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Power System State Estimation Considering
Measurement Dependencies
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Abstract—State estimation measurements within a substation vy Output random variable vector.
are routinely considered Gaussian and independent. In this 4, , Location of variablep; for concentratiork.
paper the questionable independence assumption is dropped wi . Weighting factor of variabley, for concentratiork.
and a statistical procedure is proposed to estimate the mea- ' .
surement variance-covariance matrix. The well-known weigted Hpy Mean of randpm variablgp;. )
least squares technique for estimation is then modified to te op,  Standard deviation of random variable
into account measurement dependencies. Two case studiesar /4. j-th non-cross moment of the random variable
analyzed and conclusions duly drawn. O'y:yq, Second centered cross moment between random

variablesy, andy,.
PY, Y, Correlation coefficient between variablgsandy,, .

Index Terms—Weighted least square, Dependent Gaussian
measurements, Power system state estimation.

C. State Estimation Symbols

NOTATION .
Number of state variables.

n

The main notation used throughout the paper is stated below,,
for quick reference. Other symbols are defined as required in,.
the text.

Number of measurements.
Redundancy ratio of measurements.

C, Measurement variance-covariance matrix.
W Weighting matrix of the traditional WLS estimator.
A. Measurement z Measurement vector.
]_) Input Signals; e Measurement error vector.
v/ \oltage input measurement for busnd phasef. h(-)  Non-linear functional vector.
I/ Current input measurement for phagefor the  ¢()  Non-linear equality constraint vector.
’ generator/load of bus g(:) Non-linear inequality constraint vector.
U; Current input measurement for phagend linei; z State vector.
true
at terminali. x Tru_e state vector.
¢! Voltage-current phase angle input measurement for® Estimated state vector.
) r Residual vector.

phasef for the generator/load of bus

\oltage-current phase angle input measurement for

phasef and lineij at terminali.

2) Processed Measurement:

Vi \oltage measurement for bus

P; Active power injection measurement for bis

Q; Reactive power injection measurement for bhus
P;;  Active power flow measurement from biigo bus;.
Q;; Reactive power flow measurement from bigo

busj.

B. Point Estimate Symbols

n
v

K
p

Number of input random variables.
Number of output random variables.
Number of the considered concentrations.
Input random variable vector.
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I. INTRODUCTION
A. Motivation

The aim of a state estimation procedure is estimating the
state of a power system using a sufficiently large number of
measurements of appropriate types and covering the whole
power network. In addition to measurements, the structural
data of the system are needed, i.e., topology, line/tram&n
parameters (resistances, reactances and shunt susesptanc
and bus parameters (capacitor/reactance banks).

Measurement errors are routinely considered Gaussian-
distributed and independent. We judge appropriate to densi
measurement errors Gaussian, but generally inappropgdate
consider them independent. Numerical simulations and field
testing show that error distributions are reasonably Ganss
but they also show that measurement errors within a bus or
a substation are clearly not independent. This is partityula
so with current digital measurement systems that “fabeicat
(active and reactive) power measurements out of “raw” mea-
'surements of voltage magnitudes, current magnitudes and
current-voltage phase angles. Particularly, we consitat t
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voltage magnitudes, current magnitudes and phase angeskr Paper Organization

measured at each substation for each bus-bar and line, angiye rest of this paper is organized as follows. Secfion I
then active/reactive power magnitudes computed elecaifli  characterizes the measurements within a substation, and pr
within the measurement system and transmitted to the Enelgyes a procedure to estimate the variance-covariancéxmatr
Management System (EMS), along with voltage measurgtihese measurements. Secfiah Il provides a WLS estimatio
ments. . algorithm that takes into account the dependencies among
If statistical correlations among measurement errors geasurement errors. Sectién] IV provides an algorithm to
properly modeled and considered in the estimation pro@&dyjenerate correlated measurements. Sedfibn V provides and

a better estimate of the state of the system (i.e., closgfalyzes results from two realistic case studies. FinSig-
to the true state) can be achieved. We show that this i§n 77 provides some relevant conclusions.

actually the case and that taking into account measurement-
error correlations makes a significant difference in terrhs o

) . . Il. MEASUREMENTDEPENDENCY
estimation quality.

A. Measurement Structure

B. Aim Each substation of a power system is equipped with elec-

The aims of this paper are threefold. First, a techniqd@’”ic devices called Remote Terminal Units (RTU) thatectl

is proposed to estimate efficiently the variance-covaganf©M the measurement system various types of measurements,

matrix of the measurement errors of all measurements in“gually active/reactive line power flows and bus voltages.

substation. This technique is based on a well-know stedisti | '€S€ measurements are processed by the state estimator,

procedure: point estimate. Second, an algorithm is prmt/id}ﬁ’hiCh provides an optimal estimation of the system state
to generate dependent measurements that are properly £gs€d on the available measurements and on the assumed
related according to a given measurement topology. Thir%YStem model._TradltlonaIIy, all mea_surements are consitle

we propose a modification of the well-known Weighted Lealfdependent with zero-mean Gaussian errors [10].

Squares (WLS) estimation procedure that considers depende ' 0rder to study the validity of this independency assump-
cies among measurements. tion, measurement topology and data processing should be

considered. The connection of a typical three-phase multi-
function meter is shown in Fid.] 1°[16]. In this three-phase
) ) S .. connection diagram, three voltage and three current signal
The technical literature is rich in references pertainiag 4e ysed as input data for the multifunction meter (see(Big. 2
state estimation techniques and algorithms [1]-[11]. T p 1hg glectronic device converts thesealogsignals into digital

neering work is due to Schwepge al. [1]-[3] and othersl[4]. ,nes processes them and provides the measurements (output
The model for the state estimation problem is well establish data) that the state estimator uses. To compute each output

and diverse solution alternatives are also well knawn [BIF measurement, the multifunction meter makes use of all the
Particularly, [12] describes the preliminary design of atest input data.

estimator with dependent non-Gaussian measurementsh whic
uses appropriate statistical transformations. Besid2l ot A B C N
much work has been done so far on measurement dependen-
cies.Reference[3] states that measurement correlations, which  x
depend on the system state, should be considSate works
also recognize that certain measurements such as voltage - Current
and active and reactive power injections at a given bus, for signals
example, are correlated in both transmission and distabut
networks [13]-]14] Specifically, reference [15] studies the ef-
fect of considering different values of measurement vaegan Multifunction
on the estimations. L 1| meter
Nevertheless, emphasizing computational efficiency, mea-
surement dependencies have been traditionally disregarde Processed
which results in less accurate estimaies|[3],[15]. To trst bé | measurements
our knowledge, no references studying in detail the measure ,_§§
ment dependencies applied to state estimation are awilabl Voltage

the technical literature. é? signals
D. Contribution %g
The contributions of this paper are: (i) to provide a state

estimation technique that takes into account the depeiekenc
among measurements within each substation as well as i). 1. \oltage and current signal connections in a threesphmeasuring
to derive an estimation procedure for the variance-comaga configuration.

matrix of the measurement errors.

C. Literature Review
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cﬁéﬁg:i;ﬁs m::;i;ﬁ;ﬁts It is assumed that_in a bus where more than one Iine_is
4 o ) _ connected, voltage signals are shared between multibmcti
VoL V5T V. meters (see Fid.l 3). On the other hand, if each multifunction
IiA’ IiB7 ]iC P meter has its own voltage and current signéls,; becomes
4 B Multifunction ' a blocked matrix itself. Some multifunction meters can be
Vi, Wis Wiy 19 connected to two phases, and internal calculations differ
[;’ [;, [; P, from eq_uati_ons[_GZ)HG). P_ursuing clarity and without log$s o
4 s 0 generality, in this paper it is assumed that all buses have a
Vs Vs Yy i three-phase meter connection.
INDEPENDENT DEPENDENT
INPUT DATA OuTPUT DATA Voltage signals
rl?:gésztjrem\écr)]lttsge and current signals, multifunction meted grocessed —
Dependencies between processed measurements can be rep- *
resented by the measurement variance-covariance matrix fo i i
the whole power system(',. Since there are no voltage- T | | Bus i

current signal connections between substations, progesse . ' ! i
measurements exhibit dependencies just between other pro- ~ CUrrentsignals

cessed measurements at the same substation. Therefarig, mat

C. is a diagonal blocked matrix, whose blocks, ; are the

measurement variance-covariance matrices for each siobsta
Fig. 3. Bus connecting more than two lines, and meter coiorect

C., 0 -~ 0
0 Cz,z"' 0
6 0 C B. Point Estimate

zZ,mn

q o b o the i | digital Point estimate methods are used to characterize stallistica

Iln cl)r er to cfor;:pute ?? z,i SU matrlx,ht eltljnLerna 'Q'ta a set ofn output random variables of a problem, given some
calculations of the multifunction meter should be conder ., 1\ony known information about the statistical distribu

The following expressions correspond to the most releve\rﬂ;nS of the set o random input variables

OUFPUt measur_ement_s (for_; Ithree-phase conrt:_e(;]tlpn Conf_'guSpecifically, point estimate methods provides an estimatio
ration), assuming a sinusolda Syitsem state (which is &P ¢ e first moments of the output varialjewhich are defined
assumption in state estimation) [16]: as a function of the input variable vectpr i.e.,y = F(p).

VA+VE Ve In our study, the input random variable vecgicomprises
Vi=F() = 5 (2)  all input signals,
P = Fp() = S Vil cosy!) @) p = [p,.sptepn)”
_{aBC o S iy
r=taney Frf o ¥ - [‘/zj7l//q/jzjlzjj77lgk77/}ljj//Ljyj]\}T7
Qi =Fo() = Y Vlsm@) @ . |
F=(AB.C) the output random variable vectgr comprises all processed
Fof f measurements,
Py = Fp,() = > ViIcosw]) () ,
f={A,B,C} Yy = WY U]
Qi = Fo,() = Z VifIifj Sin(i/ff;) . (6) = [Vi, P, Qi Pijy - ooy Pite, Qijy -, Qi)™
F={A.B.C} and the transformation functional vect#t(-), defined from
where V;/ is the voltage signal for phasg and busi, ] @-@), is:
and wzfj are the current and voltage-current angle signals for F(-) = [F(-), ..., F,(),..., F,()]"
phasef and lineij at terminali, and I/ and 1/ are the = [Fv.(), Fp. (), Fo. (). Fp, (), . Fp, (),
current and voltage-current angle signals for phader the Fo. () Fo (;)]T '
G o

generator/load of bus

From [2)-{®), note that if an input signal contains a gross er
ror, some output measurements are inaccurately compurted. | The statistical information of each input variabje)(distri-
other words, an input measurement empoopagateshrough bution is concentrated ik’ pairs of numerical values, called
several output measurements, provoking multiple intérgct concentrationsEach concentration is composed of a location,
bad data. pi,r and a weightw; ;,, whose expressions depend on the
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considered point estimate algorithm.

Locations define the points in which functiod§(-) are
evaluated. The values of these evaluatidrig{( k)) comprise
information about the functior¥,(-) and its influence on
the output random variablg, distribution, but they have not
any statistical interpretation. In order to weight the eliént
influences, the weighting factors; ; are used, but they
can not be mathematically interpreted. Finally, moments of
output variables are computed as a weighted sum of all the
evaluationsY, (/, k).

Several point estimate methods have been proposed in the
technical literature[[17]£[24]. They mainly differ on thgpe
of variables that they can deal with and on the number of
evaluations off'(-) to be performed. From among all of them,
Hong’s two-point estimate metho@ [24]=]25] is used in this
study for its simplicity and accuracy.

The point estimate algorithm is detailed below. The single
underlying assumption considered is that input signals are
considered Gaussian-distributed random variables, aslefbt
in Section=A.

1) Calculation of locationsLocationsp; , (k = 1,2) are

5) Calculation of non-diagonal terms aof'. ;: The non-

diagonal terms of”', ; matrix are calculated as second
centered cross moments. The second cross moments
(between the output variablgg andy,) are computed

as

=EY,Y,] ~
l

CYY/

§ wlk

1 k=1

Yy (U, k).

(11)
For instance, the second centered cross moment between
the output random variable¥; and F;;, cv,p,;, is
calculated as

CViP;; = E[Y‘/iYPij] -

n

Applying the above method, a symmet@t, ; matrix is
obtained, as shown i_{lL3) (see P&ye 5), where diagonal
terms correspond to the variances of the processed
measurements, and non-diagonal terms correspond to the
products of the standard deviations with the correlation
parameter between the corresponding variables. For in-

computed as follows (seE[25]): stance, the termy, p, corresponds to:

CV,P; = OV,OP; PV, P; - (14)

Pi,1 = Hp,; + \/ﬁopz P - \/ﬁapz 5 (7)
where p,, and o, are the mean and the standard
deviation of the input random variablge. Note thato,
is characterized by the measurement device accur
and ., depends on the actual system state.

Pl,2 = Hp,;

Traditionally, matrix C, is considered diagonal, and its
inverse is used as the weighting matrl¥() in the WLS esti-

Aator [10], providing a quantification of the precision otka
measurement. In the proposed method, these “weights” are

2) Eva!uatlon of F(-): Each funcuonl_«“ Q('.) Is evaluated calculated analytically from the voltage/current/angignal
2n times ( = 1,...,n;k = 1,2), yielding the vector precisions.
Y (I, k), whose component, (i, k) are computed as The performance of the proposed method to calculate
Yo(L k) = Fy(tps - Hpr 1o Pl Hppgas -« > Hpy ) - based on a point estimate technique, has been carefully
assessed comparing its results with those obtained using a
numerical estimation of the measurement variance-cavegia
3) Calculation of weightsThe weighting factorsy; , are matrix. This assessment is based on a Monte Carlo algorithm:
computed as (seé [R5]): a set of independent Gaussian-distributed random vectors
1 1 (representing the measurement samples of each input kignal
wy,1 = 2—77 s W2 = % . (8) have been generated and processed thrddgH12)—(6) to obtain
the corresponding dependent random vectors, which regrese
. . . . the output dependent processed measurements. Compuging th
4) Calculation of diagonal terms af', ;: Using the weights

variance-covariance matrix out of these vectors, a nuraleric
estimation ofC, is obtained.
In order to derive statistically sound conclusions, sample

wy, and theY, (1, k) values, thej-th non-cross moment
of the output random variablg, are estimated using

(see [25]): sizes up to one million have been considered, and a sufficient
no 2 _ number (up to ten thousands) of feasible operating points ha
uy =LY, Zzwz,k(n(l,k))f . (9) been tested. The maximum relative error obtained between
q

I=1 k=1 methods is smaller that%. It is thus concluded that the point

estimate technique performs properly to estimate measmem
Note that the mean and the variance of the procesgt;éi”ance _covariance matrices.

measurements can be easily computed fifgm (9). For in-
stance, the variance (second centered non-cross moment)
of P;j, o3, , is computed as

[1l. DEPENDENTSTATE ESTIMATION MODEL

Most state estimation models in practical use are formdlate
(10) as overdetermined systems of non-linear equations of time fo

_ true
Therefore, the diagonal terms @I, ; matrix are com- z=h(z"") +e, (15)
puted as the second centered non-cross moments of wWiere z is the vector of measurements!™ is the true
output variable vectoy. state vector,h(-) is a non-linear function vector relating

0'123111' - E[Yfgu] - E[Ypij]Q
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measurements to states, ants the measurement error vecto(in terms of accuracy, required computing time and spar-
with zero mean, which implies that meters are unbiased, igty treatment) available nowadays [11], or, under certain
Ele] = 0. There arem measurements and state variables, assumptions with respect formulatidn{16)3(18), by anyhef t
n < m. specific methods for solving the WLS problem proposed in
As stated in Sectiof]ll, measurements are assumed tothe literature,[[10].
dependent Gaussian distributed random variables, and theiDue to the nature of the variance-covariance ma€riy,
variance-covariance matrix is denoted@s. From [I5), note composable by square blocks related to the buses along the
that the variance-covariance matrix of measurement efsoramatrix diagonal, its inverse can be calculated efficientling
equal toC, becauseh(z'™"°) is deterministic[[1P]. the inverse of its blocks as follows:
Considering that this paper focuses on measurement depen-

—1 _
dencies, our study relies on two traditional state estiomati Corn 0 Coiee 0
assumptions [10], namely: c:t=| : - = o e (29)
1) Calibration is used to eliminate large systematicalrstro o ---C,, 0 ---C;}l
and, thus, measurement errors are Gaussian and ngn- . .
biased. Analogously, the Cholesky decomposition of the variance-

qvariance matrixC, can be obtained through the Cholesky

2) The exact network topology and the exact paramet " .
) pology P ecompositions of their blocks.

values are known.

Note that the validity of these assumptions is analyzed&-{2
[30). B. Bad Measurement Detection and Identification

The proposed DWLS method allows us to apply the tra-
A. State Estimation ditional Chi-squares test in a simple manner. Note that the
Under the assumptions stated in the previous subsectiopgjective function[(TI6) exhibits &” distribution with at most
and once the measurement variance-covariance m@trixs (1 —n) degrees of freedom (sefe 28) in the Appendix). Thus,
obtained, the state estimation is performed as a Dependéwt x* test for detecting bad measurements can be used as
Weighted Least Square (DWLS) problem that can be formgdetailed, for instance, in_[10].
lated mathematically as an optimization problem including Bad measurement identification can be carried out through

equality and inequality constraints as follows: the normalized residual test, using the traditional apghnpa
explained, for instance, in_[10].
minimize J = [z — h(@)"C 'z — h(z)]  (16) " i1l
xr
subject to C. Dependent State Estimation Algorithm
. The algorithm to perform the dependent state estimation
c(z) = 0 an LA )
method proposed in this paper works as follows:
glz) < 0, - — . .

1) Initial non-dependent estimatioAssumptions stated in
where x is the state variable vectog(x) are the equality Section[d imply that the variance-covariance matrix
constraints representing perfectly accurate measuranesro depends on the actual values of the state variables. As
injections), andg(x) are inequality constraints normally used we do not know those values in advance, the traditional
to represent physical operating limits. non-dependent estimation is used to get initial values of

Note that the only difference with respect the traditional the positive sequence state variahi€®. The iteration
WLS formulation is that the variance-covariance matrixIif) counter is set to 1y = 1.
is non-diagonal. Note that the weighting matrix used in the first esti-
The solution of problem[{16)E(18), can be obtained mation is diagonal, and it is computed using the meter

by any of the efficient mathematical programming solvers  variances (e.g0.01% or 0.022).

Vi P Qi P - Py Qi - Qik
Vi 0\2/1» CV; P; v;Q; CV; P;; T CV; Py, CV;Qi; T CV; Qi
P; CPV; 0'1231, CP;Q; CP; Py U CP; Py, CP;Qqj T CP;Qir
Qi CQ.V; CQ.P; U?Q,- CQiPiy; " CQiPy CQiQi; " CQiQuk
Pij CpP;Vi CPy;P;  CPj;Q; 0123” 0 CPyPy, CPyQi; Tt CPyQuk
C.,=: ; : : : ; : : 13)
Pi | epyvi CPuP, CPuQi CPyP; T OB, CPuQy T CPuQu
Qij CQi; Vi €CQijPi CQi;Qi CQijPy; 7 CQiiPiy UQij 0 CQiQuk

Qik CQiVi CQiP; CQiQ:i CQinPij CQikPir  CQirQij TQik
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2) Variance-covariance matriCi”) calculation.Per-phase wherem,, is the size of vectou, andw is the measurement
valuesV;/, I/, andv]; are computed using the previousscenario.
estimatest” "' and the following expressions: Once a sufficiently large number of state estimation simula-
tions is performedMAE, is defined as the averag¢AE, ,,

P
Vi =V, Vfe {{47370} for all the considered scenarias Thus, for the WLS and
VB, + 3 DWLS estimation methods:
" 3V WLS Zw:l MAEu,w
i ) (20) MAE, = T (23)

7/}{ = sign(Qi;)cos ! | —2 _ "e MAEDPWLS

J J MAE. VS = 2wt e (24)

N

vfe{4,B,C}. wheren,, is the number of the considered scenarios.
From [20), note that the assumption of balanced operat-Note thatMAE, represents the average absolute deviation
ing conditions is used. The variance-covariance matrbetween actual and estimated values for all the measurement
approximation at iteration, C'), is obtained using (a) scenariosw considered (for the variables). Therefore, a
these voltage, current, and phase angle valugs'{p;), method is comparatively more accurate than an alternatiee o
(b) standard deviation values for the corresponding volith respect tou if its MAE,, is comv\?aratively smaller.
age, current, and phase angle meters,(#p:), and (¢)  Note also that the differend@AE, = — MAE." ™ rep-

the point-estimate method detailed in Secionlll-B.  resents the average-estimation improvement of using the
3) Dependent state estimatiofihe state estimation prob-pwLs method instead of the WLS one.

lem considering dependenci€s](16)1(18) is solved using
the approximatiorCﬁf’) of the variance-covariance ma-

trix, and considering as initial values for the state vari- ) )
ables those obtained in the previous iteratioit 1. To check the computational behavior of the DWLS method

The new estimates of the state variables correspond% compared with the tradmo_nal WLS one, we need to
20 generate measurement scenarios with an actual dependence

4) Bad measurement detectio®nce the estimateg)  structure. The algorithm to generate those measurements pr

are available, the Chi-squares test for bad measuremgfgds as follows: . _
detection is performed. If bad measurement is suspected) Power flow solution.The process starts from a given

IV. GENERATION OF MEASUREMENTS

the algorithm continues 0 5); else,|jfig(”>—§c(”*1)|| > power flow solution that allows deriving the true state
¢ the estimation process continueslih 2), otherwise, a @' (variablesV;™, ;" at every busi). Therefore,
solution within ane tolerance corresponds ™) and P, Qe, Pite and Q5 can be easily computed
the algorithm concludes. knowing the network data.

5) Bad measurement identificatioklsing the traditional . _ . .
method in [10], the bad measurement is identified and 2) Trl_le input measurement generatioAssuming a sinu-
removed from the estimation process. The algorithm  soidal balanced system state, true measurenigfits,
continues i 1L). I3 and e are calculated from the power flow

Notwithstanding the iterative nature of the proposed al-  Solution throughl{20), using true values (basedrdfii°).

gorithm, numerical studies show that just one iteration is ) ] .
from iteration to iteration. Gaussian-distributed error to the true values obtained in

the previous step, actual input sign&flé‘, ]7/1 andq/;{;j
D. Estimation Assessment are obtained: A
In this section, the traditional WLS state estimator and the V! = Ve 4 N(0,0v),
DWLS state estimation method, detailed in Secfion 1II-@& ar Il.f. = Iy +N(0,01), (25)
compared. In order to carry out this comparison two sets of y;fj = w;.r;l]? + N(0,0y) .

metrics are definedMAE}}® and MAEDW™®, which are
measures of the quality of the WLS estimate and the DWLS  Using [2)-[6) and the actual input signals, dependent
estimate for each measurement scenaricespectively. These processed measurements,(P;, Q;, P;;, andQ;;) are
measures are based on the Median Absolute Error (MAE) of a  obtained.

set of compared variablas. Usually, the compared variables | order to generate a set of dependent measurement sce-

areV;, 0;, P, Qi Vi; Pij, Qij Vij; andhy(x) Vi, narios based on the same power flow solution, note that only
TheseMAE, ., expressions are step 3) should be repeated.
My true WLS
WLS Zi:l |u —u }
MAE"S -— (21) V. CASE STUDIES

Sy Jutne — yPWES| Two case studies are presented to illustrate the overall per
MAEDPWLS — — = (22) P
u,w My ’ formance of the DWLS state estimation procedure presented
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TABLE Il

in this paper. In order to derive statistically sound coaitins MEASUREMENT CONFIGURATIONS FOR THE CASE STUDIES

a large number of state estimation problems up to five hundred

is solved Type of 39-bus case study 118-bus case study
) measurement 1 | o |
Vi 39 39 118 118
A. 39-Bus Case Study B 10 21 >4 110
Qi 10 27 54 110
1) DWLS Estimation:In order to show the actual im- Py 46 46 179 179
provement of considering measurement dependencies i stat Qij 46 46 179 179
estimation, the DWLS approach is applied to a 39-bus system Total 151 185 584 696
[31]. Three-phase connection is considered for all the imult " 1.961 | 24026 | 24851 | 29617
function meters in the system, so that the formulation in-Sec
tion[lllcan be readily applied. The solution of an initial pemw TABLE Il
ﬂOW iS Considered the true Stateﬁr“e — {Vtrue7 0“”0}, and STRUCTURE OF THEC', MATRIX FOR THE CASE STUDIES
active/reactive power flow and injections are compugedte, Block 39-bus case study 118-bus case study
ngc Vi, Pitjruc and QE;-“C Vij. dimension | 1 ro r1 ro
Assuming a sinusoidal balanced system statg;, I]&f;lje 1x1 3 0 9 1
and 1/;?;1]6 variables are calculated at each bus and line using 3x3 22 17 48 23
@20). Afterwards, theC'™° matrix is computed considering 5x5 |9 13 22 45
the measurement topology. T 4 ! 21 24
. ST 9x9 1 1 14 17
Table [l provides the distribution of the absolute values 1Mx11 | o 1 2 3
of the correlation factorgv; p,, pv;,q,, pr.,@; andpp,; q,,» 13x13 | 0 0 2 2
for the 39-bus case study, computed fr@i"™°. Note that Total 39 39 118 118

correlations are considerably high across different eed
measurements, being inadequate the traditional assumptio

about null measurement correlations. ) ) )
(iif) dependent state estimation, (iv) bad measuremergodet

TABLE | tion and (v) bad measurement identification.

MEASUREMENT CORRELATIONS FOR THE39-BUS CASE Although the proposed algorithm is iterative (see Sec-

Range lovi.pl  levieil  lersoil  lepy,qul tion [[l-C), it has been numerically established that onfyeo

of p (%) (%) (%) (%) iteration is required, because additional iterations ma&e
0.0<|p|<0.1 | 41.90 61.17 7.63 6.15 substantial changes in matri . .
0.1<|p| <02 | 34.64 34.08 2.54 5.59 2) 39-bus Single Scenario Analysi$o compare initially
02<|p[ <03 | 9.22 2.23 2.54 4.75 both approaches a single measurement scenario is cortsidere
03<|p| <0.4 ] 6.98 1.96 5-93 5.03 in this section, for the measurement configuration
04<pl <05 223 000 201 363 Traditionally, WLS weighting matrix is generally computed
05<|p|<0.6 | 223 0.56 5.08 3.07 k ' , ad !
0.6<|p| <07 | 112 0.00 0.85 6.15 as the inverse of the meter variance ma@*‘, whose diag-
0.7 < |p| < 0.8 0.56 0.00 8.47 5.03 onal terms are fixed values (e.§.012 for voltage magnitudes
0.8<|p|<0.9 | 112 0.00 12.71 11.73 or 0.022 for powers).
09<|p|<10 ] 0.00 0.00 50.00 48.88 The measurement scenario is generated as detailed in Sec-

tion IVl From SectionT\-A above, note tha®’"® can be

computed, and, thus, the true meter variance diagonal>xmatri
In order to illustrate the improvement achieved using thean be calculated a@j*‘g = diag(C™°).

method proposed, two measurement configurations are studfhus, the WLS estimation can be carried out using
ied: 7, andr,. Table[l provides the number of voltage meac'**! or C!'*¢, obtaining different estimationdVL.s"¢ and
surements, active/reactive power injection measuremamds WLS4 2 respectively.
active/reactive power flow measurements considered fdr bot Figure [4 depicts a histogram of the absolute error for
measurement configurations. The last row in TéBle Il pravidgoltage estimations (magnitude and angle) obtained usiag t
the redundancy ratio (number of measurements divided Byr.strad W1.S42¢ and DWLS methods. The vertical lines
number of state variables). indicateMAEy andMAE, parameters for the three methods.
Table[l provides the structure of the85 x 185 blocked For this example, it can be concluded that the DWLS
matrix C, for both measurement configurations. Note #¥at estimator outperforms clearly the tradition&/LS'"*¢ one,
is a very sparse blocked matrix, as stated in Sedfidn Ills Thibtaining an average absolute error about ten times smaller
high degree of sparsity allows us to compute its inverse in @n the other hand, the accuracy of tH&.S%*¢ estimator is
efficient way, using[{219), Cholesky decomposition and palral between those oWLS!?d and DWLS estimators.
computation techniques. Note that the differences between DWLS awd.S4#¢ re-
For each measurement scenario, the state estimation algdts are the consequence of considering or not dependencie
rithm is executed as follows: (i) initial non-dependenirast i.e., the effect of using a diagonal or a dense weightingimatr
tion (that is, traditional WLS estimation), (i’ calculation, Since the DWLS estimator outperforms clearly iWg.Strad
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Absolute error comparison between methods. TABLE IV
7] T T T T T r DWLS AND WLS ESTIMATION COMPARISON FOR THE39-BUS CASE
S trad
g I 0.0016 [ Jws ! 1
J] | l:l wiLstiag | ] MAEWLS _FARPWLS
5 . 0.0139 1 0 u u 0
® ! 0.0014 I owis : Variable | €ases improved (% SRRV (%)
5] - 4
E : - = —magWs™ ! 1 12 L] 12
g T | WL ! | Vi 53.0 53.4 1.0 0.7
8 ! MAE ! 1 0; 80.2 80.0 39.2 39.9
5 I MAEDWLS ! | P; 97.4 99.6 457 38.2
z i ! Q; 66.0 77.2 4.3 5.5
‘ . . ‘ Py 99.8 99.4 31.6 34.2

0 0002 0.004 o.o‘o‘fmo;?/orfmn?m 0012 0014 0.01€ his) | 996 096 199 320
a 30 T T T T T T
£ ,
£ 25| :\ :\ 1 . _
g 0.0005! 0.0020 : 0.0045 that the measurement error is generated within the voltage
g 20 | 1 measurement device, not in the multifunction meter (thoeresf
E 15f [ 1 the erroris spread among processed measurements in the same
o |
g 10+ | 4 bus).

E | | | Numerical simulations show that if the bad measurement
= N H m HJLHM is a gross error or a extreme error (as defined_in [32]), both
% 1 2 3 4 5 6 7 g methods detects this outlier with the same effectiveness:

true metho = . . . - .
lpiree -9 f x10° « If the outlier standard deviation is larger than 6 times the

measurement standard deviation, both techniques detects
it with a high probability.
« A critical situation arises if the standard deviation ramge
one, in the following sections the compared estimators are {rom S to 6 times the measurement standard deviation,

the DWLS and theWL.S%22, the latter being called hereafter because in some scenarios the bad measurement is not
WLS. detected. However, both techniques behave in the same

3) Multiple Measurement Scenario Comparisdfive hun- way.
dred state estimation scenarios are considered for thisug9- Therefore, we conclude that the bad measurement detection
case study. Each measurement scenario provides two set€agrabilities of the DWLS estimator are similar to those & th
MAE,,, values (one for the WLS estimation and other fotraditional WLS estimator.
the DWLS estimation), as stated in Section Tll-D. In order Note that cases involving multiple measurement gross er-
to compareMAEWLS and MAEDWES, six histograms are rors are not studied in this paper. Multiple interacting bad
plotted in Fig.[5. These histograms represent five hundrgtasurements is a subject of future research.
measurement scenarios for themeasurement configuration,
and compare voltage magnitudes/angles, active/reaatived g 11g.Bus Case Study

injections, active power flows and the functional vedui:).
A vertical dashed line is plotted ATAEPWES — MAEWLS In order to further analyze the actual performance of the
u u,w

7UJ Y - -
Note that the dashed line in each histogram represents [A&/LS estimator vs. the WLS one in a large power system,

case for which both methods exhibit the same average absol} |EEE 118-bus systern [33] is considered. o
estimation error. Note that the vast majority of the simioleg _ 1WO_measurement configurations and r, (detailed in
lay on the right-hand side of the dashed line, which mearts t@ble [Il) are studied. Assuming a three-phase connection
MAEWLS is larger tharMAEPWES for most of the cases. for all the multifunction meters and a sinusoidal balanced

Table[I¥ provides the percentage of simulations for whicRyStem state, the DWLS estimation algorithm explained in
the DWLS state estimation method provides a better avet€CtionI-Q is run for each measurement configuration and

age estimation than the traditional WLS method, and tf€ hundred scenarios. )
mXVLS B mSWLS in % with respect tmﬁm for To appraise the computational burden of calculaifrig

each compared variabke in large systems, Tablelll provides the blocked structure o
: . . matrix C .
Note f Table[ TV that DWLS Its slightl Z . . . :
withoaehigr;%r:r r:dundancyaratim results Stightly Improve Table[\ provides the percentage of simulations for which
4) Bad Measurement Detection with One Single Outlier: the DWLS state estimator outperforms the traditional WLS

. ———=WLS ———=DWLS . .

this subsection, WLS and DWLS bad measurement detectoifmator, and theIAE, — — MAE, = in % with respect
capabilities are studied and compared. to MAE, — for each compared variabte. Note that the im-

Five hundred additional measurement scenarios are gerffdRvement percentages are significantly high and incredbe w
ated, all of them populated with an outlier in one of the wgéta the redundancy ratie, attainting100% for several types of

. . N WLS WLS

magnitude signals (pre-processed measurements). Draaliti varlables/measurem%gﬁg. Note thatBhaE, — —MAE,
WLS and DWLS estimations are run for each scenario, amdth respect toMAE, — values slightly increase with the

the x? test is applied for both estimators. It is considerecdedundancy ratio-.

Fig. 4. Comparison betweeWLSt2d, WLStue and DWLS estimators.
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Improvement in Vi Improvement in (-)i
80 T T T T 80 T
| |
|
» 60 | » 60f
2 2
S I 8
g 40} 1 « 40}
: | :
201 I 201
I
0 : : 0 =
-4 -2 0 2 4 6 8 -1 -05 0 05 1 1.5 2
MAE]"S - MAED™!S x 107 MAE"S - MAEP™S x10°
Improvement in 1:‘i Improvement in Qi
60 T 60 T
| |
» 1 n |
2 40} | 2 40} |
g g
k5 ! k5 !
5 | 5 |
S 20} S 20}
z | z |
1 1
0 0 1
-5 0 5 10 15 -2 -1 0 1 2 3 4
MAE) - MAE™ X107 MAEy ™ — MAEQ" X107
Improvement in PFij Improvement in h(x)
60 T T T T T T 60 T T T
| |
| |
8 40t ! g a0t !
5 ! 5 !
= ! s ;
Z 20} : S 207 :
1 |
0 0
-2 0 2 4 6 8 10 12 -1 0 1 2 3 4 5
MAE}, > - MAE™'S x 107 MAE"S - MAEPYS x10°

Fig. 5. Comparison oMAEYLS and MAEDWLS for the 39-bus case.

TABLE V . .. . .
DWLS AND WLS ESTIMATION COMPARISON FOR THEL188Us case  computational efficiency, for two realistic case studies.

Note that the DWLS estimator requires a greater compu-

. MAEWLS TiAEDWLS tational effort than the traditional approach, but, coasiuy
. Cases improved (% i (%) . . . X
Variable MAE,) current computers, this additional computational burcemait
L] "2 L] "2 significant.
‘0/1: gg-g gié %‘7‘-; %g-é In terms of accuracy, Tablds V3V and Figl 5 provide
P 100 100 o5 1 332 absolute anq relative comparisons between t_)oth mgthods.
Qi 97.1 100 16.2 24.2 Due to the inherent accuracy of the WLS estimator (if no
Py 100 100 24.8 33.5 ross errors affect the measurement set and if the weightin
hi(z) | 100 100 22.2 29.9 9 ghting

matrix corresponds to the inverse of the true variance diago

matrix), providing a “much better” state estimate is preaty

impossible. For this reason, the absolute difference isllsma
Using MINOS [34] under GAMSI[[35] on a Linux-basedbetween methods (Fig] 5). Therefore, the most suitable com-

server with four processors clocking at 2.6 GHz and 32 Ggrison criterion is the relative one, provided in TalleEW/

of RAM, the average computing time to perform a single WL&rom these tables, note that the DWLS method clearly outper-

estimation is in this case study55 seconds, while a single forms the WLS one, estimating always better any variable (

DWLS estimation take®).55 + 0.87 = 1.42 seconds. The 0i, I, Qi, Pi;, or h(z)), and reaching relative improvements

computing time to perform the inversion of the matg, Up t045%.

of dimension584 x 584 is 0.002849 seconds.

VI. CONCLUSION

C. Case Study Conclusions Taking into account the actual measurement dependencies
In the previous sections, both DWLS and WLS estimatothat occur within substations makes a difference in terms of
have been studied and compared, in terms of accuracy a&stimation quality in power systems state estimation. Téis
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the main conclusion drawn from the analysis carried out and
reported in this paper, which provides a technique to determ
the measurement variance-covariance matrix (non-didgonél]
and uses this matrix within a weighted least squares estimat
procedure. Estimations using this dependent weighted ledsl
squares technique outperform statistically estimatidrained
without considering existing measurement dependencias. T [3]
is shown using two realistic case studies.

Future research will focus on multiple gross errors detec:,
tion and identification considering measurement dependgsnc
Particularly, the case of interacting and conforming nplei
bad measurements will be considered. 5]
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APPENDIXA (8]
ORTHOGONAL TRANSFORMATION OFNORMAL RANDOM

VARIABLES [0

Let e be a correlated normal random error vector, with zer[go]
mean and variance-covariance matf.

An uncorrelated random vecter and a linear transforma- [11]
tion matrix A is sought, such that = Ae.

The standard deviations of’, should all be positive,
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