using WLS and DWLS estimators.

The following observations are in order:
1) From the upper plot in Fig. 5 (WLS), note that all

components of vectoru corresponding to measure-
ments from the substation two, are out of the range
[−3σ,+3σ]. Thus, the measurements provided by sub-
station two form a set of multiple bad data.
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2) On the other hand, from the lower plot in Fig. 5
(DWLS), all components of vectoru are located within
the aforementioned range, except one measurement:V2.

Using the traditional WLS estimator, ifV2 is removed from
the measurement set and box plots are plotted again, the
components of vectoru have the same value as in Fig. 5
(except for the measurementV2 that exists no more). Similarly,
applying the proposed algorithm to the DWLS estimator, the
components of vectoru have the same values as in the lower
plot in Fig. 5.

However, if the estimator DWLS is considered and mea-
surementV2 is directly removed from the measurement set
(without the recomputation of matrixW ∗), all the correlation
information about the multiple bad data is lost, and the DWLS
estimator provides a vectoru which behaves as in the upper
plot in Fig. 5.

The traditional and the proposed bad data identification
algorithms (detailed in Section III-B and III-C, respectively)
are applied to a randomly-selected measurement scenario.
Table II provides the results concerning the iteration number
required and the measurements identified as bad data. Table III
provides the true voltage magnitudes and angles, and the
final estimates for both estimators. Finally, Table IV provides
the average relative error for the estimated variables: voltage
magnitudes and angles, active/reactive power injections,and
active/reactive power flows.

TABLE II
PERFORMANCE OF THEESTIMATORS.

TABLE III
TRUE AND ESTIMATED STATE VECTOR.

Bus V
true

V
∗

WLS
V

∗

DWLS
θ
true

θ
∗

WLS
θ
∗

DWLS

1 1.0000 0.9988 1.0004 0.0000 0.0000 0.0000
2 0.9824 0.9797 0.9831 -0.0170 -0.0185 -0.0165
3 0.9690 0.9691 0.9699 -0.0327 -0.0316 -0.0324
4 1.0200 1.0219 1.0203 0.0266 0.0299 0.0266

TABLE IV
AVERAGE RELATIVE ERRORS(%).

Meas. WLS DWLS Meas. WLS DWLS Meas. WLS DWLS
εV 0.15 0.06 εP 4.73 1.06 εPF 7.04 1.54
εθ 8.13 1.29 εQ 5.23 1.27 εQF 7.51 1.23

The following observations are in order:

1) From Table II, note that the traditional algorithm re-
quires a larger number of iterations. Additionally, several
good measurements are removed along with the bad
one. The remaining measurements are corrupted by non-
detectable conforming multiple bad data.

2) From Tables III–IV, note that the quality of the final
estimate is significantly better using the DWLS estimator
and the proposed identification technique.

For the sake of brevity, results of applying the traditional
identification technique to the DWLS estimator are not pro-
vided. In this case, results are very similar to the ones provided
for the WLS estimator.

2) Statistical Analysis of the Algorithm Performance:In
order to obtain statistically sound conclusions, the method per-
formance is analyzed using multiple measurement scenarios.

Two types of scenarios are considered:

a) A gross error is located in one of the voltage trans-
formers (randomly chosen) of a randomly-selected
substation.

b) A gross error is randomly located in a voltage or
in a current transformer (of a randomly-selected
substation).

Note that scenario type b) is more realistic than type a) since,
in a real-world system, gross errors affects indistinctively both
current and voltage transformers. The magnitude of the gross
error considered is twenty standard deviations for both types
of scenarios.

Two sets of one hundred measurement scenarios are gener-
ated and performance results are provided both in Fig. 6 and
Table V:

• Fig. 6(a) provides the number of rejected measurements
using the traditional and the proposed methodologies
(labeled as WLS and DWLS, respectively), for both types
of scenarios (labeled as (a) and (b), respectively).

• Fig. 6(b) provides the number of good measurements
which have been misidentified, for both methodologies
and both cases.

• Table V provides the average relative error computed
considering all scenarios.

TABLE V
AVERAGE RELATIVE ERRORS(%).

MeasurementWLS (a) WLS (b) DWLS (a) DWLS (b)
ǫV 0.58 0.48 0.54 0.45
ǫθ 9.07 5.28 2.08 2.42
ǫP 4.76 2.68 1.07 1.14
ǫQ 4.79 2.97 1.22 1.40
ǫPF 7.02 3.87 1.52 1.76
ǫQF 7.14 4.18 1.65 1.97

The following observations are in order:

1) From Fig. 6(a), note that the proposed estimator gen-
erally requires just one or two iterations, whereas the
traditional one needs more.

2) From Fig. 6(b), note that the number of misidentifica-
tions using the proposed method is insignificant. On the
other hand, note that in case of using the traditional
one, it is likely than one or more good measurements
are removed from the measurement set.

3) From Table V, note that the relative errors of the
proposed method are notably smaller than those of the
traditional one.
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(a) Number of suspected/rejected measurements.

(b) Number of misidentifications.

Fig. 6. Identification performance in a 4-bus system.

3) Influence of MatrixCDWLS: The adequate performance
of the proposed method relies on the assumption that ma-
trix CDWLS has been properly estimated. If the consid-
ered covariance matrix does not correspond with the actual
measurement-dependency structure, the numerical behavior of
the proposed algorithm can be significantly deteriorated.

To illustrate this limitation, a set of one hundred measure-
ment scenarios are generated and the proposed estimation
and identification DWLS algorithms are applied considering
a wrongly-computed measurement covariance matrixCDWLS.
In each scenario, the input measurement set of a randomly-
chosen substation is corrupted by a gross error of twenty stan-
dard deviations. Additionally, the coefficients of the estimated
covariance matrixCDWLS corresponding to this substation
are intentionally altered with a distortion up to 200%. It is
observed that:

1) Although the number of iterations does not vary sig-
nificantly (the variation is smaller than 3%), the average
number of misidentifications increases up to seven times.

2) Consequently, the average relative error for the estimates
increases about ten times.

The previous results highlight the need of using an accurate
estimate of the measurement covariance matrixCDWLS.

B. 39-Bus Case

This section analyzes the performance of the proposed
procedure applied to a larger case study: a 39-bus system.
Two sets of one hundred measurement scenarios are generated
as in Section V-A2 (cases (a) and (b)), but three gross
errors affects three different substations at a time, i.e.,each
processed measurement scenario (of each one of the two sets)

is populated with errors originated by the three considered
errors corrupting the input measurements.

In order to achieve a better comparison, the results of a
WLS estimation using a measurement set free of gross errors
is provided. Those results are labeled as WLS∗. Results are
provided in Fig. 7 and Table VI.

Fig. 7. Number of misidentifications in the 39-bus system.

TABLE VI
AVERAGE RELATIVE ERRORS(%).

Meas.
Scenario (a) Scenario (b)

WLS WLS∗ DWLS WLS WLS∗ DWLS
ǫV 0.58 0.56 0.54 0.48 0.44 0.45
ǫθ 9.07 3.38 2.08 5.28 2.91 2.42
ǫP 4.76 1.55 1.07 2.68 1.31 1.14
ǫQ 4.79 1.99 1.22 2.97 1.66 1.40
ǫPF 7.02 2.45 1.52 3.87 1.99 1.76
ǫQF 7.14 3.18 1.65 4.19 2.44 1.97

The following observations are in order:
1) From Fig. 7, note that the number of misidentifications

using the proposed procedure is significantly smaller
than using the traditional one. Particularly, if gross
errors only affect voltage transformers, only 4% of the
suspected measurements are misidentified.

2) From Table VI, note that the relative errors of the
proposed method are smaller than those of the traditional
one and those of the WLS estimator without the bad
measurements.

From the computational point of view, as reported in [18],
the DWLS algorithm comprises two estimations. Thus, the
computational burden of a single DWLS estimation is about
twice heavier than that of the traditional WLS method. On
the contrary, the number of detection/identification iterations is
larger for the traditional WLS bad data detection/identification
technique.

Table VII provides computational time statistics for both
estimators, using MINOS 5.5 [22] under GAMS [23] on a
Linux-based server with four processors clocking at 2.6 GHz
and 32 GB of RAM.

Note than the required computation time for the DWLS
algorithm is moderately larger than that of the traditionalWLS
algorithm.

VI. CONCLUSIONS

If the signal provided by a current or voltage transformer
is affected by a gross error, the measurement set used by
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TABLE VII
COMPUTATION TIME STATISTICS.

Statistic WLS (a) WLS (b) DWLS (a) DWLS (b)
Average (s.) 0.859 0.910 1.169 1.185
Stand. dev. (s.) 0.198 0.221 0.421 0.438
Minimum (s.) 0.352 0.431 0.507 0.491
Maximum (s.) 1.282 1.493 2.271 2.592

the state estimator can be corrupted by multiple bad data.
In such situation, the performance of the traditional identi-
fication algorithm based on the LNR test can be significantly
improved if the procedure is modified to consider the statistical
correlations between measurements. An insightful analytical
example illustrates the proposed methodology, and its com-
paratively improved performance is demonstrated through two
case studies. Future research will focus on multiple bad data
identification using the method proposed in [24]. This efficient
algorithm is based on evaluating the coherency between the
measurement with the largest normalized residual and the rest
of the measurements.
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