
SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS 1

Power System State Estimation Considering
Measurement Dependencies

Eduardo Caro,Student Member, IEEE, Antonio J. Conejo,Fellow, IEEE, and Roberto Mı́nguez

Abstract—State estimation measurements within a substation
are routinely considered Gaussian and independent. In this
paper the questionable independence assumption is dropped
and a statistical procedure is proposed to estimate the mea-
surement variance-covariance matrix. The well-known weighted
least squares technique for estimation is then modified to take
into account measurement dependencies. Two case studies are
analyzed and conclusions duly drawn.

Index Terms—Weighted least square, Dependent Gaussian
measurements, Power system state estimation.

NOTATION

The main notation used throughout the paper is stated below
for quick reference. Other symbols are defined as required in
the text.

A. Measurement

1) Input Signals:
V
f
i Voltage input measurement for busi and phasef .
I
f
i Current input measurement for phasef for the

generator/load of busi.
I
f
ij Current input measurement for phasef and lineij

at terminali.
ψ
f
i Voltage-current phase angle input measurement for

phasef for the generator/load of busi.
ψ
f
ij Voltage-current phase angle input measurement for

phasef and lineij at terminali.
2) Processed Measurement:

Vi Voltage measurement for busi.
Pi Active power injection measurement for busi.
Qi Reactive power injection measurement for busi.
Pij Active power flow measurement from busi to busj.
Qij Reactive power flow measurement from busi to

busj.

B. Point Estimate Symbols

η Number of input random variables.
ν Number of output random variables.
K Number of the considered concentrations.
p Input random variable vector.
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y Output random variable vector.
pl,k Location of variablepl for concentrationk.
wl,k Weighting factor of variablepl for concentrationk.
µpl

Mean of random variablepl.
σpl

Standard deviation of random variablepl.
µ
j
Yq

j-th non-cross moment of the random variableyq.
σYqYq′

Second centered cross moment between random
variablesyq andyq′ .

ρYqYq′
Correlation coefficient between variablesyq andyq′ .

C. State Estimation Symbols

n Number of state variables.
m Number of measurements.
r Redundancy ratio of measurements.
Cz Measurement variance-covariance matrix.
W Weighting matrix of the traditional WLS estimator.
z Measurement vector.
e Measurement error vector.
h(·) Non-linear functional vector.
c(·) Non-linear equality constraint vector.
g(·) Non-linear inequality constraint vector.
x State vector.
xtrue True state vector.
x̂ Estimated state vector.
r Residual vector.

I. I NTRODUCTION

A. Motivation

The aim of a state estimation procedure is estimating the
state of a power system using a sufficiently large number of
measurements of appropriate types and covering the whole
power network. In addition to measurements, the structural
data of the system are needed, i.e., topology, line/transformer
parameters (resistances, reactances and shunt susceptances)
and bus parameters (capacitor/reactance banks).

Measurement errors are routinely considered Gaussian-
distributed and independent. We judge appropriate to consider
measurement errors Gaussian, but generally inappropriateto
consider them independent. Numerical simulations and field
testing show that error distributions are reasonably Gaussian
but they also show that measurement errors within a bus or
a substation are clearly not independent. This is particularly
so with current digital measurement systems that “fabricate”
(active and reactive) power measurements out of “raw” mea-
surements of voltage magnitudes, current magnitudes and
current-voltage phase angles. Particularly, we consider that
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voltage magnitudes, current magnitudes and phase angles are
measured at each substation for each bus-bar and line, and
then active/reactive power magnitudes computed electronically
within the measurement system and transmitted to the Energy
Management System (EMS), along with voltage measure-
ments.

If statistical correlations among measurement errors are
properly modeled and considered in the estimation procedure,
a better estimate of the state of the system (i.e., closer
to the true state) can be achieved. We show that this is
actually the case and that taking into account measurement-
error correlations makes a significant difference in terms of
estimation quality.

B. Aim

The aims of this paper are threefold. First, a technique
is proposed to estimate efficiently the variance-covariance
matrix of the measurement errors of all measurements in a
substation. This technique is based on a well-know statistical
procedure: point estimate. Second, an algorithm is provided
to generate dependent measurements that are properly cor-
related according to a given measurement topology. Third,
we propose a modification of the well-known Weighted Least
Squares (WLS) estimation procedure that considers dependen-
cies among measurements.

C. Literature Review

The technical literature is rich in references pertaining to
state estimation techniques and algorithms [1]–[11]. The pio-
neering work is due to Schweppeet al. [1]–[3] and others [4].
The model for the state estimation problem is well established,
and diverse solution alternatives are also well known [8]–[11].
Particularly, [12] describes the preliminary design of a state
estimator with dependent non-Gaussian measurements, which
uses appropriate statistical transformations. Besides [12], not
much work has been done so far on measurement dependen-
cies.Reference [3] states that measurement correlations, which
depend on the system state, should be considered.Some works
also recognize that certain measurements such as voltage
and active and reactive power injections at a given bus, for
example, are correlated in both transmission and distribution
networks [13]–[14].Specifically, reference [15] studies the ef-
fect of considering different values of measurement variances
on the estimations.

Nevertheless, emphasizing computational efficiency, mea-
surement dependencies have been traditionally disregarded,
which results in less accurate estimates [3],[15]. To the best of
our knowledge, no references studying in detail the measure-
ment dependencies applied to state estimation are available in
the technical literature.

D. Contribution

The contributions of this paper are: (i) to provide a state
estimation technique that takes into account the dependencies
among measurements within each substation as well as (ii)
to derive an estimation procedure for the variance-covariance
matrix of the measurement errors.

E. Paper Organization

The rest of this paper is organized as follows. Section II
characterizes the measurements within a substation, and pro-
vides a procedure to estimate the variance-covariance matrix
of these measurements. Section III provides a WLS estimation
algorithm that takes into account the dependencies among
measurement errors. Section IV provides an algorithm to
generate correlated measurements. Section V provides and
analyzes results from two realistic case studies. Finally,Sec-
tion VI provides some relevant conclusions.

II. M EASUREMENTDEPENDENCY

A. Measurement Structure

Each substation of a power system is equipped with elec-
tronic devices called Remote Terminal Units (RTU) that collect
from the measurement system various types of measurements,
usually active/reactive line power flows and bus voltages.
These measurements are processed by the state estimator,
which provides an optimal estimation of the system state
based on the available measurements and on the assumed
system model. Traditionally, all measurements are considered
independent with zero-mean Gaussian errors [10].

In order to study the validity of this independency assump-
tion, measurement topology and data processing should be
considered. The connection of a typical three-phase multi-
function meter is shown in Fig. 1 [16]. In this three-phase
connection diagram, three voltage and three current signals
are used as input data for the multifunction meter (see Fig. 2).
This electronic device converts theseanalogsignals into digital
ones, processes them and provides the measurements (output
data) that the state estimator uses. To compute each output
measurement, the multifunction meter makes use of all the
input data.

Fig. 1. Voltage and current signal connections in a three-phase measuring
configuration.
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Fig. 2. Voltage and current signals, multifunction meter and processed
measurements.

Dependencies between processed measurements can be rep-
resented by the measurement variance-covariance matrix for
the whole power system,Cz . Since there are no voltage-
current signal connections between substations, processed
measurements exhibit dependencies just between other pro-
cessed measurements at the same substation. Therefore, matrix
Cz is a diagonal blocked matrix, whose blocksCz,i are the
measurement variance-covariance matrices for each substation:

Cz =











Cz,1 0 · · · 0

0 Cz,2 · · · 0

...
...

. . .
...

0 0 · · ·Cz,n











. (1)

In order to compute eachCz,i submatrix, the internal digital
calculations of the multifunction meter should be considered.
The following expressions correspond to the most relevant
output measurements (for a three-phase connection configu-
ration), assuming a sinusoidal system state (which is a typical
assumption in state estimation) [16]:

Vi = FVi
(·) =

V Ai + V Bi + V Ci
3

(2)

Pi = FPi
(·) =

∑

f={A,B,C}

V
f
i I

f
i cos(ψfi ) (3)

Qi = FQi
(·) =

∑

f={A,B,C}

V
f
i I

f
i sin(ψfi ) (4)

Pij = FPij
(·) =

∑

f={A,B,C}

V
f
i I

f
ij cos(ψfij) (5)

Qij = FQij
(·) =

∑

f={A,B,C}

V
f
i I

f
ij sin(ψfij) , (6)

where V fi is the voltage signal for phasef and busi, Ifij
andψfij are the current and voltage-current angle signals for
phasef and line ij at terminal i, and Ifi and ψfi are the
current and voltage-current angle signals for phasef for the
generator/load of busi.

From (2)–(6), note that if an input signal contains a gross er-
ror, some output measurements are inaccurately computed. In
other words, an input measurement errorpropagatesthrough
several output measurements, provoking multiple interacting
bad data.

It is assumed that in a bus where more than one line is
connected, voltage signals are shared between multifunction
meters (see Fig. 3). On the other hand, if each multifunction
meter has its own voltage and current signals,Cz,i becomes
a blocked matrix itself. Some multifunction meters can be
connected to two phases, and internal calculations differ
from equations (2)–(6). Pursuing clarity and without loss of
generality, in this paper it is assumed that all buses have a
three-phase meter connection.

Fig. 3. Bus connecting more than two lines, and meter connection.

B. Point Estimate

Point estimate methods are used to characterize statistically
a set ofη output random variables of a problem, given some
commonly known information about the statistical distribu-
tions of the set ofν random input variables.

Specifically, point estimate methods provides an estimation
of the first moments of the output variabley, which are defined
as a function of the input variable vectorp, i.e., y = F (p).

In our study, the input random variable vectorp comprises
all input signals,

p = [p1, . . . , pl, . . . , pη]
T

= [V fi , I
f
i , ψ

f
i I

f
ij , . . . , I

f
ik, ψ

f
ij , . . . , ψ

f
ik]
T ,

the output random variable vectory comprises all processed
measurements,

y = [y1, . . . , yq, . . . , yν ]
T

= [Vi, Pi, Qi, Pij , . . . , Pik, Qij , . . . , Qik]
T ,

and the transformation functional vectorF (·), defined from
(2)–(6), is:

F (·) = [F1(·), . . . , Fq(·), . . . , Fν(·)]T

= [FVi
(·), FPi

(·), FQi
(·), FPij

(·), . . . , FPik
(·),

FQij
(·), . . . , FQik

(·)]T .

The statistical information of each input variable (pl) distri-
bution is concentrated inK pairs of numerical values, called
concentrations. Each concentration is composed of a location,
pl,k and a weight,wl,k, whose expressions depend on the
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considered point estimate algorithm.
Locations define the points in which functionsFq(·) are

evaluated. The values of these evaluations (Yq(l, k)) comprise
information about the functionFq(·) and its influence on
the output random variableyq distribution, but they have not
any statistical interpretation. In order to weight the different
influences, the weighting factorswl,k are used, but they
can not be mathematically interpreted. Finally, moments of
output variables are computed as a weighted sum of all the
evaluationsYq(l, k).

Several point estimate methods have been proposed in the
technical literature [17]–[24]. They mainly differ on the type
of variables that they can deal with and on the number of
evaluations ofF (·) to be performed. From among all of them,
Hong’s two-point estimate method [24]–[25] is used in this
study for its simplicity and accuracy.

The point estimate algorithm is detailed below. The single
underlying assumption considered is that input signals are
considered Gaussian-distributed random variables, as detailed
in Section II-A.

1) Calculation of locations: Locationspl,k (k = 1, 2) are
computed as follows (see [25]):

pl,1 = µpl
+
√
ησpl

, pl,2 = µpl
−√

ησpl
, (7)

where µpl
and σpl

are the mean and the standard
deviation of the input random variablepl. Note thatσpl

is characterized by the measurement device accuracy,
andµpl

depends on the actual system state.
2) Evaluation of F (·): Each functionFq(·) is evaluated

2η times (l = 1, . . . , η; k = 1, 2), yielding the vector
Y (l, k), whose componentsYq(l, k) are computed as

Yq(l, k) = Fq(µp1 , . . . , µpl−1
, pl,k, µpl+1

, . . . , µpη
) .

3) Calculation of weights: The weighting factorswl,k are
computed as (see [25]):

wl,1 =
1

2η
, wl,2 =

1

2η
. (8)

4) Calculation of diagonal terms ofCz,i: Using the weights
wl,k and theYq(l, k) values, thej-th non-cross moment
of the output random variableyq are estimated using
(see [25]):

µ
j
Yq

= E[Y jq ] ≈
η

∑

l=1

2
∑

k=1

wl,k(Yq(l, k))
j . (9)

Note that the mean and the variance of the processed
measurements can be easily computed from (9). For in-
stance, the variance (second centered non-cross moment)
of Pij , σ2

Pij
, is computed as

σ2
Pij

= E[Y 2
Pij

] − E[YPij
]2 . (10)

Therefore, the diagonal terms ofCz,i matrix are com-
puted as the second centered non-cross moments of the
output variable vectory.

5) Calculation of non-diagonal terms ofCz,i: The non-
diagonal terms ofCz,i matrix are calculated as second
centered cross moments. The second cross moments
(between the output variablesyq andyq′ ) are computed
as

cYqYq′
= E[YqYq′ ] ≈

η
∑

l=1

2
∑

k=1

wl,k(Yq(l, k)Yq′(l, k)) .

(11)
For instance, the second centered cross moment between
the output random variablesVi and Pij , cViPij

, is
calculated as

cViPij
= E[YVi

YPij
] − E[YVi

]E[YPij
] . (12)

Applying the above method, a symmetricCz,i matrix is
obtained, as shown in (13) (see Page 5), where diagonal
terms correspond to the variances of the processed
measurements, and non-diagonal terms correspond to the
products of the standard deviations with the correlation
parameter between the corresponding variables. For in-
stance, the termcViPi

corresponds to:

cViPi
= σVi

σPi
ρViPi

. (14)

Traditionally, matrix Cz is considered diagonal, and its
inverse is used as the weighting matrix (W ) in the WLS esti-
mator [10], providing a quantification of the precision of each
measurement. In the proposed method, these “weights” are
calculated analytically from the voltage/current/angle signal
precisions.

The performance of the proposed method to calculateCz,
based on a point estimate technique, has been carefully
assessed comparing its results with those obtained using a
numerical estimation of the measurement variance-covariance
matrix. This assessment is based on a Monte Carlo algorithm:
a set of independent Gaussian-distributed random vectors
(representing the measurement samples of each input signal)
have been generated and processed through (2)–(6) to obtain
the corresponding dependent random vectors, which represent
the output dependent processed measurements. Computing the
variance-covariance matrix out of these vectors, a numerical
estimation ofCz is obtained.

In order to derive statistically sound conclusions, sample
sizes up to one million have been considered, and a sufficient
number (up to ten thousands) of feasible operating points have
been tested. The maximum relative error obtained between
methods is smaller than1%. It is thus concluded that the point
estimate technique performs properly to estimate measurement
variance-covariance matrices.

III. D EPENDENTSTATE ESTIMATION MODEL

Most state estimation models in practical use are formulated
as overdetermined systems of non-linear equations of the form

z = h(xtrue) + e , (15)

where z is the vector of measurements,xtrue is the true
state vector,h(·) is a non-linear function vector relating



SUBMITTED TO IEEE TRANSACTIONS ON POWER SYSTEMS 5

measurements to states, ande is the measurement error vector
with zero mean, which implies that meters are unbiased, i.e.
E[e] = 0. There arem measurements andn state variables,
n < m.

As stated in Section II, measurements are assumed to be
dependent Gaussian distributed random variables, and their
variance-covariance matrix is denoted asCz . From (15), note
that the variance-covariance matrix of measurement errorsis
equal toCz becauseh(xtrue) is deterministic [12].

Considering that this paper focuses on measurement depen-
dencies, our study relies on two traditional state estimation
assumptions [10], namely:

1) Calibration is used to eliminate large systematical errors,
and, thus, measurement errors are Gaussian and non-
biased.

2) The exact network topology and the exact parameter
values are known.

Note that the validity of these assumptions is analyzed in [26]–
[30].

A. State Estimation

Under the assumptions stated in the previous subsections,
and once the measurement variance-covariance matrixCz is
obtained, the state estimation is performed as a Dependent
Weighted Least Square (DWLS) problem that can be formu-
lated mathematically as an optimization problem including
equality and inequality constraints as follows:

minimize
x

J = [z − h(x)]TC−1
z [z − h(x)] (16)

subject to

c(x) = 0 (17)

g(x) ≤ 0 , (18)

where x is the state variable vector,c(x) are the equality
constraints representing perfectly accurate measurements (zero
injections), andg(x) are inequality constraints normally used
to represent physical operating limits.

Note that the only difference with respect the traditional
WLS formulation is that the variance-covariance matrix in (16)
is non-diagonal.

The solution of problem (16)–(18),̂x, can be obtained
by any of the efficient mathematical programming solvers

(in terms of accuracy, required computing time and spar-
sity treatment) available nowadays [11], or, under certain
assumptions with respect formulation (16)–(18), by any of the
specific methods for solving the WLS problem proposed in
the literature, [10].

Due to the nature of the variance-covariance matrixCz,
composable by square blocks related to the buses along the
matrix diagonal, its inverse can be calculated efficiently using
the inverse of its blocks as follows:

C−1
z =







Cz,1 · · · 0

...
. . .

...
0 · · ·Cz,n







−1

=







C−1
z,1 · · · 0

...
. . .

...
0 · · ·C−1

z,n






. (19)

Analogously, the Cholesky decomposition of the variance-
covariance matrixCz can be obtained through the Cholesky
decompositions of their blocks.

B. Bad Measurement Detection and Identification

The proposed DWLS method allows us to apply the tra-
ditional Chi-squares test in a simple manner. Note that the
objective function (16) exhibits aχ2 distribution with at most
(m−n) degrees of freedom (see (28) in the Appendix). Thus,
the χ2 test for detecting bad measurements can be used as
detailed, for instance, in [10].

Bad measurement identification can be carried out through
the normalized residual test, using the traditional approach,
explained, for instance, in [10].

C. Dependent State Estimation Algorithm

The algorithm to perform the dependent state estimation
method proposed in this paper works as follows:

1) Initial non-dependent estimation.Assumptions stated in
Section II imply that the variance-covariance matrix
depends on the actual values of the state variables. As
we do not know those values in advance, the traditional
non-dependent estimation is used to get initial values of
the positive sequence state variablesx̂

(0). The iteration
counter is set to 1,ν = 1.
Note that the weighting matrix used in the first esti-
mation is diagonal, and it is computed using the meter
variances (e.g.,0.012 or 0.022).

Cz,i =

































Vi Pi Qi Pij · · · Pik Qij · · · Qik

Vi σ2
Vi

cViPi
cViQi

cViPij
· · · cViPik

cViQij
· · · cViQik

Pi cPiVi
σ2
Pi

cPiQi
cPiPij

· · · cPiPik
cPiQij

· · · cPiQik

Qi cQiVi
cQiPi

σ2
Qi

cQiPij
· · · cQiPik

cQiQij
· · · cQiQik

Pij cPijVi
cPijPi

cPijQi
σ2
Pij

· · · cPijPik
cPijQij

· · · cPijQik

...
...

...
...

...
. . .

...
...

. . .
...

Pik cPikVi
cPikPi

cPikQi
cPikPij

· · · σ2
Pik

cPikQij
· · · cPikQik

Qij cQijVi
cQijPi

cQijQi
cQijPij

· · · cQijPik
σ2
Qij

· · · cQijQik

...
...

...
...

...
. . .

...
...

. . .
...

Qik cQikVi
cQikPi

cQikQi
cQikPij

· · · cQikPik
cQikQij

· · · σ2
Qik

































(13)
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2) Variance-covariance matrixC(ν)
z calculation.Per-phase

valuesV fi , Ifij andψfij are computed using the previous

estimateŝx(ν−1) and the following expressions:

V
f
i = V̂i ∀f ∈ {A,B,C}

I
f
ij =

√

P̂ij
2

+ Q̂ij
2

3V̂i
∀f ∈ {A,B,C}

ψ
f
ij = sign(Q̂ij) cos−1





P̂ij
√

P̂ij
2

+ Q̂ij
2





∀f ∈ {A,B,C} .

(20)

From (20), note that the assumption of balanced operat-
ing conditions is used. The variance-covariance matrix
approximation at iterationν, C(ν)

z , is obtained using (a)
these voltage, current, and phase angle values (µpl

, ∀pl),
(b) standard deviation values for the corresponding volt-
age, current, and phase angle meters (σpl

, ∀pl), and (c)
the point-estimate method detailed in Section II-B.

3) Dependent state estimation.The state estimation prob-
lem considering dependencies (16)–(18) is solved using
the approximationC(ν)

z of the variance-covariance ma-
trix, and considering as initial values for the state vari-
ables those obtained in the previous iteration,x̂

(ν−1).
The new estimates of the state variables correspond to
x̂

(ν).
4) Bad measurement detection.Once the estimateŝx(ν)

are available, the Chi-squares test for bad measurement
detection is performed. If bad measurement is suspected
the algorithm continues in 5); else, if||x̂(ν)−x̂

(ν−1)|| >
ε the estimation process continues in 2), otherwise, a
solution within anε tolerance corresponds tôx(ν) and
the algorithm concludes.

5) Bad measurement identification.Using the traditional
method in [10], the bad measurement is identified and
removed from the estimation process. The algorithm
continues in 1).

Notwithstanding the iterative nature of the proposed al-
gorithm, numerical studies show that just one iteration is
needed, because matrixC(ν)

z does not change significantly
from iteration to iteration.

D. Estimation Assessment

In this section, the traditional WLS state estimator and the
DWLS state estimation method, detailed in Section III-C, are
compared. In order to carry out this comparison two sets of
metrics are defined,MAEWLS

u,ω and MAEDWLS
u,ω , which are

measures of the quality of the WLS estimate and the DWLS
estimate for each measurement scenarioω, respectively. These
measures are based on the Median Absolute Error (MAE) of a
set of compared variablesu. Usually, the compared variables
areVi, θi, Pi, Qi ∀i; Pij , Qij ∀ij; andhi(x) ∀i;.

TheseMAEu,ω expressions are

MAEWLS
u,ω =

∑mu

i=1

∣

∣utrue − uWLS
∣

∣

mu

(21)

MAEDWLS
u,ω =

∑mu

i=1

∣

∣utrue − uDWLS
∣

∣

mu

, (22)

wheremu is the size of vectoru, andω is the measurement
scenario.

Once a sufficiently large number of state estimation simula-
tions is performed,MAEu is defined as the averageMAEu,ω

for all the considered scenariosω. Thus, for the WLS and
DWLS estimation methods:

MAE
WLS

u =

∑nω

ω=1 MAEWLS
u,ω

nω
(23)

MAE
DWLS

u =

∑nω

ω=1 MAEDWLS
u,ω

nω
, (24)

wherenω is the number of the considered scenarios.
Note thatMAEu represents the average absolute deviation

between actual and estimated values for all the measurement
scenariosω considered (for the variableu). Therefore, a
method is comparatively more accurate than an alternative one
with respect tou if its MAEu is comparatively smaller.

Note also that the differenceMAE
WLS

u − MAE
DWLS

u rep-
resents the averageu-estimation improvement of using the
DWLS method instead of the WLS one.

IV. GENERATION OFMEASUREMENTS

To check the computational behavior of the DWLS method
as compared with the traditional WLS one, we need to
generate measurement scenarios with an actual dependence
structure. The algorithm to generate those measurements pro-
ceeds as follows:

1) Power flow solution.The process starts from a given
power flow solution that allows deriving the true state
xtrue (variablesV true

i , θtrue
i at every busi). Therefore,

P true
i , Qtrue

i , P true
ij and Qtrue

ij can be easily computed
knowing the network data.

2) True input measurement generation.Assuming a sinu-
soidal balanced system state, true measurementsV true

f,i ,
Itrue
f,ij and ψtrue

f,ij are calculated from the power flow
solution through (20), using true values (based onxtrue).

3) Actual measurement generation.Adding an independent
Gaussian-distributed error to the true values obtained in
the previous step, actual input signalsV fi , Ifij , andψfij
are obtained:

V
f
i = V true

f,i +N(0, σV ) ,

I
f
ij = Itrue

f,ij +N(0, σI) ,

ψ
f
ij = ψtrue

f,ij +N(0, σψ) .

(25)

Using (2)–(6) and the actual input signals, dependent
processed measurements (Vi, Pi, Qi, Pij , andQij) are
obtained.

In order to generate a set of dependent measurement sce-
narios based on the same power flow solution, note that only
step 3) should be repeated.

V. CASE STUDIES

Two case studies are presented to illustrate the overall per-
formance of the DWLS state estimation procedure presented
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in this paper. In order to derive statistically sound conclusions
a large number of state estimation problems up to five hundred
is solved.

A. 39-Bus Case Study

1) DWLS Estimation: In order to show the actual im-
provement of considering measurement dependencies in state
estimation, the DWLS approach is applied to a 39-bus system
[31]. Three-phase connection is considered for all the multi-
function meters in the system, so that the formulation in Sec-
tion II can be readily applied. The solution of an initial power
flow is considered the true state,xtrue = {V true,θtrue}, and
active/reactive power flow and injections are computed:P true

i ,
Qtrue
i ∀i; P true

ij andQtrue
ij ∀ij.

Assuming a sinusoidal balanced system state,V true
f,i , Itrue

f,ij

andψtrue
f,ij variables are calculated at each bus and line using

(20). Afterwards, theCtrue
z matrix is computed considering

the measurement topology.
Table I provides the distribution of the absolute values

of the correlation factorsρVi,Pi
, ρVi,Qi

, ρPi,Qi
and ρPij ,Qij

,
for the 39-bus case study, computed fromCtrue

z . Note that
correlations are considerably high across different processed
measurements, being inadequate the traditional assumption
about null measurement correlations.

TABLE I
MEASUREMENT CORRELATIONS FOR THE39-BUS CASE.

Range |ρVi,Pi
| |ρVi,Qi

| |ρPi,Qi
| |ρPij ,Qij

|

of ρ (%) (%) (%) (%)

0.0 ≤ |ρ| < 0.1 41.90 61.17 7.63 6.15

0.1 ≤ |ρ| < 0.2 34.64 34.08 2.54 5.59

0.2 ≤ |ρ| < 0.3 9.22 2.23 2.54 4.75

0.3 ≤ |ρ| < 0.4 6.98 1.96 5.93 5.03

0.4 ≤ |ρ| < 0.5 2.23 0.00 2.54 3.63

0.5 ≤ |ρ| < 0.6 2.23 0.56 5.08 3.07

0.6 ≤ |ρ| < 0.7 1.12 0.00 0.85 6.15

0.7 ≤ |ρ| < 0.8 0.56 0.00 8.47 5.03

0.8 ≤ |ρ| < 0.9 1.12 0.00 12.71 11.73

0.9 ≤ |ρ| ≤ 1.0 0.00 0.00 50.00 48.88

In order to illustrate the improvement achieved using the
method proposed, two measurement configurations are stud-
ied: r1 andr2. Table II provides the number of voltage mea-
surements, active/reactive power injection measurementsand
active/reactive power flow measurements considered for both
measurement configurations. The last row in Table II provides
the redundancy ratio (number of measurements divided by
number of state variables).

Table III provides the structure of the185 × 185 blocked
matrix Cz for both measurement configurations. Note thatCz

is a very sparse blocked matrix, as stated in Section III. This
high degree of sparsity allows us to compute its inverse in an
efficient way, using (19), Cholesky decomposition and parallel
computation techniques.

For each measurement scenario, the state estimation algo-
rithm is executed as follows: (i) initial non-dependent estima-
tion (that is, traditional WLS estimation), (ii)Cz calculation,

TABLE II
MEASUREMENT CONFIGURATIONS FOR THE CASE STUDIES.

Type of 39-bus case study 118-bus case study
measurement r1 r2 r1 r2

Vi 39 39 118 118
Pi 10 27 54 110
Qi 10 27 54 110
Pij 46 46 179 179
Qij 46 46 179 179
Total 151 185 584 696

r 1.961 2.4026 2.4851 2.9617

TABLE III
STRUCTURE OF THECz MATRIX FOR THE CASE STUDIES.

Block 39-bus case study 118-bus case study
dimension r1 r2 r1 r2

1 × 1 3 0 9 1
3 × 3 22 17 48 23
5 × 5 9 13 22 45
7 × 7 4 7 21 24
9 × 9 1 1 14 17

11 × 11 0 1 2 3
13 × 13 0 0 2 2

Total 39 39 118 118

(iii) dependent state estimation, (iv) bad measurement detec-
tion and (v) bad measurement identification.

Although the proposed algorithm is iterative (see Sec-
tion III-C), it has been numerically established that only one
iteration is required, because additional iterations makeno
substantial changes in matrixCz.

2) 39-bus Single Scenario Analysis:To compare initially
both approaches a single measurement scenario is considered
in this section, for the measurement configurationr2.

Traditionally, WLS weighting matrix is generally computed
as the inverse of the meter variance matrixCtrad

z , whose diag-
onal terms are fixed values (e.g.,0.012 for voltage magnitudes
or 0.022 for powers).

The measurement scenario is generated as detailed in Sec-
tion IV. From Section V-A above, note thatCtrue

z can be
computed, and, thus, the true meter variance diagonal matrix
can be calculated asCdiag

z = diag(Ctrue
z ).

Thus, the WLS estimation can be carried out using
Ctrad
z or Cdiag

z , obtaining different estimations:WLStrad and
WLSdiag, respectively.

Figure 4 depicts a histogram of the absolute error for
voltage estimations (magnitude and angle) obtained using the
WLStrad, WLSdiag, and DWLS methods. The vertical lines
indicateMAEV andMAEθ parameters for the three methods.

For this example, it can be concluded that the DWLS
estimator outperforms clearly the traditionalWLStrad one,
obtaining an average absolute error about ten times smaller.
On the other hand, the accuracy of theWLSdiag estimator is
between those ofWLStrad and DWLS estimators.

Note that the differences between DWLS andWLSdiag re-
sults are the consequence of considering or not dependencies,
i.e., the effect of using a diagonal or a dense weighting matrix.

Since the DWLS estimator outperforms clearly theWLStrad
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Fig. 4. Comparison betweenWLStrad, WLStrue, and DWLS estimators.

one, in the following sections the compared estimators are
the DWLS and theWLSdiag, the latter being called hereafter
WLS.

3) Multiple Measurement Scenario Comparison:Five hun-
dred state estimation scenarios are considered for this 39-bus
case study. Each measurement scenario provides two sets of
MAEu,ω values (one for the WLS estimation and other for
the DWLS estimation), as stated in Section III-D. In order
to compareMAEWLS

u,ω and MAEDWLS
u,ω , six histograms are

plotted in Fig. 5. These histograms represent five hundred
measurement scenarios for ther2 measurement configuration,
and compare voltage magnitudes/angles, active/reactive power
injections, active power flows and the functional vectorh(x̂).
A vertical dashed line is plotted atMAEDWLS

u,ω = MAEWLS
u,ω .

Note that the dashed line in each histogram represents the
case for which both methods exhibit the same average absolute
estimation error. Note that the vast majority of the simulations
lay on the right-hand side of the dashed line, which means that
MAEWLS

u,ω is larger thanMAEDWLS
u,ω for most of the cases.

Table IV provides the percentage of simulations for which
the DWLS state estimation method provides a better aver-
age estimation than the traditional WLS method, and the
MAE

WLS

u − MAE
DWLS

u in % with respect toMAE
WLS

u for
each compared variableu.

Note from Table IV that DWLS results slightly improve
with a higher redundancy ratior.

4) Bad Measurement Detection with One Single Outlier:In
this subsection, WLS and DWLS bad measurement detection
capabilities are studied and compared.

Five hundred additional measurement scenarios are gener-
ated, all of them populated with an outlier in one of the voltage
magnitude signals (pre-processed measurements). Traditional
WLS and DWLS estimations are run for each scenario, and
the χ2 test is applied for both estimators. It is considered

TABLE IV
DWLS AND WLS ESTIMATION COMPARISON FOR THE39-BUS CASE.

Variable Cases improved (%)
MAE

WLS
u −MAE

DWLS
u

MAE
WLS
u

(%)

r1 r2 r1 r2

Vi 53.0 53.4 1.0 0.7
θi 80.2 80.0 39.2 39.9
Pi 97.4 99.6 45.7 38.2
Qi 66.0 77.2 4.3 5.5
Pij 99.8 99.4 31.6 34.2

hi(x̂) 99.6 99.6 19.9 22.0

that the measurement error is generated within the voltage
measurement device, not in the multifunction meter (therefore,
the error is spread among processed measurements in the same
bus).

Numerical simulations show that if the bad measurement
is a gross error or a extreme error (as defined in [32]), both
methods detects this outlier with the same effectiveness:

• If the outlier standard deviation is larger than 6 times the
measurement standard deviation, both techniques detects
it with a high probability.

• A critical situation arises if the standard deviation ranges
from 5 to 6 times the measurement standard deviation,
because in some scenarios the bad measurement is not
detected. However, both techniques behave in the same
way.

Therefore, we conclude that the bad measurement detection
capabilities of the DWLS estimator are similar to those of the
traditional WLS estimator.

Note that cases involving multiple measurement gross er-
rors are not studied in this paper. Multiple interacting bad
measurements is a subject of future research.

B. 118-Bus Case Study

In order to further analyze the actual performance of the
DWLS estimator vs. the WLS one in a large power system,
the IEEE 118-bus system [33] is considered.

Two measurement configurationsr1 and r2 (detailed in
Table II) are studied. Assuming a three-phase connection
for all the multifunction meters and a sinusoidal balanced
system state, the DWLS estimation algorithm explained in
Section III-C is run for each measurement configuration and
five hundred scenarios.

To appraise the computational burden of calculatingC−1
z

in large systems, Table III provides the blocked structure of
matrix Cz.

Table V provides the percentage of simulations for which
the DWLS state estimator outperforms the traditional WLS
estimator, and theMAE

WLS

u −MAE
DWLS

u in % with respect
to MAE

WLS

u for each compared variableu. Note that the im-
provement percentages are significantly high and increase with
the redundancy ratior, attainting100% for several types of
variables/measurements. Note that theMAE

WLS

u −MAE
DWLS

u

with respect toMAE
WLS

u values slightly increase with the
redundancy ratior.
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Fig. 5. Comparison ofMAEWLS
u,ω andMAEDWLS

u,ω for the 39-bus case.

TABLE V
DWLS AND WLS ESTIMATION COMPARISON FOR THE118-BUS CASE.

Variable Cases improved (%)
MAE

WLS
u −MAE

DWLS
u

MAE
WLS
u

(%)

r1 r2 r1 r2

Vi 88.2 83.1 14.1 14.1
θi 88.8 91.2 27.9 36.5
Pi 100 100 25.1 33.2
Qi 97.1 100 16.2 24.2
Pij 100 100 24.8 33.5

hi(x̂) 100 100 22.2 29.9

Using MINOS [34] under GAMS [35] on a Linux-based
server with four processors clocking at 2.6 GHz and 32 GB
of RAM, the average computing time to perform a single WLS
estimation is in this case study0.55 seconds, while a single
DWLS estimation takes0.55 + 0.87 = 1.42 seconds. The
computing time to perform the inversion of the matrixCz

of dimension584 × 584 is 0.002849 seconds.

C. Case Study Conclusions

In the previous sections, both DWLS and WLS estimators
have been studied and compared, in terms of accuracy and

computational efficiency, for two realistic case studies.
Note that the DWLS estimator requires a greater compu-

tational effort than the traditional approach, but, considering
current computers, this additional computational burden is not
significant.

In terms of accuracy, Tables IV–V and Fig. 5 provide
absolute and relative comparisons between both methods.
Due to the inherent accuracy of the WLS estimator (if no
gross errors affect the measurement set and if the weighting
matrix corresponds to the inverse of the true variance diagonal
matrix), providing a “much better” state estimate is practically
impossible. For this reason, the absolute difference is small
between methods (Fig. 5). Therefore, the most suitable com-
parison criterion is the relative one, provided in Tables IV–V.
From these tables, note that the DWLS method clearly outper-
forms the WLS one, estimating always better any variable (Vi,
θi, Pi, Qi, Pij , or h(x)), and reaching relative improvements
up to 45%.

VI. CONCLUSION

Taking into account the actual measurement dependencies
that occur within substations makes a difference in terms of
estimation quality in power systems state estimation. Thisis
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the main conclusion drawn from the analysis carried out and
reported in this paper, which provides a technique to determine
the measurement variance-covariance matrix (non-diagonal)
and uses this matrix within a weighted least squares estimation
procedure. Estimations using this dependent weighted least
squares technique outperform statistically estimations obtained
without considering existing measurement dependencies. This
is shown using two realistic case studies.

Future research will focus on multiple gross errors detec-
tion and identification considering measurement dependencies.
Particularly, the case of interacting and conforming multiple
bad measurements will be considered.
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APPENDIX A
ORTHOGONAL TRANSFORMATION OFNORMAL RANDOM

VARIABLES

Let e be a correlated normal random error vector, with zero
mean and variance-covariance matrixCz .

An uncorrelated random vectoru and a linear transforma-
tion matrix A is sought, such thatu = Ae.

The standard deviations ofCz should all be positive,
because otherwise they have no physical meaning. This means
that Cz should be a positive definite matrix, thus Cholesky
decomposition can be applied,Cz = LLT .

To obtain an independent random vectoru we need that its
variance matrixCu meetsCu = I, thus

Cu = ACzA
T = (AL)

(

LTAT
)

= I. (26)

For expression (26) to hold,A should be equal toL−1.
This way matrixA is lower-triangular andu is a vector of
standard independent normal random variables:

u = Ae = L−1e. (27)

Let us consider vectore = z −h(xtrue) and the optimiza-
tion problem (16)–(18). Using (27) the objective function in
(16) becomes

J = [z − h(xtrue)]TC−1
z [z − h(xtrue)]

= eT
(

LLT
)−1

e = eT
(

L−1
)T

L−1e

=
(

L−1e
)T

L−1e = uTu.

(28)

The objective functionJ above has aχ2 distribution be-
cause it is the sum of the squares of standard independent
normal random variablesui ∼ N(0, 12).

Using (27), note that problem (16) can be also expressed as
a Least Squares (LS) problem:

minimize
x

J = [L−1 (z − h(x))]T [L−1 (z − h(x))]

subject to

c(x) = 0

g(x) ≤ 0 .
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