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Decentralized State Estimation
and Bad Measurement Identification:

An Efficient Lagrangian Relaxation Approach
Eduardo Caro, Student Member, IEEE, Antonio J. Conejo, Fellow, IEEE, and Roberto Mı́nguez

Abstract—This paper proposes a decentralized state-estimation
approach that relies on an elaborated instance of the Lagrangian
relaxation decomposition technique. The proposed algorithm
does not require a central coordinator but just to moderate
interchanges of information among neighboring regions, and
exploits the structure of the problem to achieve a fast and accu-
rate convergence. Additionally, a decentralized bad measurement
identification procedure is developed, which is efficient and robust
in terms of identifying bad measurements within regions and in
border tie-lines. The accuracy and efficiency of the proposed
procedures are assessed by a large number of simulations, which
allows drawing statistically sound conclusions.

Index Terms—State estimation, bad measurement identifica-
tion, decentralization, Lagrangian relaxation.

NOTATION

The main notation used throughout the paper is stated below
for quick reference. Other symbols are defined as required.

A. Sets:

ΩAi Set of regions adjacent to region Ai.
Θbor Set of measurements corresponding to border lines.
Θin Set of measurements corresponding to non-border

lines.

B. Variables:

V Voltage magnitude vector.
θ Voltage angle vector.
x State vector (n× 1).
xi State vector for region Ai.
xI
i State vector of interior buses for region Ai.

xB
i State vector of border buses for region Ai.

Note that xi = [(xI
i)

T (xB
i )

T ]T .

C. Parameters and Constants:

ε Tolerance.
n Number of state variables.
nA Number of regions.
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m Number of measurements.
xtrue True state vector (n× 1).
z Measurement vector (m× 1).
W Weighting matrix (m×m).

D. Functions:

h Functional vector (m× 1) that relates measurements
and state variables.

f Equality constraint vector.
g Inequality constraint vector.
f i Equality constraint vector for region Ai.
gi Nonlinear inequality constraint vector for region Ai.
f ij Equality constraint vector corresponding to the inter-

regional zone Ai −Aj .
gij Nonlinear inequality constraint vector corresponding

to the inter-regional zone Ai −Aj .
J Objective function.

E. Optimization Vectors and Matrices:

x∗ Estimated state vector (n× 1).
r Residual vector (m× 1).
rN Normalized residual vector (m× 1).
Ω Residual variance-covariance matrix (m×m).
H Jacobian matrix (m× n).
λi Lagrangian multiplier vector of constraints f i.
µi Lagrangian multiplier vector of constraints gi.
λB
ij Lagrangian multiplier vector of constraints f ij .

µB
ij Lagrangian multiplier vector of constraints gij .

I. INTRODUCTION

A. Motivation and Aim

MARKET operation in each national (e.g., in Europe)
or regional (e.g., in the US) system of an intercon-

nected multi-regional system calls for an increasingly accurate
knowledge of the state of each national/regional system. This
requires increasingly efficient state-estimation tools to be used
by the Transmission System Operator (TSO) of each intercon-
nected region. An accurate estimation of the system state in
each interconnected region is of high importance to ensure a
secure and economically efficient operation of each regional
electric energy system and of the interconnected system as a
whole.

As interconnections among regions become stronger, the
system state in a given region needs to be estimated consider-
ing in a precise manner the interactions of other regions, but
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minimizing the exchanged information between them. Hence,
decentralized state-estimation algorithms become important
tools.

This paper proposes a state-estimation procedure that allows
estimating the state of each regional system of a multi-
regional system in a decentralized manner. The final estimate
is identical to that that would be obtained by a central operator
using the whole information available in all regional systems.

The proposed decomposition is not oriented to improve
computational efficiency, but rather to preserve the state-
estimation independence of each region in a multi-regional
electric energy system.

The proposed decentralized estimator relies on an elaborated
instance of the Lagrangian relaxation technique that requires
no central coordinator but just interchanges of information
among neighboring regions. The particular structure of this
estimation problem is exploited to derive a highly accurate
and computationally efficient algorithm.

More often than not, identifying erroneous measurements is
more important than increasing the accuracy level of a given
estimation algorithm. This is so because “good” and “bad”
estimators produce good enough estimates, provided that an
error-free set of measurements is available. On the contrary,
undetected erroneous measurements may significantly distort
the estimate provided by the best estimator. This paper de-
scribes a decentralized bad measurement detection procedure
that proves to be efficient and robust in terms of identifying
erroneous measurements within regions and in border tie-lines.

B. Literature Review and Contributions
The technical literature includes a significant number of ref-

erences on Multi-Area State-Estimation (MASE) algorithms.
Work [1] provides a taxonomy of these methods, which can
be categorized as hierarchical or decentralized.

A hierarchical MASE was first proposed in [2], providing
a technique that relies on a border-bus overlapping approach.
There is a significant number of posterior studies, based on
parallel computation techniques [3], [4], two-level MASE with
non-overlapping areas [5], diakoptic-based MASE [6], and
others [7]–[10].

Other some works [11]–[15] formulate the estimator apply-
ing optimization and decomposition techniques to the orig-
inal problem, leading the so-called “decentralized MASE”
approaches. References [14] and [15] apply the Lagrangian
decomposition technique to the Weighted Least Squares es-
timator formulated as an optimization problem. Specifically,
[14] decomposes the estimation problem into subproblems to
be solved by each region, considering that the border buses
belong to two regions simultaneously and requiring central
coordination. Reference [15] improves this decentralization
procedure and proposes an algorithm to estimate any multi-
region system without the need of having in common any
border bus, and without central coordination.

This paper is based on the Lagrangian relaxation in [16]
and builds upon previous decomposition approaches ([14] and
[15]), presenting the following three features:

1) The structure of the multi-region problem is fully ex-
ploited to achieve regional problems that can be solved

with accuracy and efficiency, to minimize the informa-
tion interchanged and without the need of a central
coordinator.

2) Sensitivity information of neighboring regions is ex-
changed, which allows formulating a set of regional
problems whose optimal solution corresponds to the
centralized estimate.

3) The proposed erroneous measurement identification pro-
cedure, which is decentralized and novel, reconstructs
accurately the required entries of the centralized residual
covariance matrix, which ensures efficiency and robust-
ness in terms of identifying erroneous measurements
within regions and in border tie-lines.

C. Paper Organization
The rest of this paper is organized as follows. Section II

details the formulation for both centralized and decentral-
ized state-estimation algorithms, and provides a technique
to identify bad measurements in a decentralized fashion. In
Section III the proposed decentralized estimator and bad data
identification procedure are tested using the IEEE 30-bus
system, and its performance is analyzed in detail. Finally,
Section IV provides some relevant conclusions. An appendix
shows the equivalence of the centralized and decentralized
procedures.

II. FORMULATION

In this section, both centralized and decentralized formula-
tions are described and a procedure to identify bad measure-
ments in a decentralized fashion is proposed.

A. Centralized Formulation
In general, any state estimator can be formulated as an

optimization problem:

minimize
x

J (x) (1a)

subject to:

f(x) = 0 (1b)
g(x) ≤ 0 (1c)

where x is the vector of state variables, J(x) is the scalar
error function of the estimation, f(x) is an equality-constraint
functional vector mainly enforcing condition at zero-injection
buses (no generation and no demand), and g(x) is an
inequality-constraint vector modeling physical limits of the
system.

The expression of the objective function J(x) depends
on the estimator employed. Particularly, the widely-used
Weighted Least Squares (WLS) technique considers the ex-
pression below:

J(x) = [h(x)− z]TW [h(x)− z] (2)

where z is the measurement vector, h(x) is a functional vector
that relates vectors z and x, and W is the weighting matrix,
usually computed as the inverse of the measurement variance
matrix. It is assumed that the network is fully observable,
which is a well-established hypothesis in the state-estimation
technical literature for transmission systems.
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B. Decentralized Formulation

In order to design a multi-area state estimator, Lagrangian
decomposition (see [17]) can be applied to problem (1).
Hereinafter, the multi-region network is divided into regions
called “areas”. The state variable vector in area Ai is denoted
as xi and it is divided into two vectors: xi = [(xI

i)
T (xB

i )
T ]T .

Vectors xI
i and xB

i represent the state variables for interior and
border buses of area Ai, respectively. The specific information
contained in vector xB

i is detailed in Section II-C.
The objective function J(x) can be decomposed per area

and the state estimator for area Ai can be formulated as:

minimize
xi

Ji(xi) +
∑

j∈ΩAi
Jij(x

B
i , x̃

B
j ) (3a)

+
∑

j∈ΩAi

[
λB
ji

]T
f ji(x

B
i , x̃

B
j ) +

∑
j∈ΩAi

[
µB

ji

]T
gji(x

B
i , x̃

B
j )

subject to:

f i(xi) = 0 (3b)
gi(xi) ≤ 0 (3c)

f ij(x
B
i , x̃

B
j ) = 0 : λB

ij (3d)

gij(x
B
i , x̃

B
j ) ≤ 0 : µB

ij (3e)

where xi is the state variable vector for buses in area Ai;
xB
i is the state variable vector for the border buses of area

Ai; Ji and Jij are the objective function components for
measurements in the area Ai and belonging to border lines
Ai-Aj , respectively; f i(·) and gi(·) are the equality and
inequality constraint vectors for area Ai, respectively; f ij(·)
and gij(·) are the equality and inequality constraint vectors,
respectively, for the border lines Ai-Aj ; λB

ij and µB
ij are the

dual variable vectors related to the equality and inequality
constraints affecting border lines, respectively. Note that the
tilde denotes a constant vector.

The exchanged information is minimal: basically the esti-
mated states for border buses and the dual variable values for
border equality/inequality constraint (more details about the
interchanged information are provided in Section II-C).

The proposed formulation extends that in [15] as it allows
considering zero-injection border buses. In case of neither
equality nor inequality constraints affect border variables, the
objective function (3a) does not contain any dual (Lagrangian
multiplier) information and, thus, the proposed formulation is
simplified to the one proposed in [15].

The proposed decomposition can be applied to any esti-
mator formulated as an optimization problem. Specifically,
the proposed method is suitable for the case in which each
region implements a different state-estimation procedure, pro-
vided that appropriate border information is interchanged. For
conciseness, the WLS technique is considered throughout this
paper. Additionally, this technique can also be applied in case
of considering measurement dependencies, as in [18], [19].

Finally, it is important to note that the solution of regional
problems (3) corresponds to that obtained by solving (1), as
shown in the Appendix. Observe also that decentralization (3)
is not oriented to reduce the computational time, but to
minimize the exchanged data, preserving the independency

between areas Ai. However, it is relevant to note that the
Lagrangian decomposition technique used in this paper is
shown to be more efficient than a centralized approach within
an optimal power flow framework (see [16]).

C. Information Interchange and Convergence Improvement

To estimate the state of a multi-area system in a decentral-
ized fashion several iterations are required. For each iteration,
each area Ai solves problem (3) and interchange with the
neighboring areas Aj data on: (i) border-bus estimates x̃B

j ,

(ii) dual data related to border constraints {λ̃
B

ij , µ̃
B
ij}, and (iii)

the neighboring power measurements affecting the border lines
(see Section II-E). Note that no central coordinator is required,
just information interchange.

The information included in vector x̃B
j comprises the es-

timated voltage magnitudes and angles for the first-order
vicinity buses. In case of zero-injection border buses, the
estimates for the second-order vicinity buses are also needed.
Fig. 1 provides a simple inter-area example which illustrates
the exchanged information regarding state variables.

Note that border estimates and neighboring sensitivity data
are required to be exchanged for the following purposes: (i) to
achieve a robust and efficient convergence, and (ii) to ensure
that the decentralized solution correspond to that obtained if
the problem is solved in a centralized manner. Observe also
that all boundary telemetry is required to be exchanged, ex-
cept for the voltage magnitude/angle measurements at border
buses. However, if these measurements are also transmitted
to neighboring areas (as NERC standards indicate), a more
accurate and robust estimate is expected, because additional
information is available.

�

�

xi
B

xi
I

xi xj

xj
B

xj
I

Area Ai Area Aj

Fig. 1. Inter-area illustrative example: information interchange.

The interchanged information about neighboring estimates
can be incorporated in the optimization problem (3) in several
ways. In reference [20], those values are treated as fixed
parameters in each estimation. Work [15] considers those esti-
mates as measurements, and inserts them in the decentralized
objective function as measurements with fixed weighting fac-
tors. In this paper, those values are treated as fixed parameters
or as measurements, depending on the decentralized algorithm
used (see Section II-D).
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To achieve fast convergence and to reduce the number
of iterations, the optimization-variables set of the proposed
decentralized algorithm is modified as follows,
• The variable set of optimization problem (3) is extended

from {xi} to {xi,x
B
j }∀j ∈ ΩAi , just for the first iteration.

• For the rest of iterations the optimization variable set is
restored: {xi}.

Numerical simulations indicate that proceeding in this way
the algorithm converges faster than if the optimization set is
defined as {xi} in the first iteration.

D. Sequential and Parallel Decentralized Algorithms

The decentralized estimation problem formulated in (3) can
be implemented either in a parallel fashion or in a sequential
manner, as detailed below.
• Parallel: all areas solve their respective problems simulta-

neously, and then interchange border information.
• Sequential: areas solve their problem one at a time, and

border data are updated and made available to other areas.
Fig. 2 depicts the coordination process of a two-area system

employing the two alternative decentralized algorithms. In
terms of exchanged information during each iteration, note that
parallel and sequential decentralized procedures are analogous
to Jacobi and Gauss-Seidel iterative methods for solving linear
systems of equations, respectively.
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Fig. 2. Parallel and sequential decentralized algorithms.

Parallel Decentralized Algorithm. The parallel decentralized
algorithm works as follows:

1) States are initialized using the flat voltage profile, and
vectors {µ̃B

ji, λ̃
B

ji} are set to zero. Set counter ν = 0.
2) Set counter ν ← ν+1. Simultaneously, each area solves

problem (3). If ν = 1, the optimization variable set is
{xi,x

B
j }∀j ∈ ΩAi ; else {xi}.

3) If the maximum change of the states within two itera-
tions is smaller than a tolerance ε, stop. Else, continue.

4) Neighboring areas interchange the estimates x̃B
i and the

dual information {µ̃B
ji, λ̃

B

ji}. Go to step 2).
Sequential Decentralized Algorithm. The sequential decentral-
ized algorithm works as follows:

1) States are initialized using the flat voltage profile, and
vectors {µ̃B

ji, λ̃
B

ji} are set to zero. Set counter ν = 0.

2) Set counters ν ← ν + 1 and i = A1.
3) Area Ai solves problem (3). If ν = 1 and i = A1, the

optimization variable set is {xi ,x
B
j } ∀j ∈ ΩAi ; else,

the optimization variable set is {xi}.
4) Area Ai interchanges the estimates x̃B

i and the dual

information {µ̃B
ji , λ̃

B

ji} ∀j ∈ ΩAi . If Ai ̸= AnA , set
i ← i + 1 and go to step 3). Otherwise, continue.

5) If the maximum change of the state variables within two
iterations is smaller than a tolerance ε, stop. Otherwise,
go to step 2).

Note that there is a tradeoff between accuracy and effi-
ciency: using a smaller tolerance ε, the numerical accuracy
improves whereas the required CPU time increases. Thus, the
numerical accuracy for the decentralized procedure is chosen
by each System Operator which adjusts the tolerance ε. In
Section III, the accuracy and computational performance for
these two approaches are analyzed in detail.

Numerical simulations show that the sequential procedure
is more efficient than the parallel one. However, the parallel
version requires a smaller level of coordination.

Observe that the sequential algorithm is the “natural” way
to reach the optimum, since each area solves its problem
considering the most updated estimates of neighboring bus
states. Thus, each problem tries to improve the neighboring
estimates progressively. In the parallel technique, each area
solves its problem at the same time, estimating also the
neighboring buses. The estimates for the neighboring buses do
not usually match in the first iterations, and areas “compete”
between them to achieve the optimum.

In case of installing a set of PMUs, the reference angle
is “transmitted” with the phasor measurements and, thus, the
parallel algorithm improves significantly its efficiency.

E. Gross Error Detection and Identification

Bad data detection and identification procedures are per-
formed using the Chi-square and Largest Normalized Residual
(LNR) tests, respectively. These tests are well-documented in
the technical literature [21].

The normalized residual vector rN is computed as follows:

rN = |r|/
√

diag(Ω) (4)
Ω = W−1 −H(HTWH)−1HT (5)

where r is the residual vector: r = h(x∗)− z, and x∗ is the
optimal estimate.

From (4), note that the calculation of the normalized resid-
ual vector rN is based on the Jacobian matrix H(x), which in
turn is used to compute the residual variance-covariance matrix
Ω. The vector rN can only be computed in a centralized
manner, because the matrix H(x) must be completely known.

Thus matrix Ω cannot be computed in an exact manner “by
blocks”, i.e., if we try to compute matrix Ω in a decentralized
fashion, some entries differ significantly from those obtained
if Ω is computed with full information from all areas.

Since each area Ai can compute only its Jacobian
Hdec

Ai
(xi), the area Ai can only compute an approximation
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of the block of Ω corresponding to area Ai:

Ωdec
Ai

= (W dec
Ai

)−1−Hdec
Ai

[
(Hdec

Ai
)TW dec

Ai
Hdec

Ai

]−1

(Hdec
Ai

)T

(6)
Matrix Hdec

Ai
(xi) can be computed in several ways. Ref-

erence [15] proposes a technique to compute this matrix
considering only the measurement set that belong to area Ai.
In this paper, instead of considering only the measurements
contained in area Ai, we take into account all measurements
whose Jacobian elements have influence over the state vari-
ables in area Ai. Thus, the measurements considered in the
computation of Hdec

Ai
(xi) are: the measurements contained

in area Ai, the power flow measurements in border lines
(if any), and the power injection measurements in first-order
neighboring buses (if any). Additionally, instead of considering
only the state variables of area Ai, the information about the
neighboring estimates xB,∗

j can also be used to expand the
Jacobian. Proceeding in this way, all the available information
is employed in the computation of the decentralized Jacobian
and, thus, it is expected an accuracy improvement. In Sec-
tion III-B, numerical analysis are carried out to check the
performance of the proposed method.

Fig. 3 depicts the structure of the Jacobian H(x) for a
two-areas system. The gray-colored regions represent the non-
zero elements, and the dotted lines highlight the considered
elements for the approach employed in [15] and the one
proposed in this paper (labeled using the superscripts DEC1
and DEC2, respectively).
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Fig. 3. Jacobian for a two-areas network.

F. Topological Errors

If the status of one or more breakers is misidentified and
transmitted to the EMS, it provokes a topological error which
has to be detected and corrected to achieve an accurate
estimate. There are a significant number of references in the
technical literature addressing the problem of topological error
identification [22]–[27].

The work reported in [24] proposes a topological error
identification procedure based on Lagrangian multipliers. This
method is computationally efficient, robust, and can be imple-
mented in a decentralized fashion. Thus, each area performs
the decentralized estimation and, then, the topological error
identification and bad data detection/identification procedures,
considering only its local network.

If topological errors are located in border substations, the
proposed decentralization technique allows their correct iden-
tification, since neighboring areas interchange the Lagrange
multipliers corresponding to border-bus constraints.

For the sake of simplicity, the case study reported in
section III-C do not consider this type of error.

III. CASE STUDY

In this section, the proposed decentralized estimation proce-
dure is applied to the IEEE 30-bus system [28]. This network,
depicted in Fig. 4, is composed by 30 buses, 41 lines, 6
generators, 20 loads, and 6 zero-injection buses.

Fig. 4. IEEE 30-bus system.

The selected network is divided into two areas (see Fig. 4).
Table I provides a detailed description of each area.

TABLE I
NETWORK DESCRIPTION.

Area 1 Area 2

No. of buses 11 19
No. of lines 14 23
Buses (ΩAi

) {1–9, 11, 28} {10, 12–27, 29, 30}
Zero-injection buses {6, 9, 28} {22, 25, 27}
Border buses {4, 6, 9, 28} {10, 12, 27}
Exchanged dual info. {λB

6 , λ
B
9 , λ

B
28} {λB

27}
Border lines { 4–12, 6–10, 9–10, 27–28 }
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For statistical consistency, each performance analysis is
carried out considering one hundred measurement scenarios.
Each scenario involves: (i) a random load level (from 90%
to 110%); (ii) random locations of voltage measurements,
active/reactive power flow measurements, and active/reactive
power injection measurements (ensuring observability of the
whole system); (iii) a random redundancy level (from 2.9 to
3.7); and (iv) Gaussian-distributed errors in all measurements,
(standard deviation of 0.01 and 0.02 p.u. for voltage and power
measurements, respectively). Each measurement scenario is
synthetically generated from the solution of a converged power
flow by adding Gaussian-distributed errors to the correspond-
ing true values. The reference angle is located at bus 1.

The computational analyses reported below have been per-
formed using MINOS 5.5 [29] under GAMS [30] on a Linux-
based server with eight processors clocking at 2.3 GHz and 8
GB of RAM. Tolerance ε is set to 10−4.

A. Computational Performance

In this subsection, the accuracy and convergence of the
proposed decentralized estimators (sequential and parallel)
are analyzed and compared with a centralized estimation
algorithm. No gross errors are considered in this first study.

To compare the accuracy provided by the decentralized
estimator with respect to the centralized one for the scenario
ω, the metrics ϵVabs,ω and ϵθabs,ω are defined as:

ϵVabs,ω = mean(V cen − V dec) (7)

ϵθabs,ω = mean(θcen − θdec) . (8)

Note that ϵVabs,ω (ϵVabs,ω) is the average absolute error of
the decentralized voltage-magnitude (voltage-angle) estimates
compared with the centralized ones for scenario ω.

Considering one hundred scenarios, Table II provides the
following computational results: average number of iterations,
average time for each iteration, average total time, and mean
of ϵVabs,ω and ϵθabs,ω .

TABLE II
COMPUTATIONAL ANALYSIS RESULTS.

Centralized Sequential Parallel
Avg. no. of iterations – 9 23
Avg. time for iteration (s) 0.056 0.025 0.031
Avg. total time (s) 0.056 0.207 0.720
mean(ϵVabs,ω) (p.u.) - 0.0002 0.0011
mean(ϵθabs,ω) (rad) - 0.0004 0.0021

From Table II, the following observations are in order:
1) The accuracy of the decentralized algorithms is adequate

and the number of required iterations is around 10 for
the sequential procedure, and 20 for the parallel one.

2) As expected, each decentralized subproblem is faster to
solve than the centralized one. The decentralized average
time per iteration is smaller than the corresponding to
the time required to solve the centralized problem. On
the other hand, the total estimation time is about ten
times higher for the decentralized procedures.

3) The accuracy provided by both procedures is high, being
the sequential estimates closer to the centralized ones.

Based on the previous study, two additional cases are ana-
lyzed. In “Case 2A”, two PMUs are included in the metering
infrastructure, and located at buses 2 and 25 (see Fig. 4). It is
assumed that these GPS-synchronized devices provide voltage-
magnitude and voltage-angle measurements subjected to an
error with a standard deviation of 0.005 pu. In “Case 2B”, no
PMUs are included and the standard deviations of traditional
measurements are increased up to 0.05 and 0.02 p.u. for power
and voltage measurements, respectively. The computational
results for both cases are reported in Table III.

TABLE III
COMPUTATIONAL ANALYSIS RESULTS (SEE UNITS IN TABLE II).

Case 2A Case 2B
Centr. Seq. Par. Centr. Seq. Par.

No. of iter. – 9 9 – 13 32
Avg. time 0.047 0.019 0.027 0.047 0.019 0.025
Total time 0.047 0.174 0.248 0.047 0.245 0.804
mean(ϵVabs) – 0.0002 0.0009 – 0.0002 0.0021
mean(ϵθabs) – 0.0002 0.0015 – 0.0004 0.0050

From Table III, the following observations are in order:
1) The installation of PMUs (Case 2A) improves signifi-

cantly the efficiency of the parallel algorithm. Note that
(i) the estimation time for the decentralized procedures
is about five times higher than that for the centralized
approach, and (ii) the average number of iterations for
both decentralized techniques coincide.

2) On the other hand, if the error of the metering devices
increases (Case 2B), both the numerical accuracy and
the computational efficiency worsen. Note that the av-
erage iteration number increases for both decentralized
algorithms.

Finally, the performance of the proposed method in a
large system is analyzed. The IEEE 118-bus network [28] is
divided into two regions (areas A1 and A2, which comprise
65 and 58 buses, respectively), which result in ten border tie-
lines. Results using the parallel and sequential decentralized
algorithms are provided in Table IV (tolerance ε = 10−3).

TABLE IV
COMPUTATIONAL ANALYSIS RESULTS FOR THE 118-BUS CASE.

Centralized Sequential Parallel
Avg. no. of iterations – 2.6 4.6
Avg. time for iteration (s) 0.314 0.203 0.116
Avg. total time (s) 0.314 0.518 0.527
mean(ϵVabs,ω) (p.u.) - 0.0007 0.0004
mean(ϵθabs,ω) (rad) - 0.0024 0.0008

From Table IV the following observations are in order:
1) Although the number of iterations for the parallel algo-

rithm is twice than that of the sequential one, the total
estimation time for both algorithms is similar.

2) Note that in this case the required CPU time for the
decentralized procedure is just 0.6 times higher than that
of the centralized one.
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3) The numerical accuracy provided by the decentralized
methods is appropriate.

B. Residual Variance Calculation
As stated in Section II-E, the decentralized computation

of the residual variance-covariance matrix (Ωcen), used to
normalize residuals for bad data identification, is not straight-
forward: it leads to an approximate matrix denoted as Ωdec.
In this subsection, the quality of this approximation is nu-
merically analyzed and discussed. Note that only the diagonal
elements of matrix Ω are of interest since only these elements
are required to compute normalized residuals.

To perform a comparison between the diagonal elements
of Ωcen and Ωdec, the IEEE 30-bus system and one hun-
dred measurement sets are considered. The true state vector
xtrue (obtained from a converged power flow) is employed
to compute both matrices Ωcen and Ωdec, using (5) and
(6), respectively. Once both matrices are computed for each
scenario, the diagonal elements are numerically compared,
analyzing separately the elements corresponding to border-line
measurements and the rest. To perform the comparison, the
following metrics are defined:

ϵinrel,ω(%) = mean
(
100

∣∣∣Ωcen
kk −Ωdec

kk

∣∣∣/Ωcen
kk

)
, ∀i ∈ Θin (9)

ϵborrel,ω(%) = mean
(
100

∣∣∣Ωcen
kk −Ωdec

kk

∣∣∣/Ωcen
kk

)
,∀i ∈ Θbor (10)

where Θbor is the set of measurements related to border lines
and Θin is the set corresponding to the rest of measurements.
Note that ϵinrel,ω and ϵborrel,ω are the average relative errors of
diag(Ωdec) with respect to diag(Ωcen) for the measurement
sets Θin and Θbor, respectively, and scenario ω.

Table V provides the following statistical results: minimum,
average, and maximum for both parameters ϵinrel,ω and ϵborrel,ω ,
for all measurement scenarios.

TABLE V
ACCURACY ANALYSIS RESULTS.

ϵinrel,ω ϵborrel,ω

Minimum (%) 0.78 3.61
Average (%) 0.88 5.86
Maximum (%) 1.00 8.34

From Table V, note that the average relative error for
measurements inside the area are not significant (always
below 1%). On the other hand, the average relative error
for measurements corresponding to border lines is sufficiently
accurate (around 6%). Exhaustive numerical simulations show
that those errors increase around 150% in case of computing
the Jacobian disregarding neighboring measurements affecting
border lines and variables xB

j (as in [15]).
In the following section, it is numerically shown that these

errors are small enough to identify correctly any bad data
populating the measurement set.

C. Bad Data Detection and Identification
In this section, the bad data detection and identification

capabilities of the decentralized algorithms are numerically
analyzed and compared with the centralized procedure.

This analysis is carried out considering that each mea-
surement scenario is corrupted by four bad measurements
randomly located, with an error-magnitude of fifteen standard
deviations. Four types of location are considered:
• Error affecting a voltage measurement in border buses

(labeled as “V [border]”).
• Error affecting a voltage measurement in non-border buses

(labeled as “V [in]”).
• Error affecting an active/reactive power measurement in

border lines (labeled as “P/Q [border]”).
• Error affecting an active/reactive power measurement in

non-border lines (labeled as “P/Q [in]”).
One hundred measurement scenarios are generated and

four bad measurements are randomly allocated per scenario.
Results are presented in Fig. 5. The white-colored bars in
Fig. 5 provide the quantity of the actual randomly-located
errors (labeled as “Actual”) for each type of measurement.
For example, 74 bad measurements are located in voltage
measurements in non-border buses.

0 50 100

Number of errors located or identified

Actual Centralized Sequential Parallel

V    [in]

P/Q   [in]

V    [border]

P/Q   [border]

Fig. 5. Bad data identification results.

For each scenario, the detection and identification tests
are applied for the centralized, decentralized-sequential, and
decentralized-parallel estimators. Shadowed bars in Fig. 5
represent the total number of bad measurements correctly
identified, sorted by type. For example, 74 “V [in]” errors
(out of 74) are identified by the centralized algorithm, and the
sequential and parallel methods identify 73 and 74 (out of 74),
respectively. Note that the identification failures are due to the
approximation of the residual variance-covariance matrix.

Additionally, it has been observed that the three identifi-
cation methods sometimes identify as bad data some good
measurements. The percentages of these misidentifications are:
3.75 %, 5.25 %, and 6.75%, for the centralized, sequential, and
parallel algorithms, respectively.

Note that the performance of the proposed bad data detec-
tion and identification procedures applied to the decentralized
algorithms are sufficiently accurate to identify bad measure-
ments. Note also that the number of misidentifications for the
proposed technique is similar to that of a centralized approach.

Note that the decentralized formulation allows a decentral-
ized estimation as well as a decentralized bad data detection
and identification (i.e., each area detects and identifies its own
measurement/topological errors). The decentralized solution
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involves solving problems comparatively smaller than the
original one, which might be computationally advantageous.
Moreover, this identification procedure can be performed in
a parallel fashion, decreasing significantly the corresponding
computational burden. For instance, if there are two gross
errors in each region, the centralized algorithm has to per-
form four re-estimations, whereas the decentralized one only
requires just two. In this respect, the CPU time reduction can
be significant for systems with a larger number of areas.

IV. CONCLUSIONS

The specific instance of the Lagrangian decomposition
algorithm used in this paper to carry out a decentralized state
estimation is accurate, as it achieves in a few iterations the
same estimation than that obtained by a centralized algorithm.
This is so for both the sequential and the parallel implemen-
tations. Since the sequential implantation considers all the
available information regarding previously solved problems,
it is computationally more efficient than the parallel imple-
mentation. However, the sequential implementation requires
coordination among areas.

The proposed technique to compute in a decentralized
manner the relevant entries of the residual variance-covariance
matrix is sufficiently accurate to achieve the identification
of bad measurements involving both intra-area and border
measurements. Moreover, it is reliable as the number of
misidentifications for the proposed technique is similar to that
of a centralized approach.

The accuracy of the proposed estimator and its ability to
identify bad measurements (within each area and in border
lines) is proved by a large number of simulations, which allows
drawing statistically sounds conclusions.

APPENDIX

A. Centralized KKT

The objective function in problem (1) can be expanded:

J(x) =

nA∑
i=1

Ji(xi) +

nA∑
i=1

∑
j∈ΩAi

Jij(x
B
i ,x

B
j ) . (11a)

Similarly, constrains (1b)–(1c) can be expressed as:

f i(xi) = 0 : λi

gi(xi) ≤ 0 : µi

}
∀i (11b)

f ij(x
B
i ,x

B
j ) = 0 : λB

ij

gij(x
B
i ,x

B
j ) ≤ 0 : µB

ij

}
∀i,∀j ∈ ΩAi . (11c)

Note that problem (11) is equivalent to (1). Constraints (11c)
are the complicating constraints, i.e., constraints that, if re-
laxed, make problem (11) solvable in a decentralized manner.
Optimization variables are x = {x1, · · · ,xnA

}.
The KKT optimality conditions of problem (11) at the

optimum {x∗
i ,x

∗
j ,λ

∗
i ,µ

∗
i ,λ

B,∗
ij ,µB,∗

ij } are:

0 = ∇xiJi(x
∗
i ) +

∑
j∈Ωi

∇xiJij(x
B,∗
i ,xB,∗

j )

+ [λ∗
i ]

T∇xif i(x
∗
i ) + [µ∗

i ]
T∇xigi(x

∗
i )

+
∑

j∈ΩAi

[
[λB,∗

ij ]T∇xif ij(x
B,∗
i ,xB,∗

j )

+ [λB,∗
ji ]T∇xif ji(x

B,∗
i ,xB,∗

j )
]

+
∑

j∈ΩAi

[
[µB,∗

ij ]T∇xigij(x
B,∗
i ,xB,∗

j )

+ [µB,∗
ji ]T∇xigji(x

B,∗
i ,xB,∗

j )
]



∀i (12)

f i(x
∗
i ) = 0

gi(x
∗
i ) ≤ 0

[µ∗
i ]Tgi(x

∗
i ) = 0
µ∗

i ≥ 0

∀i (13)

f ij(x
B,∗
i ,xB,∗

j ) = 0

gij(x
B,∗
i ,xB,∗

j ) ≤ 0

[µB,∗
ij ]Tgij(x

B,∗
i ,xB,∗

j ) = 0

µB,∗
ij ≥ 0

∀i,∀j ∈ ΩAi (14)

B. Decentralized KKT

The problem of area Ai at the optimum for all other areas:

minimize
xi

Ji(xi) +
∑

j∈ΩAi

Jij(x
B
i ,x

B,∗
j ) (15a)

+
∑

j∈ΩAi

[λB,∗
ji ]Tf ji(x

B,∗
i ,xB

j ) +
∑

j∈ΩAi

[µB,∗
ji ]Tgji(x

B,∗
i ,xB

j )

subject to:

f i(xi) = 0 : λi (15b)
gi(xi) ≤ 0 : µi (15c)

f ij(x
B
i ,x

B,∗
j ) = 0 : λB

ij , ∀j ∈ ΩAi (15d)

gij(x
B
i ,x

B,∗
j ) ≤ 0 : µB

ij , ∀j ∈ ΩAi (15e)

The KKT optimality conditions of problem (15) for area Ai

at the optimum state x∗
i are:

0 = ∇xiJi(x
∗
i ) +

∑
j∈ΩAi

∇xiJij(x
B,∗
i ,xB,∗

j )

+ [λ∗
i ]

T∇xif i(x
∗
i ) + [µ∗

i ]
T∇xigi(x

∗
i )

+
∑

j∈ΩAi

[λ∗
ij ]

T∇xif ij(x
∗
i ,x

∗
j )

+
∑

j∈ΩAi

[λB,∗
ji ]T∇xi

f ji(x
B,∗
i ,xB,∗

j )

+
∑

j∈ΩAi

[µB,∗
ij ]T∇xi

gij(x
B,∗
i ,xB,∗

j )

+
∑

j∈ΩAi

[µB,∗
ji ]T∇xigji(x

B,∗
i ,xB,∗

j )

(16)
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f i(x
∗
i ) = 0 (17)

gi(x
∗
i ) ≤ 0 (18)

(µ∗
i )

Tgi(x
∗
i ) = 0 (19)
µ∗

i ≥ 0 (20)
f ij(x

B,∗
i ,xB,∗

j ) = 0,∀j ∈ ΩAi (21)

gij(x
B,∗
i ,xB,∗

j ) ≤ 0,∀j ∈ ΩAi
(22)

(µB,∗
ij )Tgij(x

B,∗
i ,xB,∗

j ) = 0,∀j ∈ ΩAi (23)

µB,∗
ij ≥ 0,∀j ∈ ΩAi

(24)

Considering jointly the optimality conditions (16)–(24) for
all areas renders conditions (12)–(14), which proves that the
centralized and decentralized formulations are equivalent.
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