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Abstract

In state estimation, the covariance matrix of residuals is used to compute the

normalized residuals and to detect erroneous measurements. This paper de-

scribes an estimator-independent method based on sensitivity analysis that al-

lows computing the residual covariance matrix. This method is suitable for most

solution approaches based on mathematical programming procedures. Several

case studies illustrate the technique proposed. Relevant conclusions are finally

drawn.
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Sensitivity analysis

1. Introduction

1.1. Motivation and Aim

State estimation consists in processing a given set of measurements to ob-

tain the optimal estimate of the power system state. Several state estimation

methods are proposed in the technical literature. Most of them are based on

solving an optimization problem, such as the following methods: the Weighted

Least Squares (WLS), the Least Absolute Value (LAV), the Least Median of

∗Corresponding author. Phone: +34 926 295433; Fax: +34 926 295361.
Email addresses: Eduardo.Caro@uclm.es (E. Caro), Antonio.Conejo@uclm.es

(A.J. Conejo), Roberto.Minguez@unican.es (R. Mı́nguez)

Preprint submitted to Electric Power Systems Research April 7, 2010



Squares (LMS), the Least Trimmed of Squares (LTS), the Quadratic-Constant

Criterion (QCC), and the Quadratic-Linear Criterion (QLC).

Measurements may contain gross errors due to various reasons. Thus, an

essential feature of any state estimator is to detect those gross measurement

errors, and, if possible, to identify and eliminate them. In general, bad mea-

surement identification procedures rely on the residual covariance matrix and

on the subsequent residual normalization. However, residual covariance matrix

computation techniques differ across the methods. Moreover, these techniques

usually compute an approximate residual covariance matrix using a first-order

approximation and generally disregarding constraints. To overcome these draw-

backs is the aim of this paper; i.e., to propose a novel estimator-independent

procedure to compute accurately the residual covariance matrix.

1.2. Literature Review and Contribution

The technical literature is rich in references pertaining to state estimation

techniques and algorithms [1]–[20]. Particularly notorious is the Weighted Least

Squares estimator, which is a non-robust method exhaustively studied in the

literature [1]–[12].

Alternative approaches rely on the use of robust estimators, i.e., procedures

less sensitive to bad measurements or outliers than the WLS technique. Some of

them are based on minimizing a non-quadratic function of measurement resid-

uals. The Quadratic-Constant and Quadratic-Linear Criterions belong to this

category [14, 13]. The Least Absolute Value method also belongs to this category

and has gained widespread relevance thanks to its implicit bad data rejection

property [15]–[17].

The Least Median of Squares [18]–[19] and the Least Trimmed of Squares

[20] estimators are members of the family known as high-breakdown point es-

timators. These methods are also capable of eliminating the effect of leverage

points (measurements that critically affect the estimator, [11]).

For any particular estimator, the technical literature provides estimator-

specific techniques to compute the residual covariance matrix. For example,
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[21], [22], and [15] report methods to compute this matrix for the unconstrained-

WLS, constrained-WLS, and LAV estimators, respectively. For case of high-

breakdown point estimators, [23] and [24] provide procedures to compute the

asymptotic covariance residual matrices. To the best of our knowledge, no pre-

vious work proposes an estimator-independent method to compute this matrix.

The specific contribution of this paper is to provide an estimator-independent

method to compute the residual covariance matrix for most optimization-based

state estimators, which considers constraints and second-order derivatives.

1.3. Paper Organization

The rest of this paper is organized as follows. In Section 2, the state estima-

tion problem is formulated as a general mathematical programming problem.

In Section 3, the methodology for obtaining the residual covariance matrix and

the normalized residuals is developed. Section 4 provides the expressions for

calculating the derivatives of the estimates of the state variables with respect

to the measurement values, which are needed for the estimation of the residual

covariance matrix. In Section 5, the proposed technique is particularized for the

well-known WLS and LAV methods. Section 6 provides results from three case

studies to illustrate the performance of the proposed method. Finally, Section 7

provides some relevant conclusions.

2. State Estimation Formulation

Most state estimation models in practical use are stated as mathematical

programming problems. These problems are formulated, in general, as:

minimize

x

J(y) (1)

subject to:

l(x, z) = 0 (2)

g(x, z) ≤ 0 (3)
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where z is the m × 1 measurement vector, x is the n× 1 state-variable vector

(variables to be estimated), y is the difference vector between the measurement

and the functional vectors, i.e., y = z − h(x), J(y) is the objective function

defined by the estimator, l(x, z) are equality constraints, e.g., to model zero-

injection buses, and g(x, z) are inequality constraints, e.g., physical limits or

constraints for transforming the LAV model into an equivalent one eliminating

the absolute value function (see Section 5.3). Parameters p and q correspond to

the number of equality and inequality constraints, respectively.

The solution of problem (1)–(3) provides the optimal estimate of the system

state, x̂, which is assumed to be close enough to the true state xtrue. The

residual vector r is defined as:

r = z − h (x̂) . (4)

Note that r = y|x=x̂.

Using the general model (1)–(3) this paper provides a procedure to compute

the residual covariance matrix based on sensitivity analysis [25].

3. Residual Covariance Matrix and Residual Normalization

Using a first-order Taylor expansion of function h (x) around the optimal

state vector x̂, the differential residual vector is obtained from (4) as:

dr = dz −
∂h (x)

∂x

∣

∣

∣

∣

x=x̂
dx̂ = dz −Hdx̂ (5)

where H is the m× n Jacobian measurement matrix evaluated at x̂.

From (5), it readily follows:

∂r

∂z
= I − H

∂x

∂z

∣

∣

∣

∣

x=x̂
= I −HMxz = S (6)

where matrix Mxz is made of the derivatives of the state estimator vector x

with respect to measurements z evaluated at x̂, matrix I is the m-dimensional

identity matrix, and matrix S is known as the residual sensitivity matrix.

Note that (6) allows calculating matrix S for the general model (1)–(3).
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The linear transformation from z to r at the optimum is obtained throughout

the integration of (6):

r = Sz + k (7)

where k is the integration constant vector.

The expected value of the residual vector in (7) is:

E[r] = SE[z] + k (8)

and, subtracting (8) from (7), it readily follows:

r − E[r] = S
(

z − E [z]
)

. (9)

From (9), the residual covariance matrix Ω is:

Ω = E
[

(

r − E[r]
)(

r − E[r]
)T

]

= E
[

(

S
(

z − E[z]
)) (

S
(

z − E[z]
))T

]

= SE
[

(

z − E[z]
)(

z − E[z]
)T

]

ST

= SCzS
T (10)

where matrix Cz is the measurement covariance matrix.

Therefore, considering (6), the general expression of matrix Ω is:

Ω = (I −HMxz)Cz(I −HMxz)
T . (11)

Note that matrix Mxz depends on the estimator used, whereas matrix H

is computed in the same way for all estimators. The main contribution of this

paper is to provide an estimator-independent procedure to obtain matrix Mxz.

Finally, from (4) and (11), normalized residuals are computed as

rNi =
|ri|

√

[Ω](i,i)
=

|zi − hi(x̂)|
√

[Ω](i,i)
i = 1, . . . ,m . (12)

Vector rN corresponds to the normalized residuals, and it can be used

straightforwardly for bad data identification.
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4. Derivatives of the State Variables with Respect to the Measure-

ments

As shown in Section 3, to compute the sensitivity matrix S, which allows

calculating the residual covariance matrix Ω, matrix Mxz is required. This

matrix is obtained below, based on sensitivity analysis results reported in [26].

The technique to obtain matrix Mxz constitutes the main contribution of this

paper.

The optimal primal/dual solution of problem (1)–(3) is denoted as (x̂,λ),

where λ is the dual variable vector related to both equality and active inequality

constraints. The Karush-Kuhn-Tucker (KKT) first order optimality conditions

for problem (1)–(3) are:

∇xJ(x̂, z) + λ
T ∇xf(x̂, z) = 0 (13)

f(x̂, z) = 0 (14)

where f(x, z) corresponds to both equality and active inequality constraints.

Note that equality and active inequality constraints are treated similarly,

and inactive inequality constraints are disregarded, which is possible once the

optimal solution is known. This assumption implies that the same constraints

remain active after any infinitesimal data variation, which is an appropriate as-

sumption knowing that the analysis is just local and assuming that the deriva-

tives of the objective function are continuous at the optimum.

Considering the aforementioned requirements, the proposed technique can

be applied to the Weighted Least Squares, Least Absolute Value, Quadratic-

Constant and Quadratic-Linear Criterion, among others. However, the objective

functions of Least Median of Squares or Least Trimmed of Squares estimators

are not continuous and, therefore, the proposed approach cannot be applied to

these particular estimators.

To obtain the required derivatives, we perturb or modify x̂, z, and λ, in

such a way that the KKT conditions hold, [26]. To this end, we differentiate

the optimality conditions (13)–(14), obtaining the following linear system of
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equations:











Jxx | Jxz | F T
x

F x | F z | 0





















dx

dz

dλ











= 0 (15)

where the vectors and submatrices in (15) are evaluated at the optimal solution,

(x̂,λ). The required matrices in (15) are:

Jxx(n×n) = ∇xxJ(x̂, z)

+

p+qΓ
∑

k=1

λk∇xxfk(x̂, z) (16)

Jxz(n×m) = ∇xzJ(x̂, z)

+

p+qΓ
∑

k=1

λk∇xzfk(x̂, z) (17)

F x((p+qΓ)×n) = [∇xf (x̂, z)]
T

(18)

F z((p+qΓ)×m) = [∇zf (x̂, z)]
T

(19)

where p and qΓ are the number of equality and active inequality constraints,

respectively. Matrix dimensions are indicated in parenthesis.

To compute derivatives with respect to the components of the measurement

vector z, system (15) can be rewritten as

U





dx

dλ



 = Sz dz (20)

where

U =







Jxx | F T
x

F x | 0






(21)

and

Sz = −





Jxz

F z



 (22)
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and therefore


















∂x

∂z

∂λ

∂z



















= U−1Sz . (23)

Finally, Mxz =
∂x

∂z

∣

∣

∣

∣

x̂
is the block matrix from (23) corresponding to the

required partial derivatives. Matrix Mxz includes information of second-order

derivatives, through equations (16) and (17), as well as the effect of equality

and active inequality constraints. Additional computational details and simpli-

fications of expression (23) under certain conditions are provided in [26]–[27].

Note that the main contribution of this paper is the estimator-independent

computation of matrix Mxz through (23). To the best of our knowledge, no

prior work proposes such unified and accurate method. Note also that (11) and

(23) are general expressions that can be straightforwardly used with most state

estimators.

From the computational point of view, matrices U and Sz are highly sparse

as a result of the network connectivity, leading to a low percentage of non-

zero elements [25]. Note that matrix U can be straightforwardly factorized

using sparse-oriented LU algorithms exploding its symmetric properties, and

the linear system (23) can be efficiently solved using forward and backward

substitution.

Regarding the required information on derivatives, most of them result from

the estimation problem, and the remaining derivatives, mostly associated with

measurements, can be easily computed either analytically or numerically.

5. Particular Cases

In this section, the general expressions derived in Section 4 are particularized

for the two most common state estimators: WLS and LAV, and the resulting

expressions are then compared with those available in the technical literature.
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5.1. Unconstrained WLS Case

If the objective function in problem (1)–(3) corresponds to the WLS formu-

lation,

J(y) =
1

2

[

z − h(x)
]T

C−1
z

[

z − h(x)
]

(24)

and neither l(x, z) nor g(x, z) constraints are taken into account, matrices in

(15) become:

Jxx = ∇xxJ(x̂, z) (25)

Jxz = −HTC−1
z (26)

F x = Ø (27)

F z = Ø . (28)

Using (21)–(23), we obtain the final expression:

Mxz = U−1Sz = [Jxx]
−1[−Jxz]

= (Jxx)
−1HTC−1

z (29)

and matrix Ω can be straightforwardly computed using (11) and (29). This

final expression is novel and dissimilar from others proposed in the technical

literature [21], since it considers second order derivatives.

5.1.1. Comparison with the Approach in [22]

The traditional approach to compute matrix Ω as stated in [21] is an ap-

proximation, which can be derived from (29) assuming that the second-order

derivatives of the objective function are null, i.e., J(x, z) is assumed to be a

multi-linear function. This approximation for element (j, k) of Jxx is detailed

below:

[Jxx](j,k) =
∂2J(x, z)

∂xj∂xk

∣

∣

∣

∣

x̂

=

m
∑

i=1

Wii

[

∂hi(x)

∂xj

∂hi(x)

∂xk

+
∂2hi(x)

∂xj∂xk

(hi(x)− zi)

]∣

∣

∣

∣

x̂

≈
m
∑

i=1

Wii

[

∂hi(x)

∂xj

∂hi(x)

∂xk

]∣

∣

∣

∣

x̂
=

[

HTC−1
z H

]

(j,k)
(30)
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where W is the weighting matrix, generally computed as W = C−1
z , [11].

From (30), note that matrix Cz is implicitly assumed to be diagonal, i.e.,

measurements are considered independent, which is a common assumption in

state estimation. If measurement dependencies are considered [28, 29] (i.e.,

matrix Cz is non-diagonal), approximation (30) still holds true.

It is shown below that the traditional approach to compute matrix Ω is

an approximation of the method proposed in this paper. Using approximate

expression (30) in equations (6), (10), and (29), it readily follows:

Mxz = (HTC−1
z H)−1HTC−1

z (31)

S = I −H(HTC−1
z H)−1HTC−1

z (32)

Ω = SCzS
T = SCz (33)

which corresponds to the expression traditionally used in the technical literature,

[21]. It can be shown that matrix S is an idempotent matrix [11], property used

to derive the final expression in (33).

Note also that in case of considering equality constraints or active inequality

constraints, the proposed technique to compute matrix Ω, based on (23), differs

from (33).

5.2. Equality-Constrained WLS Case

The technical literature also provides a method to compute the residual

sensitivity matrix S including equality and active inequality constraints in the

WLS estimator, [22]. As shown below, this approach is also an approximation

of the one presented in this paper.

If equality and active inequality constraints are included in the analysis,

equations (24)–(26) still hold, and:

F x = F , F z = Ø (34)

where F is the Jacobian matrix of equations f(x, z) with respect to the state

variable vector evaluated at the optimal estimate x̂, i.e.,

F =
∂f(x, z)

∂x

∣

∣

∣

∣

x=x̂
. (35)
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Therefore, using (23), Mxz = E1H
TC−1

z , where E1 corresponds to the

upper-left quadrant of matrix U−1, i.e.,

U−1 =











Jxx | F T

F | Ø











−1

=











E1 | ET
2

E2 | E3











. (36)

Finally, the expression to compute the residual sensitivity matrix through

the proposed method becomes

S = I −HE1H
TC−1

z . (37)

5.2.1. Comparison with the Approach in [22]

The method used to compute matrix Ω in [22] is less accurate than the pro-

posed one, since it disregards the second-order derivatives. Note that the expres-

sion provided in [22] to compute the covariance matrix results from (37) assum-

ing that the objective function J(x, z) is multi-linear (i.e., Jxx ≈ HTC−1
z H),

which constitutes an approximation.

5.3. Unconstrained LAV Case

If the objective function in problem (1)–(3) corresponds to the LAV formu-

lation, then:

J(y) =
m
∑

i=1

|yi| =
m
∑

i=1

|zi − hi(x)| . (38)

If neither l(x, z) nor g(x, z) constraints are taken into account, problem

(1)–(3) can be written in an equivalent form by eliminating the absolute value

function as:

J(y) =

m
∑

i=1

yi (39)

subject to:

zi − hi(x) ≤ yi, i = 1, . . . ,m (40)

−zi + hi(x) ≤ yi, i = 1, . . . ,m . (41)

11



For the sake of clarity, the weighting matrix W is considered to be the

identity matrix in the derivations below.

The solution of problem (39)–(41) is given by n measurements which fit

perfectly the state estimate, hereinafter called basic measurements. These mea-

surements have zero residuals, whereas the remaining m− n measurements can

exhibit nonzero residuals (non-basic measurements). Let ΓC and ΓS be the sets

of active and inactive constraints, respectively; i.e., set ΓC (ΓS) comprises the

basic (non-basic) measurements [30].

Matrices in (15) become:

Jxx =
∑

∀k∈ΓC

λ∗
k∇xxfk(x̂, z) (42)

Jxz = Ø (43)

F x = HC (44)

F z = −I∗ (45)

where HC is the n×n Jacobian measurement matrix corresponding to the basic

measurements (null residuals), and I∗ is a n×m matrix whose columns corre-

sponding to non-basic measurements are zero, and the columns corresponding

to basic measurements constitute a n× n identity matrix.

It can be shown that (see A):

Mxz = H−1
C I∗ . (46)

The rows of matrix H can be sorted by sets ΓC and ΓS:

H =











HC

HS











(47)

and, analogously, the columns of matrix Mxz can also be sorted:

Mxz =

[

H−1
C | 0

]

. (48)
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Using (6) and (11), matrix Ω is obtained:

S = I −HMxz

= I −











HC

HS











·

[

H−1
C | 0

]

= I −











I | 0

HSH
−1
C | 0











=











0 | 0

−HSH
−1
C | I











(49)

Ω = SCzS
T

=











0 | 0

−HSH
−1
C | I











·











0 |
(

−HSH
−1
C

)T

0 | I











=











0 | 0

0 | ΩC











(50)

where

ΩC = I −HSH
−1
C (−HSH

−1
C )T . (51)

5.3.1. Comparison with the Approach in [16]

In this case, the final expression obtained using the proposed method corre-

sponds to the equation traditionally used in the technical literature, as reported

in [15].

In case of considering constraints, the proposed sensitivity-based method

can also be applied. However, to the best of our knowledge, there is no method

reported in the technical literature to compute matrix Ω for the LAV estimator

including constraints.

6. Case Study

In this section, we study the computational performance and numerical ac-

curacy of the proposed method and other approaches, by means of several case
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studies. In each case, a different estimator is applied to the IEEE 30-bus sys-

tem [31], and the residual covariance matrix is computed using the proposed

approach and others. Results are then compared.

In order to obtain statistically sound conclusions, one hundred measure-

ment scenarios are considered for each case. Measurement scenarios are gener-

ated adding zero-mean Gaussian errors to true measurements computed using

a power flow solution. Considered measurements comprise voltages, and ac-

tive and reactive power flows, providing a measurement redundancy ratio of

r = 112/(39 · 2− 1) = 1.90.

6.1. Matrix Ω Computation Approaches

Three cases are studied, each one considering a different estimator: WLS,

LAV, and QCC. The number of available methods to compute the residual co-

variance matrix differs depending on the estimator employed. The two following

approaches can be applied for these three estimators:

1. Sensitivity Approach (SA): This method is the one proposed in the paper,

and relies on equation (11). This approach is usually more accurate than

others reported in the literature, while requiring a similar computational

effort.

2. Numerical Approach (NA): This method is based on the numerical calcu-

lation of the sensitivities using the formula:

f ′(x) ≈
f(x+ ǫ)− f(x− ǫ)

2ǫ
(52)

where ǫ is a small positive constant, and function f ′(·) represents a state

variable derivative with respect to a given measurement. Note that this

method is computationally very expensive because it requires solving 2m

state estimation problems, perturbing every measurement by ±ǫ, but pro-

vides accurate results if ǫ is small enough. This method is considered “ex-

act” and a benchmark to compare the other methods. We use ǫ = 5×10−5.
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The proposed and others methods are compared with the numerical one

(considered “exact”). Discrepancies between matrices are represented by means

of the maximum and average relative errors.

Taking into account that a negligible [Ω](i,j) coefficient can produce a very

large relative error (and, therefore, can distort the results), we only compare

coefficients ranging from ±1% to ±100% of the maximum absolute value coef-

ficient, i.e., the relative error of any [Ω](i,j) coefficient is considered if:

0.01max (|Ω|) ≤ |[Ω](i,j)| ≤ max (|Ω|) . (53)

Considering that the most important elements in matrix Ω are the diag-

onal terms (used for the residual normalization process in bad data detection

algorithms), some statistics are provided for these elements.

Additionally, the effect of considering or disregarding constraints f (x, z) are

studied in each case. For the sake of simplicity, no inequality constraints are

active in any case.

6.2. WLS Case

In this section, the WLS state estimator is considered. The technical litera-

ture provides two approaches to compute the residual covariance matrix:

1. Traditional WLS (TW): This method does not consider equality/inequality

constraints, and it is based on equation (33) proposed in [21].

2. Modified WLS (MW): This method is a modification of the traditional

WLS to include the influence of equality and active inequality constraints,

[22], and it is based on equations (10) and (37).

Table 1 provides the average and maximum relative errors (in percentage)

considering and not considering zero-injection buses for the three methods an-

alyzed: sensitivity, traditional WLS, and modified WLS (SA, TW, and MW,

respectively). Likewise, Table 2 provides the computation time statistics (min-

imum, average, maximum, and standard deviation) in performing the inversion

process of the computation of matrix Mxz.
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[Table 1 about here.]

[Table 2 about here.]

The following observations are in order:

1. The average and maximum relative errors (for diagonal and non-diagonal

terms) for SA and MW methods are negligible. Note that all these pa-

rameters are below 0.01% in all cases.

2. On the other hand, TW approach provides the same accuracy level than

the MW algorithm if zero-injection buses are disregarded. If they are

considered, the relative error increases significantly.

3. The numerical accuracy level provided by the SA method is slightly supe-

rior than that of the MW approach. Note that this minor improvement

results from the consideration of the second-order derivatives in the cal-

culation of matrix Mxz.

4. From Table 2, note that the computational performance of three methods

are very similar. If zero-injection buses are considered, the TW method is

computationally lighter than the SA and MW ones, because it disregards

equality constraints.

6.3. LAV Case

In this section, we study the LAV state estimator. The available method in

the technical literature to compute the residual covariance matrix is:

1. Traditional Approach (TA): This method, reported in [15], is based on

equation (51). However, this approach cannot be applied if equality con-

straints are considered.

[Table 3 about here.]

Table 3 provides the average and maximum relative errors (measured in per-

centage) for the proposed and traditional approaches (SA and TA, respectively).

The following observations are in order:
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1. The relative errors (for diagonal and non-diagonal terms) for both ap-

proaches are negligible. All these values are below 0.0001% in all cases.

2. The numerical accuracy provided by both methods are the same if zero-

injection buses are disregarded. This is due to the fact that the second-

order derivatives do not affect the computation of matrix Mxz for the

LAV estimator.

3. The only method capable of considering equality constraints is the pro-

posed one, being highly accurate.

6.4. QCC Case

In this section, the quadratic-constant estimator is considered. For this

estimator, to the best of our knowledge no method to compute the residual

covariance matrix is available in the technical literature. However, the method

proposed in this paper can be used. Thus, the only possible comparison is

between the proposed method and the numerical approach.

The formulation of the QCC estimator is as follows:

minimize

x

J(x) =

m
∑

i=1

si (54)

subject to:

f(x) = 0 (55)

g(x) ≤ 0 (56)

si =



































(hi(x)− zi)
2 if |hi(x)− zi| ≤ T

T 2 if |hi(x)− zi| ≥ T



































∀i (57)

where T is a parameter.

The aforementioned formulation can be transformed into a mixed integer

nonlinear formulation, making use of binary variables to model equations (57).

The precise details of the transformation are outside the scope of this paper.
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[Figure 1 about here.]

Fig. 1 depicts the three objective functions considered in this section, and

data from a particular measurement scenario of the QCC case. Note that for

this QCC scenario data the majority of residuals are in the quadratic part of the

curve, while some others are in the constant part. In this case, the parameter

T is set to 0.025 pu.

Table 4 provides the average and maximum relative errors (measured in

percentage) for the proposed approach (SA).

[Table 4 about here.]

The following observations are in order:

1. The average and maximum relative errors for both diagonal and non-

diagonal terms are larger than the corresponding errors in the previous

cases. This is due to the fact that the objective function derivatives are

not continuous.

2. The average errors (for diagonal and non-diagonal terms) are low, being

always inferior to 0.3%. However, the relative error of some non-diagonal

terms is around 16%.

3. To obtain normalized residuals, only diagonal terms are needed. Note that

the accuracy of diagonal terms is sufficiently high. The average relative

error for diagonal terms is lower than 0.06%.

7. Conclusion

This paper proposes a novel technique to compute the residual covariance

matrix and normalized residuals for a state estimator based on a mathematical

programming formulation (e.g., WLS or LAV), considering constraints. This

technique relies on the sensitivities of the state variables with respect to the

measurements at the optimal solution of the estimation problem. The sensitiv-

ities are calculated through the solution of a linear system of equations, which
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results from the perturbation of the optimality conditions of the estimation

problem.

Detailed numerical simulations show that the proposed method is an efficient

and accurate technique to estimate the residual covariance matrix regardless of

the considered estimator. The proposed technique that is estimator-independent

is superior or similar to the estimator-dependent techniques proposed in the

technical literature.

A. Computation of Matrix Mxz for the LAV Estimator

If the LAV estimator is used (see Section 5.3), the following expression holds

true:

Mxz = H−1
C I∗ (58)

as it is shown below.

Using (21) and (42), matrix U is computed as

U =











Jxx | HT
C

HC | 0











. (59)

Since matrix U is a square invertible matrix, then,

U ·U−1 =











Jxx | HT
C

HC | 0





















E1 | E2

E3 | E4











=











JxxE1 +HT
CE3 | JxxE2 +HT

CE4

HCE1 | HCE2











=











I | 0

0 | I











. (60)
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On the other hand, matrix HC is also a square invertible matrix. Note that

from (60) it can be deduced that:

HCE2 = I ⇐⇒ E2 = H−1
C . (61)

Finally, using (23) and (61),











Mxz

∂λ

∂z











=











E1 | H−1
C

E3 | E4





















0

I∗











(62)

and, therefore, Mxz = H−1
C I∗.

For the computation of matrixMxz, using equation (58), neither matrix F xz

nor F xx is needed. This implies that second-order derivatives (i.e., nonlinearities

in the objective function J(x, z)) do not affect the computation of the residual

covariance matrix.

B. Nomenclature

B.1. Parameters and Constants:

n Number of state variables.

m Number of measurements.

r Measurement redundancy ratio.

p Number of equality constraints.

q Number of inequality constraints.

qΓ Number of binding inequality constraints.

ǫ Small positive constant.

T Adjustment parameter for the QCC estimator.

z Measurement vector.
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Cz Measurement covariance matrix.

W Weighting matrix.

I Identity matrix.

B.2. Functions and Functional Matrices:

J(·) Objective function.

l(·) Nonlinear equality constraint vector.

g(·) Nonlinear inequality constraint vector.

f(·) Equality and binding inequality constraint vector.

h(·) Nonlinear functional vector.

H Jacobian measurement matrix.

HC Jacobian matrix of basic measurements.

HS Jacobian matrix of nonbasic measurements.

F x Jacobian of f (·) with respect to state variables.

F z Jacobian of f(·) with respect to measurements.

Mxz Matrix of derivatives of state variables with respect to measurements.

S Sensitivity matrix.

Ω Residual covariance matrix.

B.3. State, Residual and Dual Vectors:

x State vector.

xtrue True state vector.

x̂ Estimated state vector.

r Residual vector.
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rN Normalized residual vector.

λ Dual variable vector related to f(·).

B.4. Sets:

ΓC Set of basic measurements.

ΓS Set of nonbasic measurements.

B.5. Estimators:

WLS Weighted Least Squares.

LAV Least Absolute Value.

LMS Least Median of Squares.

LTS Least Trimmed of Squares.

QCC Quadratic-Constant Criterion.

QLC Quadratic-Linear Criterion.
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Table 1: Relative error (%) for the WLS case study.

Disregarding zero-injec. buses Considering zero-injec. buses

All terms Diagonal terms All terms Diagonal terms

Avg. Max. Avg. Max. Avg. Max. Avg. Max.

SA <0.001 0.002 <0.0001 <0.001 <0.001 0.007 <0.0001 0.001

TW <0.001 0.008 0.0004 0.007 39 2000 20 100

MW <0.001 0.008 0.0004 0.007 <0.001 0.004 0.0002 0.002
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Table 2: Computation time (in milliseconds) for the WLS case study.

Disregarding zero-injec. buses Considering zero-injec. buses

Minim. Averg. Maxim. Std. Minim. Averg. Maxim. Std.

SA 0.91 1.07 1.23 0.22 1.33 1.35 1.66 0.03

TW 0.92 0.93 0.93 0.01 0.88 0.90 0.92 0.01

MW 0.93 0.95 0.96 0.02 1.30 1.32 1.35 0.01
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Table 3: Relative error (%) for the LAV case study.

Disregarding zero-injec. buses Considering zero-injec. buses

All terms Diagonal terms All terms Diagonal terms

Avg. Max. Avg. Max. Avg. Max. Avg. Max.

SA 5×10−7 2×10−5 6×10−7 4×10−6 3×10−7 5×10−5 3×10−6 5×10−5

TA 5×10−7 2×10−5 6×10−7 4×10−6 – – – –
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Table 4: Relative error (%) for the QCC case study.

Disregarding zero-injec. buses Considering zero-injec. buses

All terms Diagonal terms All terms Diagonal terms

Avg. Max. Avg. Max. Avg. Max. Avg. Max.

SA 0.04 4.1 <0.01 0.07 0.28 16.1 0.06 1.5
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Figure 1: Objective functions of several estimators.
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